
1

Modeling & Analysis of Timed Systems

Wang Yi
Uppsala University, Sweden

CUGS May 15-16, 2007

Modified by Insup Lee for CIS 480, Spring 2009

2

OUTLINE

 Model checking

 Timed automata and verification problems

 UPPAAL tutorial: data stuctures & algorithms

3

Main references (Papers)

 Temporal Logics (CTL,LTL)
 Automatic Verification of Finite State Concurrent Systems Using Temporal Logic

Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983: 117-126, also as ”Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) ”

 An Automata-Theoretic Approach to Automatic Program Verification, Moshe Y. Vardi,
Pierre Wolper: LICS 1986: 332-344. Also as ” Reasoning About Infinite Computations. Inf. Comput.
115(1): 1-37 (1994)”

 Timed Systems (Timed Automata, TCTL)

 A Theory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235
(1994)”

 Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin,
Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.

 UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152

(1997)

 Timed Automata – Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).

4

Main references (Books)

 Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

 G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (new book: The SPIN

MODEL CHECKER Primer and Reference Manual , 2003)

 Joost-Pieter Katoen, Concepts, Algorithms, and Tools for Model Checking (draft book on the web)

5

Lecture 1
Motivation and Sketch of Verification History

6

History: Model-checking invented in 70’s/80s
[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

 Restrict attention to finite-state programs

 Control skeleton + boolean (finite-domain) variables

 Found in hardware design, communication protocols, process control

 Temporal logic specification of e.g., synchronization pattern
 There are algorithms to check that MODEL of program satisfies: SPEC

- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984

 BDD-based symbolic technique [Bryant 86]

 SMV 1990 Clarke, McMillan et al, state-space 1020

 Now powerful tools used in processor design

 On-the-fly enumerative technique [Holzman 89]

 SPIN, COSPAN, CAESAR , KRONOS, UPPAAL etc

 SAT-based techniques [Clarke et al, McMillan, ...]

7

History: Model checking for real time systems, started in the 80s/90s

 Extension of model checking to consider time quantities

• Models, specfications, and algorithms can be extended

 Timed automata, timed process algebras

[Alur&Dill 1990]

 Tools

• KRONOS, Hytech, 1993-1995, IF 2000’s

• TAB 1993, UPPAAL 1995, TIMES 2002

8

Model Checking

Model: M

Property:

Yes!

Model

Checker

No!

Error trace

Promela

Promela/

Temporal Logic
SPIN

9

Merits of this simpler approach

 Checking simple properties (e.g. deadlock freeness) is already extremely useful!

 The goal is no longer seen as proving that a system is completely, absolutely and
undoutedly correct (bug-free)

 The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

 Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

10

Why testing not good enough

 Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

 Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

11

The Waterfall Model

Analysis

Design

Implementation

Testing

Problem
Area

Traditional software development

12

Introducing, Detecting and Correcting errors

30-50% of development time/money for testing
Errors detected: the late the more expensive

13

Model-Checking may complement testing to
find (design) Bugs as early as possible

14

Motivation: Model Verification

Requirements

High level design

Detailed design

coding

testing

deployment

Build model of the design.

Analyze it thoroughly

Testing concentrates

more on low-level

issues

And conformance to

model

15

Checking correctness of

 Communication protocols

 Distributed Algorithms

 Controllers

 Hardware circuits

 Parallel and distributed software

 Embedded and real-time systems and software

e.g., Absence of race conditions, proper synchronization, ….

Problems that can be addresed by Model Checking

Model checking is the appropriate technique

when there are many many different scenarios of

interaction between components in a system

16

Reachable?

(bug?)
An ’abstract’ version of a fieled bus protocol

17

Model-Checking
in a Nutshell

18

EXAMPLE: Petersson’s algorithm

 Process 1

 loop

 flag1:=1; turn:=2

 while (flag2 & turn=2) wait

 CS1

 flag1:=0

 end loop

 Process 2

 loop

 flag2:=1; turn:=1

 while (flag1 & turn=1) wait

 CS2

 flag2:=0

 end loop

turn, flag1, flag2: shared variable

Question: can both run in CS simultaneusly ?

19

A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Init
V=1

8
´

V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100

20

UPPAAL A model checker for real-time systems

UPPAAL

System Model
(Design)

Questions
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

21

MODELING

How to construct Model ?

22

Program as State Machine!

a

b

x

y
x!

a?

b?

y!

Control states

Input
ports

Output
ports

23

A Light Controller

Off Light Bright
press? press?

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

24

A Light Controller (with timer)

Off Light Bright
press? press?

press?

press?

Solution: Add real-valued clock x

X:=0 X<=3

X>3

25

Modeling Real Time Systems

 Events
 synchronization

 interrupts

 Timing constraints
 specifying event arrivals

 e.g. Periodic and sporadic
a

X>10

X:=0

26

Modeling Real Time Systems

 Events
 synchronization

 interrupts

 Timing constraints
 specifying event arrivals

 e.g. Periodic and sporadic

 Data variables & C-subset
 Guards

 assignments

a

X>10

X:=0

&& v==100

; v++

27

Construction of Models: Concurrency

Plant
Continuous

Controller Program
Discretesensors

actuators

Task
Task

Task
Task

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model
of
environment
(user-supplied)

Model
of
tasks
(automatic)

28

29

SPECIFICATION

How to ask questions: Specs ?

30

Specification=Requirement, Lamport 1977

 Safety

 Something (bad) will not happen

 Liveness

 Something (good) must happen

And for systems with limited resources

Realizability

Schedulability, enough resources

31

Specification=Requirement [Lamport 1977]

 Safety

 Something (bad) will not happen

 Liveness

 Something (good) must happen

 Realizability (for systems with limited resources)

 Schedulability, enough resources?

32

Specification: Examples

 Safety
 AG (P1.CS1 & P2.CS2) Always Globally

 AG (m< 100)

 EF (5<6) Possibly in Future

• construct the whole state space

• Report deadlocks etc.

 EF (viking1.safe & viking2.safe & viking3.safe & viking4.safe)

 AG (time>60 imply viking4.safe)

 Liveness
 AF (m>100) Eventually

 AG (P1.try imply AF P1.CS1) Leads to

33

VERIFICATION
Model meets Specs ?

34

(Formal) Verification

 Semantics of a system

= all states + state transitions

(all possible executions)

 Verification

= state space exploration + examination

35

Verificatioin = Searching

A

…

...

B

: : :

...

:
(1) SAFETY:

-- Is it possible to fire the bombs?
-- Is it possible to go from A to B within 10 sec?

(2) LIVENESS:
-- Will B be executed eventually (no time bound given)?

State-Space of a system

36

Approaches to Verification

 Manual: Proof systems, paper and pen
 Find invariants (difficult !)

 Induction: Assume nth-state OK, check (n+1)th OK

 Boring  (more fun with programming)

 Semi-automatic: Theorem proving
 Use theorem provers to prove the induction step

 e.g. PVS, HOL, ALF

 Require too much expertise 

 Automatic: Model-Checking 
 State-Space Exploration and Examination

 e.g. SPIN, SMV, UPPAAL

37

Two basic verification algorithms

 Reachability analysis

 Checking safety properties

 Loop detection

 Checking liveness properties

38

Modelling in UPPAAL: example

P1 :: while True do

T1 : wait(turn=1)

C1 : CS1; turn:=0

endwhile

||

P2 :: while True do

T2 : wait(turn=0)

C2 : CS2; turn:=1

endwhile

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

39

Verification: example

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1 I1 T2

t=1

I1 I2
t=1

(C1,C2) is not reachable!

40

UPPAAL Demo

41

Problem with verification:
‘State Explosion’

a

cb

1

2

4
3

1,a 4,a

3,a
4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

42

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G

Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

43

Dec’96 Sep’98

A Protocol by Philips for Audio Products

-6 months for manual proof in 1993

-24 hours for Hytech in 1994

-50 sec for Uppaal in 1995

-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

44

The dream goes on

 Model Checking, a useful and applicable technique
as compiler theory

End of introduction

