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Outline

► Motivation and overview
– Why run-time verification
– Formal methods and run-time verification
– Property specification
– Incremental property checking

► MaC framework
► More on MaC framework
► Applications
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Motivation

► Run of a large system – real or simulated –
produces lots of observations

► How do we make sense of a simulation run?
► Different aspects may be interesting:
– Is it correct?
– Does it have the necessary performance, reliability, 

etc.?
– Are simulation parameters and input data suitable?

► Each of these questions is a property that needs 
to be checked

CIS 480 4

Properties of runs

► Behavioral
– Sequencing of events
– Correlation between values
• Boolean

► Timing
– Duration of interactions and computations
– Timeliness
• Boolean or quantitative

► Quality of service
– Collection of statistics, aggregation of data
• Mostly quantitative
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Checking properties of runs

► By direct observation
– No tools needed
– Possible for simple and short traces

► By a custom checker
– Checkers can be simple (e.g. PERL scripts)
– Works fine if there are few fixed properties to check

► By a checker for a suitable property specification 
language
– Flexible
– Can be formal

CIS 480 6

Formal methods 

► Specification
– Precisely state what the system should be doing
• Based on a language with mathematical semantics

► Verification
– Prove that the system does the right thing
• Use formal semantics to develop checking algorithms

► Satisfaction relation

► Model checking
– Algorithms for automatic checking of satisfaction

M            P
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Temporal logic properties 

► Describe evolving systems, that go through 
sequences of “worlds”

► Behavioral properties
– Worlds are characterized by atomic propositions
– Operators 
• Future: “eventually”, “globally”, “until”
• Past: “previously”, “since”

► Quantitative properties
– Worlds contain quantitative information
– Operators
• “eventually within interval”, “at least that much throughput”

CIS 480 8

Model checking

checking
algorithm

properties/
requirements

system
implementation

system
model

modeling

refinementabstraction

correction/model refinement
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Formal methods at run time

► Compared to model checking, there is no model
– Execution trace is used as the model

► Trace extraction is easier than model extraction
– No overapproximation involved

► Property checking on a trace is easier than over 
an arbitrary model

► Obviously, a weaker result is proved
– Applies to current execution and not all executions
• Can be generalized in some restricted cases

CIS 480 10

Verification vs. runtime verification
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Monitoring behavioral properties

► Formulas in a temporal logic
► Always evaluated over a finite execution trace
► Safety properties
– “something bad does not happen”
• Raise alarm when the bad happens

► Liveness properties
– Requires non-traditional interpretation
• Check satisfaction at trace end, or
• Check if finite trace can be extended to a compliant inifinite 

trace

► We will consider safety properties only

CIS 480 12

Checking a property of a trace

► Satisfaction relation
t:

► Simple algorithm, linear in the trace length
► At each step, trace becomes longer

t’:

► Furthermore, traces are too big to store
► Need a different approach
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Incremental checking of a trace

► In fact, we do not need to check the whole trace 
over and over again

► Keep a checker state
– values of all subformulas

► Upon each observation, update 
checker state

► When a “verdict”
state is reached,
report property
value

checker state
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What about quantitative properties?

► Checker state need not be all boolean
► Auxiliary variables can store
– Time instances and intervals
– Event counts
– Aggregate values
– …

► Predicates over auxiliary variables can be used 
as new atomic formulas

► “Verdict” states can also report values stored in 
auxiliary variables
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Requirements vs. observations

► Ultimately, properties determine what 
observations are relevant
– Each atomic statement has to be matched to an 

observation
► System requirements are high-level and 

independent of an implementation
► Run-time observations are low-level and 

implementation-specific
– Software: variable assignments, function calls, exceptions, etc.
– Network: send, receive, route packets, update routing tables, etc.

► Need an abstraction layer to match the two

CIS 480 16

Trace extraction

► Too much information is just too much!
– Trace is a sequence of observations

• A temporal projection of execution

– Observation is a projection of system state
• Keep only relevant state components

► Too little information is a problem, too
– Did you miss anything important?
– Can you observe everything you need?

• Not an issue with simulations, unless the model is a black box

– Can you observe well enough?
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Running example

► Simulation of a railroad crossing
► Requirement: train in crossing => gate is down
► Observations:
– gateUp, gateDown – changes in gate status
– raiseGate, lowerGate – commands to move gate
– position – coordinate of the train along the track

CIS 480 18

Outline

► Motivation and overview
► MaC framework
– Architecture
– Specification languages
– Implementation
– Extensions

► Applications
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MaC: Monitoring and Checking

► Designed at U. Penn since 1998
► Components:
– Architecture for run-time verification
– Languages for monitoring properties and trace 

abstraction
– Steering in response to alarms

► Prototype implementation 
– Implementation of checking algorithms
– Recognition of high-level events
– For Java programs: automatic instrumentation

CIS 480 20

MaC architecture

Program

Program

MaC Compilers

Properties in MaC Language

Monitor Checker

MaC Verifiers

low-level

information

high-level

informationFilter

Instrumentor

alarms

feedback

SADL MEDLPEDL
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MaC architecture - simulation

Simulator

Simulator

MaC Compilers

Properties in MaC Language

Monitor Checker

MaC Verifiers

low-level

information

high-level

informationLogger

Configurator

alarms

feedback

SADL MEDLPEDL
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MaC languages

► PEDL: Primitive Event Definition Language
– abstraction

► MEDL: Meta Event Definition Language 
– abstract transformation

► SADL: Steering Action Definition Language
– feedback

Run-time state:
• control locations
• object state
• local variables

Abstract state:
• events
• conditions
• auxiliary variables

MEDL

PEDL

SADL
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Properties: events and conditions

► Natural distinction for monitoring properties: 
instantaneous vs. durational
– Instantaneity depends on time granularity

► Motivations for the distinction: 
– Specification styles – state vs. event-based
– Cannot monitor every time instance

► What is the value between trace states?
– If you saw something in an observation, is it still there 

while you are not looking?
• Yes – it is a condition
• No – it is an event

CIS 480 24

Example: hundred years’ war

► The war is a condition
► Battles are events
– Battle durations notwithstanding

► Events change the state of conditions
– end(War)=FallOfBordeaux
– FinalDefeat = [FallOfParis,FallOfBordeaux)

1337 14531346 1356 1415

Battle of
Crecy

Battle of
Poitiers

Battle of
Agincourt

Fall of
Paris

Fall of
Bordeaux

Declaration
of war

1436
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Logical foundation

► LEC: 2-sorted logic: events and conditions
► Syntax:

► Operator [., .) pairs events to define an interval
► Operators start and end define the events at the 

instant when conditions change their value

212121

2121

  |    |    |  ),[  |  ::  
 when  |    |  |  )(end  |  )(start  |    ::  

CCCCCEE cC
CEEEEECCeE

∧∨¬=
∧∨=

e1 e2

[e1, e2)
start([e1, e2))

[e1,e2)
end([e1,e2))
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Operators

► Interval operator:       [e1,e2)
– Becomes true when e1 occurs
– Becomes false when e2 occurs

► When operator e when c

falsefalse true

e1 e2

Time 

[e1,e2) [e1,e2) [e1,e2)

c = falsec = false c = true

e when c

e
Time 

e
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Semantic function

► Formally, a model M = (S, τ, LC, LE)
– S = {s0, s1, …} is a sequence of states
– τ is a mapping from S to a time domain 
– LC(s, c) is a function that assigns to each state s the 

truth value of primitive condition c
– LE(s, e) is a partial function defined for each event e

that occurs at s
► M, t ╞ c means a condition c being true in a 

model M at time t
► M, t ╞ e means an event e occurring in a model M

at time t

CIS 480 28

Traces as models

► An execution trace M = (S, τ, LC, LE) is viewed as 
a sequence of worlds 

► Each world has descriptions of:
– Truth values of primitive conditions
– Occurrences of primitive events

s0

LC(s0, (position == 0) ) = true
τ(s0) = 0

LE(s0, startTrain) = defined
….

s1

LC(s0, (position == 0) ) = false
τ(s0) = 0.1

LE(s0, raiseGate) = defined
LC(s0, (position >= 50) ) = false LC(s0, (position >= 50) ) = false
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Semantic function
next slide

CIS 480 30

Denotation for Conditions
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PEDL

► Primitive Event Definition Language
► Low-level specification
► Dependent on underlying applications
► Principles
– Encapsulate all implementation-specific details of the 

monitoring process 
– Process of event recognition to be as simple as 

possible
► Reason only about the current state in the 

execution trace

CIS 480 32

PEDL constructs

► Declaration of monitored variables
► Definitions of primitive conditions
– Predicates over monitored variables

► Definitions of primitive events
– Update to a monitored variable x: update(x)
• New value is an attribute of the event

– Other primitive events depend on the target system
• For software: function/method calls and returns
• For network models: send/receive
• For automata models: transitions/mode switches
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PEDL by example

System PEDL

Abstraction

- When train position is between 30 and 50

- When gate starts/ends being down

export event gateDown, raiseGate;     export 
condition cross;         

monobj Train.position;           
monmeth Gate.up();             monmeth
Gate.down();

condition cross = (30 < 
RRC.position)             && (RRC.position < 50);          
event gateDown = endM(Gate.down()); event 
raiseGate = startM(Gate.up()); 

gateDown

raiseGate

cross

position = 0

position = 20

position = 30

ret Gate.down()

position = 50

call Gate.up()

position = 60

CIS 480 34

MEDL

► Meta Event Definition Language
► Express requirements using the events and 

conditions, gathered from an execution
– define events and conditions using incoming primitive 

events and checker state variables
► Describe the safety requirements
– properties (conditions that must always be true)
– alarms (events that must never be raised)

► Independent of the monitored system
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MEDL by example

PEDL MEDL

import event gateDown, gateUp, raiseGate,
lowerGate;

import conditions cross;

condition gateClosed = [gateDown, raiseGate);

property safeRRC = cross à gateClosed;

gateDown

raiseGate

cross

Violation

gateC
losed

cross

Railroad Crossing Property: - If train is crossing, then gate must be closed

CIS 480 36

Quantitative properties

► Timestamps of events
– time of the last occurrence of event e: time(e)

► Event attributes
– Quantitative values from observations

► Auxiliary variables
– Updated in response to events
– Predicates over auxiliary variables define new events
– Example: gate must be serviced every 1000 crossings

var int raiseCnt
gateUp à { raiseCnt’ = raiseCnt + 1 } 
alarm svcGate = start( raiseCnt > 1000 )
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Event attributes

► Event attributes allow us to propagate quantitative 
values into MEDL

► Some events have implicit attributes
– update(x) has the new value of x as attribute

► In general, we can associate any value in the 
event definition as an attribute
event newTrain(int tr, real w) = 

StartM(addTrain(t,weight)) {tr:=t,w:=weight}
► An event attribute can be used in expressions as

newTrain à { totalWght’ = totalWght + newTrain.w }

CIS 480 38

Implementation 

► Static phase
– PEDL and MEDL are compiled into a 

graph representation
► Dynamic phase
– Event recognizer interprets PEDL 

graph on each observation sent by 
the filter
– Checker interprets MEDL graph on 

each event/condition change sent 
by the event recognizer
– Lazy evaluation driven by observations

Property

Compile

Internal 
representation

Load

ER / Checker

static phase

dynamic phase
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Static phase: property graphs

► Each event and condition is a node
– stores time of the last occurrence 
– stores truth value

► Composition is represented by operator nodes
– Each type of operator has its evaluation method, 

e.g. disjunction operator for events computes 
maximum of the values in its children

► Graphs cannot have algebraic loops
e1=e1||e2 a problem!
e1=start([e2, end[e1 when c, e3))) OK
• Occurrence of e1 affects future occurrences

condition

event

event2

orEvents

event1

event1 || event2

CIS 480 40

Static phase: quantitative properties

► Auxiliary variables and their updates are also 
represented as nodes

► Variable node stores the value of the variable
– Update node does not have a value of its own
e à { x’ = y + 1 }

► If an event triggers update of a variable, it cannot 
be defined in terms of that variable

► Algebraic loops are disallowed
– “New” values and “old” values can break

loops and affect evaluation order
y

x’

e

x’ = y + 1
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PEDL Graph

export event gateDown, raiseGate;     export 
condition cross;         

monobj Train.position;           
monmeth Gate.up();             monmeth
Gate.down();

condition cross = (30 < 
RRC.position)             && (RRC.position < 50);          
event gateDown = endM(Gate.down()); event 
raiseGate = startM(Gate.up()); 

Gate.down()

raiseGate

startM( Gate.up() )endM(Gate.down())

gateDowncross

30 < position < 50

Gate.up()Train.position

CIS 480 42

MEDL Graph
import event gateDown, gateUp, raiseGate, lowerGate;

import conditions cross;

condition gateClosed = [gateDown, raiseGate);

property safeRRC = cross à gateClosed;

cross raiseGategateDown

[gateDown,raiseGate)

gateClosed

cross à gateClosed

safeRRC
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Dynamic Phase: Evaluation in ER
► Consider an update on a monitored variable 

Train.position
– The evaluation in ER starts from the node representing 

Train.position, then, goes upward to the root
– If the value cross changes and is exported, ER sends 

cross to Checker
– The other two trees are not evaluated

position = 0

position = 20

position = 40

Gate.down()

position = 55

Gate.up()

position = 60

Gate.down()

raiseGate

startM( Gate.up() )endM(Gate.down())

gateDowncross

30 < position < 50

Gate.up()Train.position

CIS 480 44

Evaluation in ER
► Here,
– When position = 0, cross changes from undefined to 

false, ER sends (cross = false) to the checker
– When position = 20, cross is still false
– When position = 40, cross becomes true, ER sends 

(cross = true) to the checker
► Processing of method calls Gate.down() and 

Gate.up() is similar

position = 0

position = 20

position = 40

Gate.down()

position = 55

Gate.up()

position = 60

Gate.down()

raiseGate

startM( Gate.up() )endM(Gate.down())

gateDowncross

30 < position < 50

Gate.up()Train.position
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Evaluation in Checker
► On each event received from ER, 
– The evaluation starts from leaves (from the node 

corresponding to events received from ER) 
– Traverses upward to the root

► At roots, check for violations
– If an occurred event is in the alarm list, notify users
– If a false condition is in the property list, notify users

startGD

endGD

cross

cross = true

cross = false

cross raiseGategateDown

[gateDown,raiseGate)

gateClosed

cross à gateClosed

safeRRC Violation

gateD
ow

n
cross

CIS 480 46

Algorithm
► Assign a height to each node in the graph
► Maintain an evaluation list sorted by height
► For each new state
– Add all occurred primitive events and changed conditions to the 

evaluation list at height 0
– For each event/condition in the evaluation list, 

• Call evaluate() method
• If changed, add its parent to the evaluation list (if not already in)

– When the list is empty
• In ER, maintain a list of  exported events and conditions

– Send occurred events/changed condition to checker
• In Checker, maintain lists of alarms and properties

– If an event in the alarm list occurs, notify users
– If a condition in the property list is false, notify users

• Copy new values of auxiliary variables into old values
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MaC extensions

► Steering
– Feedback from property evaluation

► Support for dynamic properties
– Dynamically created objects and indexed properties

► Support for timing properties
– Time-driven evaluation

► Support for quality-of-service and probabilistic 
properties

CIS 480 48

Steering

► Steering provides feedback from the monitor to 
the system

► Steering actions triggered by events
SEviolation à { invoke change2SC }

– Values can be calculated from observations
► SADL (Steering Action Definition Language)
– Specifies actions to be taken
– Describes conditions when it is safe to apply actions
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Steering process

system

checker

violation

action
invoked

action executed

detection

steering
condition
satisfied

action
invocation
received

event
received

CIS 480 50

Steering and adaptation

► Steering is not a recovery/adaptation mechanism
– It is a vehicle to invoke a built-in mechanism

► System should be ready to receive feedback
– User specifies when it is safe to steer and what is the 

appropriate action
► When can a system be effectively steered?
– the system is designed for run-time adjustments 
• e.g., Simplex architecture

– the system naturally offers a degree of tolerance 
• e.g., routing protocols: flush buffers when performance 

decreases
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Steering as run manager

► Restart simulations
– Logical criterion for “goodness” checked during the run
– Runs that are not good are terminated as soon as the 

check fails
– New runs can be restarted with simulation parameters 

computed from observations in the previous runs
• Or determined statically

► If simulator supports, run-time adaptation of 
parameters can be done

► For interactive simulations, steering can supply 
new inputs, computed from past observations

CIS 480 52

What’s in a name: indexing

► What if we have two tracks instead of one?
– Track is safe if gate is closed when train is crossing on 

that track
safeTrack1 = cross1 à gateClosed
safeTrack2 = cross2 à gateClosed
– For fixed number of objects, properties can be 

duplicated for each object
► Works for toy examples
– Large number of objects – cumbersome and inefficient
– Dynamically added objects – impossible

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


5/24/2010

27

CIS 480 53

Dynamic MEDL

► We introduce indexed names and implicitly 
quantify over indices

► New data type indexSet supports adding and 
removing values

► Values are added by incoming events

• Suppose we can add tracks dynamically:
indexSet tracks
import event addTrack(tId t)
property trackSafe(tId t) = cross(t) à gateClosed
addTrack à { tracks.add( addTrack.t ) }

CIS 480 54

Beyond dynamic MEDL

► Explicit quantification and aggregation over index 
sets is possible

► First-order temporal logics are highly 
undecidable in general

► At run time, we work with concrete values and 
can efficiently evaluate “first-order MEDL”
– Linear in the size of the trace
– Exponential in the number of quantification nestings

► In practice, dynamic MEDL has been sufficient
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RT-MaC: timing properties

► Requirement: trains should clear intersection fast 
enough

alarm slowTrain = 
time( end(cross) ) – time( start(cross) ) < 100

► Problems:
– There is no alarm if train stops in the intersection
– Alarm can be raised long time after violation occurs
– Besides, syntax gets cumbersome for complex timing 

properties

CIS 480 56

Added syntax: timed interval

► Timed Interval:       [e1,e2)≤ d
– Becomes true when e1 occurs
– Becomes false when e2 occurs within d time units

– Becomes false when d time units are up

► [e1,e2) = [e1,e2)≤∞

falsefalse true

e1 e2

Time 

[e1,e2) ≤ d

≤ d

[e1,e2) ≤ d [e1,e2) ≤ d

falsefalse true

e1 e2

Time 

[e1,e2) ≤ d

= d

[e1,e2) ≤ d [e1,e2) ≤ d
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Added syntax: time-triggered event
► Time-triggered event:   e + d
– An event e+d is raised at d time units after the occurrence of e

► Requirement: trains should clear intersection fast enough
alarm slowTrain = start(cross)+100 when cross

► Solve the earlier problems:
– If the train is slow, an alarm is raised at 100 time units after the 

train starts crossing
• Even if the train stops in the intersection

start(cross) start(cross) + 100

cross

CIS 480 58

Time-driven evaluation

► Semantics:
– Evaluate time-triggered event right at d time units after 

the occurrence of e
► How do we know it is time to evaluate?
– Cannot set timer on checker clock!

► Real time
– Option 1: set a timer in the filter to expire after d
– Option 2: heartbeat events
• Bounded delay in evaluation

► Simulation time
– Wait until simulator produces a larger timestamp
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Probabilistic properties

► Probabilistic events
– Given that an event e1 occurs, what is the probability 

that e2 will occur
► Examples
– Given that train starts crossing, the probability that the 

train will not finish crossing within 100s is at most 0.2
– When gate closes, the probability that the train will 

come within 20s is at least 0.8
► Collect statistics from the trace and use statistical 

analysis (hypothesis testing) to support checking

CIS 480 60

Conventional approach

► Multiple experiments
1. Trigger e1 X times
2. See how many times e2 has occured

start cross track finish cross in 100

not finish cross  in 100start cross track

start cross track finish cross in 100

start cross track finish cross in 100

start cross track finish cross in 100…
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Collect samples during runtime
► Estimate a probability from only one execution path
– The probabilistic properties that we can check must have 

repetitive behaviors
– Count the number of occurrences of e2 against those of e1

• Count e2 only when it occurs at the same time as e1 or after e1
• I.e, count e2 only when e2 and (e1 or end([e1, e2))) occur at the same 

time

start cross track finish cross  in 100

not finish cross  in 100start cross track

start cross track finish cross in 100

gateDown closeGate

gateDown

…

…

not finish cross in 100start cross track

start cross track finish cross in 100

start cross track finish cross in 100start cross track finish cross in 100start cross track finish cross  in 100

CIS 480 62

Syntax

► Probabilistic event syntax  
– e2 prob( > p, e1)
– p is the probabilistic bound

► Example
– Only allow trains to cross track slowly with probability 

at most 0.2 

event slowTrain = start(cross)+100 when cross
alarm probSlowTrain = slowTrain prob(> 0.2, start(cross))
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Estimating probability
► Estimating probability p’ from the actual program execution for e2

prob( > p, e1)    

► Only allow trains to cross track slowly with probability at most 0.2 
– alarm probSlowTrain = slowTrain prob(> 0.2, start(cross))

à | slowTrain && ( start(cross) || end([start(cross),slowTrain))) |   =   12
à | start(cross) |  =  45
à p’ = 12 / 45  =  0.267 

|e  of  soccurrence|
|eend([e || (e && e  of  soccurrence|p'

1

211 2 ))),
=

|s)start(cros |
| ))slowTrain)(cross),end([start ||ss)(start(cro && slowTrain |p'=

0 1p=0.2 p’=0.267
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Estimating probability: z-score
► Binomial distribution (Success: slow train, Fail: fast train)

– When sample is large enough, it is approximately normal distribution
► Use z-score to calculate how far apart p and p’ are

n
p)p(1

p-  p'z
−

=

n = |occurrences of e1|

• Sign of z says which direction
+ z says p’ >  p
- z says p’ < p

• Value of z says how far apart p’ and p

► Only allow trains to cross track slowly with probability at most 0.2
à p = 0.2   p’ = 0.267
à zp’ = + 2.05

zp = 0    
p = 0.2

zp’ = 2.05    
p’ = 0.267

0 1

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


5/24/2010

33

CIS 480 65

Compare using hypothesis testing
► Given 
– z-score of the estimated probability

• In our example, zp’ = 2.05
– Set up hypotheses

• H0: p’ ≤ 0.2  (no alarm)
• HA: p’ > 0.2  (raise alarm)

– A critical value c: a threshold chosen by using significance level α
• Significance level α is the probability of mistakenly rejecting H0 (say 

raise alarm) when it is true (no violation)
• If we choose c corresponding to α = 0.05, then there is (only) a 5% 

probability that we will reject H0 if it is true.
• Conventional significance level 

– α = 0.05 (rejection is moderate evidence against H0)
– α = 0.01 (rejection is strong evidence against H0)

• When α = 0.05, c = zα = 1.96
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Compare using hypothesis testing
► Hypotheses

– H0: p’ ≤ 0.2  (no alarm)
– HA: p’ > 0.2  (raise alarm)

► Decide: alarm probSlowTrain = slowTrain prob(> 0.2, start(cross))
– Reject H0 (raise alarm):

• zp’ ≥ zα [means p’ > 0.2 with only a 5% probability that we’re wrong]
– Accept H0 no alarm:

• Otherwise

► Since 2.05 ≥ 1.96, we reject H0 and raise an alarm 

Raise alarmNo alarm 

zα = 1.96zp = 0  
p = 0.2

zp’ = 2.05 
p’ = 0.267

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


5/24/2010

34

CIS 480 67

Probabilistic Checking

► Can be mimicked using auxiliary variables in 
existing MaC
– Can be more flexible

► New syntax in RT-MaC
– Provide convenience
– Ensure that statistical support is always used
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Outline

► Motivation and overview
► MaC framework
► Applications
– Network simulation case study
– Control of MAV swarms
– Simplex architecture case study
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Case study: Verisim

► Verisim is an instantiation of the MaC 
architecture for network simulations
– Large and very detailed traces make direct inspection 

of traces impractical
– Logical properties in addition to performance 

properties help find subtle bugs
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Ad Hoc Networks

► Routing for a wireless network without the aid of 
a central base station

► Connections are low-bandwidth, lossy, and 
highly transient

► Unique routing assumptions:
– Most routes are seldom used
– Bandwidth must be protected

► Ad-hoc On-demand Distance Vectors (AODV) 
protocol
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Routing in Mobile Networks

Routing

Movement
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Routing in Mobile Networks

New
Routing
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AODV Protocol
► Rules
– If a node S needs a route to a destination D and does 

not have one, it floods a route-request (RREQ) packet 
through the network
– Each recipient R of this RREQ keeps a return pointer
– R broadcasts the request to its neighbors if it is not D

and does not have a route to D
– If R is D, or has a route to D, it responds with a route-

reply (RREP) packet using the return pointers for S
► Can be stated as a state machine and model 

checked
– We want to check protocol code!
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NS Network Simulator

Instrumented
Protocol Code

P : C++

Configuration
Parameters:

OTcl

Traffic
Model:
OTcl

Topology:
OTcl

Scenario

P

N

src/sink

P

N

src/sink

P

N

src/sink

Protocol
Agents

Network
Model

Traffic
Agents

NS Trace
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Analysis by simulation

► Conventional analysis:
– Manually inspect the trace – too much!
– Calculate performance of a run

► Drawbacks:
– Flaws may not be detected if no expected 

performance can be used for comparison
– When flaws are suspected, finer means of analysis 

are useful
– Some flaws do not manifest themselves as 

performance problems (e.g. security)
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AODV properties
Monotone Seq No. Node’s own sequence number never decreases

Destination stops When a packer reaches destination, it should not be 
forwarded

Correct forward A packet is forwarded along best unexpired route

Destination reply Reply to route request should have hops field set to 0

Node reply A route is sent along the best unexpired route

RREQ Seq No. Route request for d should have seq. no. either 0 or the 
last seq. no. recorded for d

Detect Route Err. If broken route is detected, RREP increases seq. no.

Forward Route Err. Broken route RREP is forwarded with the same seq. no.

Loop Invariant Along every route to node d, (-seq_nod, hopsd) strictly 
decreases lexicographically
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Outline of Experiment

► Run a scenario of modest complexity
► Analyze it in Verisim using the list of 9 properties 

of AODV expressed in MEDL
► We instrumented simulation code for AODVv0 

supplied by the CMU Monarch Project
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Sample MEDL Alarm

alarm LoopInv[at][nxt][dst] =
sendroute[at][dst] when
((at≠nxt) ∧ (at≠dst) ∧ (nxt≠dst) ∧
(nexthop[at][dst] == nxt) ∧
((seqno[at][dst] > seqno[nxt][dst]) ∨
((seqno[at][dst] == seqno[nxt][dst]) ∧
(hopcnt[at][dst] <= hopcnt[nxt][dst]))))
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Verisim experiences

► Bugs found
– Destination reply error
• hop count not initialized to 0

– Forward route error 
• sequence number not incremented

– Node reply error
• conditionals for sending RREP are buggy

► Simulator is more efficient than checker on 
complex properties
– Robust tool vs. early prototype
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Verisim modes

► On-line mode
– Checker runs concurrently with the simulator
– Works for simple properties and relatively short 

simulations
► Off-line mode
– Trace is produced and stored, then fed into the 

checker
– Trace can be re-analyzed multiple times
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Debugging strategies

► Once a bug is encountered, checker generates 
lots of alarms

► With off-line checking, two strategies are 
possible

► “Repair first bug”
– Fix the problem and re-run simulation
– Many simulation runs are needed

► “Tune” the property
– Adjust checker state to mask the problem
– Re-run checking on the same trace
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Case study: control of MAV swarms
► Collaboration with NRL
► Construction of global 

patterns via local rules
F = G m1 m2 / r

– F repulsive if  r < R; else 
attractive

– Pattern forms in close 
proximity

► Vulnerable to turbulence
– Size < 6’’, weight 50 – 70 gr

► Need external impulse to 
reform

Using Artificial 
Physics, MAVs 
form a hexagonal 
lattice sensing grid

Unmanned air vehicle (UAV)
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Monitoring setup

Air

MAV

MAV

MAV

Monitored system

Event
Recognizer Checker

MaC objects

Console

Plotter

Auxiliary

broadcast
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Pattern formation monitoring

► Pattern formation:
– monitored entity: distance to a neighbor 
– imported event: MAValert = 0.25*R ≤ distance ≤

0.75*R
► Pattern alarm: alerts count increases sharply
– Count alerts within a window
– Average over three consecutive windows
– An increase of over 15% triggers alarm
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Steering (repair)
► Monitor cannot address 

individual MAVs
– commands are broadcast 

► Two steering actions are 
used:
– After a pattern alarm, 

repulsion between close 
MAVs is suspended.  MAVs 
are drawn together 

– After a fixed interval, 
repulsion is restored, 
restarting the formation 
process

Global MaC on UAV

“suspend
repulsion!”

CIS 480 86

Monitored requirements (MEDL)
ReqSpec HexPattern

import event MAValert, startPgm;

var long currInterval;
var int  count0, count1, count2, prevAvg, currAvg;

event startPeriod = start(time(MAValert) - currInterval > 10000);

property NoPattern = (currAvg <= prevAvg*1.15 + 100) || (prevAvg == -1);

startPgm -> {
currInterval = time(startPgm);
count0 = 0; prevAvg = -1; currAvg = -1; }

startPeriod -> {
currInterval = currInterval + 10000;
prevAvg = currAvg; currAvg = (curr0+curr1+curr2)/3;
count2 = count1; count1 = count0; count0 = 0; }

MAValert -> { count0 = count0 + 1; }

End
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Simulation run and control events
disruption

suspend
repulsion

restore
repulsion
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Simplex architecture case study

► Simplex architecture for control systems provides 
hot-swapping of experimental controllers
– Enhanced performance, uncertain stability 
– If stability is compromised, switch to a safety controller
– Stability is checked by computing the safety envelope 

of the system
► Case study
– Control system is an inverted pendulum
– Use checker to compute safety envelope
– Use steering to switch between controllers
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Experimental
Controller

Experimental
Controller

Inverted Pendulum in MaC

Device
Drivers

angle,
track

volts

Decision Module

Experimental
Controller

Switching 
logic

Safety
Controller

J
N
I

monitor

steer
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Summary

► Analysis of logical and quality of service 
properties of simulation runs help in evaluating 
the model

► Specifying properties in a language with formal 
semantics, and checking them with a checker for 
the language add precision and flexibility

► MaC is an architecture for monitoring and 
checking of properties of executions
– Includes languages for property specification

► Several case studies testify to MaC’s utility
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