Uppaal Tutorial

Uppaal Tutorial

" What's inside Uppaal

* The Uppaal input languages
o (i.e.,, TAand TCTL in Uppaal)

Timed Automata in Uppaal

<=5

x>=5,y>3

e 94

Timed Automata in Uppaal

Location Invariants

clock natural number “and”

Timed Automata in Uppaal

Location Invariants

clock natural number “and”

Clock guards

Data guards

Timed Automata in Uppaal

Clock Assignments

Location Invariants

al

x:=0
m
<=10
P g4
gl

g2 93

clock natural number “and”

Clock guards

Data guards

Timed Automata in Uppaal

Location Invariants

Clock Assignments

Variable Assignmants
clock natural number “and”

Clock guards

Data guards

x:=0
m
<=10
g4
g1 g2 g3

Networks of Timed Automata

Uppaal modeling language

* Networks of Timed Automata with Invariants
o urgent action channels,
o broadcast channels,
o urgent and committed locations,
o data-variables (with bounded domains),
o arrays of data-variables,
O constants,
o guards and assignments over data-variables and arrays...,
o templates with local clocks, data-variables, and constants
o C subset

Declarations in Uppaal

" The syntax used for declarations in UPPAAL is
similar to the syntax used in the C programming
language.

= Clocks:

o Syntax:

o Example:
oclock x, vy; Declares two clocks: x and y.

Declarations in Uppaal (cont.)

= Data variables

o Syntax:

Integer with “default” domain.

“I” ({2

Integer with domain from “I” to “u”.
Integer array w. elements nl[0] to

nl[m-I].

o Example;
o int a, b;
o int([0,1] a, b[5];

Declarations in Uppaal (cont.)

= Actions (or channels):
o Syntax:

Ordinary channels.

o Example:
o chan a, b[2];

o urgent chan c;

Urgent actions (described later)

Declarations in Uppaal (const.

= Constants

o Syntax:

o Example:
o const int[0,I] YES = [;
o const bool NO = false;

Declarations in Uppaal

- ocuments and Sel
File:

Templates

visw Queries

Options

g =[5

Help

bamaaaq

System Editor | Simulator | erifier

3

Drag out

5 Train

P
4 tinenste * For more details about this example, see
» E # "hutomatic Verification of Real-Time Communicating Systems by Constraint Solwving”,
S Tran # by Wang Vi, Paul Pettersson and Mats Daniels. In Procesdings of the 7th Tnternational
S Gate * Conference on Formal Description Technigues, pages £23-238, North-Holland. 1994.
8 Intueue wy
-4 Process assignments
v System definition const N 5: /7 # trains + 1
inc[0,H] el;
chan appr, stop, go, leave;
chan ewpty, notewpty, hd, add, rew;
T tanoae Ep—
Global declarations

“# Declarations
~# Process assignments

A trairrgate ine[0,H] list(N], len, i:
Tt Global declarations
B~ Train
@ Declarations
- Gats
Intueus
Trainl:=Trainiel, 1);
Spstem defirition Trainz 21;
Train3 3;
Traind:=Trainiel, 4);
-5 IntQueue ueusiel]

Taeue: =

Trainl, Train2, Train3, Traind,
Gate, Queue;

Templates in Uppaal

— P .
[{ Wame: [Tran Paiamefers: [0 M) ez constid N
— - = Templates may be

S ik parameterised:

anpr! int v; const min; const max
e=id,
w=0 \int[O,N] e; const id

= Templates are instantiated

Appr
xerz) o to form processes:
e==it .
P:= A(i,1,5);
e==id Q:= A(J,0,4);
=0
stop Trainl:=Train(el, 1);
Drag out | ; /Train2:=Train(el, 2);
e | "4 hain-gate 2]/
-4 Global declarations Train3:=Train(el, 31:
=8 Train Traind:=Train(el, 4):
@ Declarations fuene: =Intueue(el);
-SY Gate
=5} IntQusue
Lo Declarations
e [B
-4 System definition

Urgent Channels: Example |

= Suppose the two edges in
automata P and Q should be

o Q taken as soon as possible.
* |.e. as soon as both automata
are ready (simultaneously in

locations |1 and si).

= How to model with invariants if

Q e either one may reach | or si

first?

Urgent Channels: Example |

= Suppose the two edges in
automata P and Q should be
taken as soon as possible.
c ° " |.e. as soon as both automata
are ready (simultaneously in
locations |1 and s1).

al al

= How to model with invariants if

0 a either one may reach |1 or s

first?

€9

= Solution: declare action “a” as
urgent.

Urgent Channels

®» |nformal Semantics:

o There will be no delay if transition with urgent action can
be taken.

= Restrictions:

o No clock guard allowed on transitions with urgent
actions.

o Invariants and data-variable guards are allowed.

Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from |l to |12 as soon as i==5.

Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from Il to 12 as soon as i==5.

= Solution: P can be forced to take
transition if we add another
automaton:

where “go” is an urgent channel,
and we add “go?” to transition
I1=>12 in automaton P.

Broadcast Synchronisation

= [fais a broadcast channel:
o a! = Emmision of broadcast

o al = Reception of broadcast

= A set of edges in different processes can synchronize if one is emitting
and the others are receiving on the same b.c. channel.

= A process can always emit.
= Receivers must synchronize if they can.
= No blocking.

21

Urgent Location

* Informal Semantics:
o No delay in urgent location.

= Note: the use of urgent locations reduces the
number of clocks in a model, and thus the
complexity of the analysis.

22

Urgent Location: Example

= Assume that we model a simple
media M: Pza
I

a b
al

that receives packages on channel a x:=0
and immediately sends them on Cz
<0
channel b. -
x==0
* P models the media using clock x. b!

Urgent Location: Example

= Assume that we model a simple
media M: P: Q:
. - b I I

al
that receives packages on channel a x:=0
and immediately sends them on Cz)
<0
channel b. -
x==0
* P models the media using clock x. b

* Q models the media using urgent .
location.

= Pand Q have the same behavior.

Committed Location

* |nformal Semantics:
o No delay in committed location.
o Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of interleaving
in state space exploration (and also the number of clocks in a model), and
thus allows for more space and time efficient analysis.

25

Committed Location: Example |

= Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
i==0 (when i==0).

= P’ sends “a” two times at the same
C” I time instant, but in location “n”’ other
automata, e.g. Q may interfere:

YRS O O
12 — ~

26

Committed Location: Example |

12

P&ﬁ]

==0 i==0).

(o

a!

Assume: we want to model a process
(P) simultaneously sending message (a)
to two receiving processes (when

= P’ sends “a” two times at the same
time instant, but in location “n”’ other

I] automata, e.g. Q may interfere:

b!

Q: G i==0 b! g
— ~

= Solution: mark location n
“committed” in automata P’ (instead

of “urgent”).

Committed Locations
(example: atomic sequence in a network)

X:=x+1
y:i=y+1

O

é

= If the sequence becomes too long, you can split it ...

Committed Locations
(example: atomic sequence in a network)

= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

.

29

Committed Locations
(example: atomic sequence in a network)

= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

‘ ‘

30

Committed Locations

(example: atomic sequence in a network)
= Semantics: the time spent on C-location should be zero !

X:=x+1

y:=y+1

.

= Now, only the committed (red) transition can be taken!

Committed Locations

(example: atomic sequence in a network)

X:=x+1

y:=y+1

‘ ‘

32

Committed Locations

= A trick of modeling (e.g. to model multi-way
synchronization using handshaking)

= More importantly, it is a simple and efficient
mechanism for state-space reduction!
o In fact, it is a simple form of ’partial order reduction’

" |t is used to avoid intermediate states, interleavings:
o Committed states are not stored in the passed list

o Interleavings of any state with a committed location will
not be explored

Committed Location: Example 2

* Assume: we want to pass p.
the value of integer “k” from

i Q:
automaton P to variable “j” o

in Q t=k
* The value of k can is passed
. . . n al
using a global integer variable .
“t”‘ l:
al
* Location “n” is committed to 0
ensure that no other 2

automat can assign “t”
before the assignment “j:=t”.

More Expressions

= New operators (not clocks):

o Logical:

* && (logical and), || (logical or), ! (logical negation),
o Bitwise:

* A (xor), & (bitwise and), | (bitwise or),
o Bit shift:

o << (left), >> (right)
o Numerical:
* % (modulo), <? (min), >? (max)

o

Compound Assignments:
o += .= *:, /:' /\:’ <<=, >>=

Prefix or Postfix:

o

* ++ (increment), -- (decrement)

More on Types

Multi dimensional arrays

o eg. int b[2][3];
* Array initialiser:

o e.g. int b[2][3] := {{1,2,3}, {4,5,6} };
Arrays of channels, clocks, constants.

o eg.
¢ chan a[3];
¢ clock c[3];
e constk[3]1{1,2,3}

Broadcast channels.

o e.g. broadcast chan a;

Extensions

Select statement

= Models non-deterministic choise
= x : int[0,42]

Types

= Record types
= Type declarations

= Meta variables:
o not stored with state

o meta int x;

Forall / Exists Expressions

= forall (x:int[0,42]) expr
true if expr is true for all values

in [0,42] of x

= exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall (x:int[0,4])array([x];

Advanced Features

® Priorities on channels
chan a,b,c,d[2],e[2];

chan priority a,d[0] < default < b,e

" Priorities on processes
system A < B,C < D;

®» Functions

C-like functions with return values

Uppaal Specification Language

39

TCTL Quantifiers in UPPAAL

= E — exists a path (“E” in UppPAAL).

= A —for all paths (“A” in UppAAL).

*= G —all states in a path (“[]1” in UppAAL).
* F —some state in a path (“<>” in UppAAL).

You may write the following queries in UPPAAL:
= A[lp, A<>p, E<>p, E[]p and p-->q

EGp

AG p
AF p EF p

“Local Properties”

A[]lp, A<>p, E<>p, E[]p, pP-—>p
where p is a local property

data guard

automaton\l{ocation '/ / clock guard

p::=a.l | ga | gc | p and p |

porp | not p | pimply p |
(p)

process/ name

E<>p - “p Reachable”

= E<> p —itis possible to reach a state in which p is

S un

= pis true in (at least) one reachable state.

A[]p - “Invariantly p”

= A[] p — p holds invariantly.

= pis true in all reachable states.

A<>p - “Inevitable p”’

A<> p — p will inevitable become true, the
automaton is guaranteed to eventually reach a state

in which p is/‘t:e.
At
VN

" pis true in some state of all paths.

E[] p - “Potentially Always p”’

= E[] p— p is potentially always true.

=y
AN

" There exists a path in which p is true in all states.

p-->q-"‘“pleadtoq”

" p -->q — if p becomes true, q will inevitably become
true.
same as A[](p imply A<>q)

)
A

= |n all paths, if p becomes true, q will inevitably
become true.

