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" What's inside Uppaal

* The Uppaal input languages
o (i.e.,, TAand TCTL in Uppaal)
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Timed Automata in Uppaal

Location Invariants

Clock Assignments
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Networks of Timed Automata




Uppaal modeling language

* Networks of Timed Automata with Invariants
o urgent action channels,
o broadcast channels,
o urgent and committed locations,
o data-variables (with bounded domains),
o arrays of data-variables,
O constants,
o guards and assignments over data-variables and arrays...,
o templates with local clocks, data-variables, and constants
o C subset

Declarations in Uppaal

" The syntax used for declarations in UPPAAL is
similar to the syntax used in the C programming
language.

= Clocks:

o Syntax:

o Example:
oclock x, vy; Declares two clocks: x and y.




Declarations in Uppaal (cont.)

= Data variables

o Syntax:

Integer with “default” domain.

“I” ({2

Integer with domain from “I” to “u”.
Integer array w. elements nl[0] to

nl[m-I].

o Example;
o int a, b;
o int([0,1] a, b[5];

Declarations in Uppaal (cont.)

= Actions (or channels):
o Syntax:

Ordinary channels.

o Example:
o chan a, b[2];

o urgent chan c;

Urgent actions (described later)




Declarations in Uppaal (const.

= Constants

o Syntax:

o Example:
o const int[0,I] YES = [;
o const bool NO = false;

Declarations in Uppaal
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Templates in Uppaal

— P .
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— - = Templates may be

S ik parameterised:

anpr! int v; const min; const max
e=id,
w=0 \int[O,N] e; const id

= Templates are instantiated

Appr
xerz) o to form processes:
e==it .
P:= A(i,1,5);
e==id Q:= A(J,0,4);
=0
stop Trainl:=Train(el, 1);
Drag out | ; /Train2:=Train(el, 2);
e | "4 hain-gate 2]/
-4 Global declarations Train3:=Train(el, 31:
=8 Train Traind:=Train(el, 4):
@ Declarations fuene: =Intueue(el);
-SY Gate
=5} IntQusue
Lo Declarations
e [B
-4 System definition

Urgent Channels: Example |

= Suppose the two edges in
automata P and Q should be

o Q taken as soon as possible.
* |.e. as soon as both automata
are ready (simultaneously in

locations |1 and si).

= How to model with invariants if

Q e either one may reach | or si

first?




Urgent Channels: Example |

= Suppose the two edges in
automata P and Q should be
taken as soon as possible.
c ° " |.e. as soon as both automata
are ready (simultaneously in
locations |1 and s1).

al al

= How to model with invariants if

0 a either one may reach |1 or s

first?

€9

= Solution: declare action “a” as
urgent.

Urgent Channels

®» |nformal Semantics:

o There will be no delay if transition with urgent action can
be taken.

= Restrictions:

o No clock guard allowed on transitions with urgent
actions.

o Invariants and data-variable guards are allowed.




Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from |l to |12 as soon as i==5.

Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from Il to 12 as soon as i==5.

= Solution: P can be forced to take
transition if we add another
automaton:

where “go” is an urgent channel,
and we add “go?” to transition
I1=>12 in automaton P.




Broadcast Synchronisation

= [fais a broadcast channel:
o a! = Emmision of broadcast

o al = Reception of broadcast

= A set of edges in different processes can synchronize if one is emitting
and the others are receiving on the same b.c. channel.

= A process can always emit.
= Receivers must synchronize if they can.
= No blocking.
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Urgent Location

* Informal Semantics:
o No delay in urgent location.

= Note: the use of urgent locations reduces the
number of clocks in a model, and thus the
complexity of the analysis.
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Urgent Location: Example

= Assume that we model a simple
media M: Pza
I

a b
al

that receives packages on channel a x:=0
and immediately sends them on Cz
<0
channel b. -
x==0
* P models the media using clock x. b!

Urgent Location: Example

= Assume that we model a simple
media M: P: Q:
. - b I I

al
that receives packages on channel a x:=0
and immediately sends them on Cz)
<0
channel b. -
x==0
* P models the media using clock x. b

* Q models the media using urgent .
location.

= Pand Q have the same behavior.




Committed Location

* |nformal Semantics:
o No delay in committed location.
o Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of interleaving
in state space exploration (and also the number of clocks in a model), and
thus allows for more space and time efficient analysis.
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Committed Location: Example |

= Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
i==0 (when i==0).

= P’ sends “a” two times at the same
C” I time instant, but in location “n”’ other
automata, e.g. Q may interfere:

YRS O O
12 — ~
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Committed Location: Example |

12

P&ﬁ ]

==0  i==0).

(o

a!

Assume: we want to model a process
(P) simultaneously sending message (a)
to two receiving processes (when

= P’ sends “a” two times at the same
time instant, but in location “n”’ other

I ] automata, e.g. Q may interfere:

b!

Q: G i==0 b! g
— ~

= Solution: mark location n
“committed” in automata P’ (instead

of “urgent”).

Committed Locations
(example: atomic sequence in a network)

X:=x+1
y:i=y+1

O

é

= If the sequence becomes too long, you can split it ...




Committed Locations
(example: atomic sequence in a network)

= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

.
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Committed Locations
(example: atomic sequence in a network)

= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

‘ ‘
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Committed Locations

(example: atomic sequence in a network)
= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

.

= Now, only the committed (red) transition can be taken!

Committed Locations

(example: atomic sequence in a network)

X:=x+1

y:=y+1

‘ ‘

32




Committed Locations

= A trick of modeling (e.g. to model multi-way
synchronization using handshaking)

= More importantly, it is a simple and efficient
mechanism for state-space reduction!
o In fact, it is a simple form of ’partial order reduction’

" |t is used to avoid intermediate states, interleavings:
o Committed states are not stored in the passed list

o Interleavings of any state with a committed location will
not be explored

Committed Location: Example 2

* Assume: we want to pass p.
the value of integer “k” from

i Q:
automaton P to variable “j” o

in Q t=k
* The value of k can is passed
. . . n al
using a global integer variable .
“t”‘ l:
al
* Location “n” is committed to 0
ensure that no other 2

automat can assign “t”
before the assignment “j:=t”.




More Expressions

= New operators (not clocks):

o Logical:

* && (logical and), || (logical or), ! (logical negation),
o Bitwise:

* A (xor), & (bitwise and), | (bitwise or),
o Bit shift:

o << (left), >> (right)
o Numerical:
* % (modulo), <? (min), >? (max)

o

Compound Assignments:
o += .= *:, /:' /\:’ <<=, >>=

Prefix or Postfix:

o

* ++ (increment), -- (decrement)

More on Types

Multi dimensional arrays

o eg. int b[2][3];
* Array initialiser:

o e.g. int b[2][3] := {{1,2,3}, {4,5,6} };
Arrays of channels, clocks, constants.

o eg.
¢ chan a[3];
¢ clock c[3];
e constk[3]1{1,2,3}

Broadcast channels.

o e.g. broadcast chan a;




Extensions

Select statement

=  Models non-deterministic choise
= x : int[0,42]

Types

= Record types
= Type declarations

= Meta variables:
o not stored with state

o meta int x;

Forall / Exists Expressions

= forall (x:int[0,42]) expr
true if expr is true for all values

in [0,42] of x

= exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall (x:int[0,4])array([x];

Advanced Features

® Priorities on channels
chan a,b,c,d[2],e[2];

chan priority a,d[0] < default < b,e

" Priorities on processes
system A < B,C < D;

®» Functions

C-like functions with return values




Uppaal Specification Language
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TCTL Quantifiers in UPPAAL

= E — exists a path ( “E” in UppPAAL).

= A —for all paths ( “A” in UppAAL).

*= G —all states in a path (“[]1” in UppAAL).
* F —some state in a path ( “<>” in UppAAL).

You may write the following queries in UPPAAL:
= A[lp, A<>p, E<>p, E[]p and p-->q

EGp

AG p
AF p EF p




“Local Properties”

A[]lp, A<>p, E<>p, E[]p, pP-—>p
where p is a local property

data guard

automaton\l{ocation '/ / clock guard

p::=a.l | ga | gc | p and p |

porp | not p | pimply p |
(p)

process/ name

E<>p - “p Reachable”

= E<> p —itis possible to reach a state in which p is

S un

= pis true in (at least) one reachable state.




A[]p - “Invariantly p”

= A[] p — p holds invariantly.

= pis true in all reachable states.

A<>p - “Inevitable p”’

A<> p — p will inevitable become true, the
automaton is guaranteed to eventually reach a state

in which p is/‘t:e.
At
VN

" pis true in some state of all paths.




E[ ] p - “Potentially Always p”’

= E[] p— p is potentially always true.

=y
AN

" There exists a path in which p is true in all states.

p-->q-"‘“pleadtoq”

" p -->q — if p becomes true, q will inevitably become
true.
same as A[]( p imply A<>q)

)
A

= |n all paths, if p becomes true, q will inevitably
become true.




