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ABSTRACT

Recent years have witnessed two major trends in the de-
velopment of complex real-time embedded systems. First,
to reduce cost and enhance flexibility, multiple systems
are sharing common computing platforms via virtualization
technology, instead of being deployed separately on phys-
ically isolated hosts. Second, multicore processors are in-
creasingly being used in real-time systems. The integration
of real-time systems as virtual machines (VMs) atop com-
mon multicore platforms raises significant new research chal-
lenges in meeting the real-time performance requirements of
multiple systems. This paper advances the state of the art in
real-time virtualization by designing and implementing RT-
Xen 2.0, a new real-time multicore VM scheduling frame-
work in the popular Xen virtual machine monitor (VMM).
RT-Xen 2.0 realizes a suite of real-time VM scheduling poli-
cies spanning the design space. We implement both global
and partitioned VM schedulers; each scheduler can be con-
figured to support dynamic or static priorities and to run
VMs as periodic or deferrable servers. We present a com-
prehensive experimental evaluation that provides important
insights into real-time scheduling on virtualized multicore
platforms: (1) both global and partitioned VM scheduling
can be implemented in the VMM at moderate overhead; (2)
at the VMM level, while compositional scheduling theory
shows partitioned EDF (pEDF) is better than global EDF
(gEDF) in providing schedulability guarantees, in our exper-
iments their performance is reversed in terms of the fraction
of workloads that meet their deadlines on virtualized multi-
core platforms; (3) at the guest OS level, pEDF requests a
smaller total VCPU bandwidth than gEDF based on com-
positional scheduling analysis, and therefore using pEDF at
the guest OS level leads to more schedulable workloads in
our experiments; (4) a combination of pEDF in the guest OS
and gEDF in the VMM – configured with deferrable server
– leads to the highest fraction of schedulable task sets com-
pared to other real-time VM scheduling policies; and (5)
on a platform with a shared last-level cache, the benefits
of global scheduling outweigh the cache penalty incurred by
VM migration.
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1. INTRODUCTION
Complex real-time systems are moving from physically iso-
lated hosts towards common multicore computing platforms
shared by multiple systems. Common platforms bring sig-
nificant benefits, including reduced cost and weight, as well
as increased flexibility via dynamic resource allocation. Vir-
tualization has emerged as a promising technology for in-
tegrating systems as virtual machines (VMs) on a common
physical embedded computing platform. For example, em-
bedded hypervisors [1,4] are being developed as automotive
computing platforms for integrating both infotainment and
safety critical systems. However, the integration of real-time
systems as VMs on a common multicore computing plat-
form brings significant challenges in simultaneously meeting
the real-time performance requirements of multiple systems,
which in turn require fundamental advances in the underly-
ing VM scheduling at the virtual machine monitor (VMM)
level.

As a step towards real-time virtualization technology for
multicore processors, we have designed and implemented
RT-Xen 2.0, a multicore real-time VM scheduling framework
in Xen, an open-source VMM that has been widely adopted
in embedded systems [9]. While earlier efforts on real-time
scheduling in Xen [29,35,45,49] focused on single-core sched-
ulers, RT-Xen 2.0 realizes a suite of multicore real-time VM
scheduling policies spanning the design space. We have im-
plemented both global and partitioned VM schedulers (rt-
global and rt-partition); each scheduler can be configured
to support dynamic or static priorities and to run VMs un-
der periodic or deferrable server schemes. Our scheduling
framework therefore can support eight combinations of real-
time VM scheduling policies, enables us to perform compre-
hensive exploration of and experimentation with real-time
VM scheduling on multicore processors. Moreover, RT-Xen
2.0 supports a range of resource interfaces used in composi-
tional scheduling theory [27,28,43], which enables designers
to calculate and specify the resource demands of VMs to the
underlying RT-Xen 2.0 scheduler.

We have conducted a series of experiments to evaluate
the efficiency and real-time performance of RT-Xen 2.0 with
Linux and the LITMUSRT [8] patch as the guest OS. Our
empirical results provide insights on the design and imple-
mentation of real-time VM scheduling:

• Both global and partitioned real-time VM scheduling
can be realized within Xen at moderate overhead.

• At the VMM level, while compositional schedulabil-
ity analysis shows that partitioned EDF (pEDF) out-
performs global EDF (gEDF) in terms of theoretical
schedulability guarantees for tasks running in VMs, ex-
perimentally gEDF often outperforms pEDF in terms
of the fraction of workloads actually schedulable on a
virtualized multicore processor.







Algorithm 1. do schedule() function for rt-global un-
der EDF.
1: scurr ← the currently running VCPU on this PCPU
2: idleVCPU ← the idle VCPU on this PCPU
3: snext← idleVCPU
4: burn budget(scurr)
5: for all VCPUs in the RunQ do
6: if VCPU’s new period starts then
7: reset VCPU.deadline, replenish VCPU.budget
8: move VCPU to the appropriate place in the RunQ
9: end if
10: end for
11: for all VCPUs in the RunQ do
12: if VCPU.cpu mask & this PCPU 6= 0 then
13: if VCPU.budget > 0 then
14: snext← VCPU
15: break

16: end if
17: end if
18: end for
19: if

(

snext = idleVCPU snext.deadline > scurr.deadline
)

(scurr 6= idleVCPU) (scurr.budget > 0)
vcpu runnable(scurr) then

20: snext← scurr
21: end if
22: if snext 6= scurr then
23: remove snext from the RunQ
24: end if

25: return snext to run for 1 ms

end

There are two key differences between RT-Xen 2.0 and
RT-Xen [45]: (1) the second for loop (Lines 11–18) guar-
antees that the scheduler is CPU-mask aware; and (2) if the
scheduler decides to switch VCPUs (Lines 22–24), the cur-
rently running VCPU (scurr) is not inserted back into the
run queue (otherwise, it could be grabbed by another phys-
ical core before its context is saved, since the run queue
is shared among all cores, which would then make the
VCPU’s state inconsistent). For this reason, Xen adds an-
other scheduler-dependent function named context saved(),
which is invoked at the end of a context switch() to insert
scurr back into the run queue if it is still runnable. Note
that both do schedule() and context saved() need to grab
the spin-lock before running; since this is done in the Xen
scheduling framework, we do not show this in Algorithm 1.

Another essential function of the scheduler is the
wake up() function, which is called when a domain receives
a packet or a timer fires within it. In the wake up() function
of the rt-global scheduler, we only issue an interrupt if there
is a currently running VCPU with a lower priority than the
domain’s VCPUs, so as to reduce overhead and to avoid pri-
ority inversions. We also implemented a simple heuristic to
minimize the cache miss penalty due to VCPU migrations:
whenever there are multiple cores available, we assign the
previously scheduled core first.

The do schedule() function of the rt-partition scheduler
is similar to that of the rt-global scheduler, except that
(1) it does not need to consider the CPU mask when op-
erating on a local run queue (because VCPUs have already
been partitioned and allocated to PCPUs based on the CPU
mask), and (2) if the scheduler decides to switch VCPUs, the
currently running VCPU scurr will be immediately inserted
back into the run queue. In addition, in the wake up() func-
tion, we compare only the priority of the woken up VCPU
to the priority of the currently running VCPU, and perform
a switch if necessary.

We implemented both rt-global and rt-partition sched-
ulers in C. We also patched the Xen tool for adjusting the
parameters of a VCPU on the fly. Our modifications were
done solely within Xen. The source code of RT-Xen 2.0
and the data used in our experiments are both available at

the RT-Xen website: https: // sites. google. com/ site/

realtimexen .

4. EMPIRICAL EVALUATION
In this section, we present our experimental evaluation of
RT-Xen 2.0. We have five objectives for our evaluation:
(1) to evaluate the scheduling overhead of the rt-global and
rt-partition schedulers compared to the default Xen credit
scheduler; (2) to experimentally evaluate the schedulability
of the system under different combinations of schedulers at
the guest OS and VMM levels; (3) to evaluate the real-
time system performance under RT-Xen 2.0 schedulers in
overload situations; (4) to compare the performance of the
deferrable server scheme and the periodic server scheme; and
(5) to evaluate the impact of cache on global and partitioned
schedulers.

4.1 Experiment Setup
We perform our experiments on an Intel i7 x980 machine,
with six cores (PCPUs) running at 3.33 GHz. We dis-
able hyper-threading and SpeedStep to ensure constant
CPU speed, and we shut down all other non-essential pro-
cesses during our experiments to minimize interference. The
scheduling quantum for RT-Xen 2.0 is set to 1 ms. Xen 4.3 is
patched with RT-Xen 2.0 and installed with a 64-bit Linux
3.9 Kernel as domain 0, and a 64-bit Ubuntu image with a
para-virtualized Linux Kernel as the guest domain. For all
experiments, we boot domain 0 with one VCPU and pin this
VCPU to one core; the remaining five cores are used to run
the guest domains. In addition, we patch the guest OS with
LITMUSRT [8] to support EDF scheduling.
For the partitioned scheduler at the guest OS level and the

VMM level, we use a variant of the best-fit bin-packing al-
gorithm for assigning tasks to VCPUs and VCPUs to cores,
respectively. Specifically, for each domain, we assign a task
to the VCPU with the largest current bandwidth3 among
all existing VCPUs of the domain that can feasibly sched-
ule the task. Since the number of VCPUs of the domain is
unknown, we start with one VCPU for the domain, and add
a new VCPU when the current task could not be packed
into any existing VCPU. At the VMM level, we assign VC-
PUs to the available cores in the same manner, except that
(1) in order to maximize the amount of parallelism that is
available to each domain, we try to avoid assigning VCPUs
from the same domain to the same core, and (2) under an
overload condition, when the scheduler determines that it
is not feasible to schedule the current VCPU on any core,
we assign that VCPU to the core with the smallest current
bandwidth, so as to balance the load among cores.

We perform the same experiments as above using the
credit scheduler, with both the weight and the cap of each
domain configured to be the total bandwidth of its VCPUs.
(Recall that the bandwidth of a VCPU is the ratio of its
budget to its period.) The CPU-mask of each VCPU was
configured to be 1-5 (same as in the rt-global scheduler).

4.2 Workloads
In our experiments, tasks are created based on the base task
provided by LITMUSRT. To emulate a desirable execution
time for a task in RT-Xen 2.0, we first calibrate a CPU-
intensive job to take 1 ms in the guest OS (when running
without any interference), then scale it to the desirable ex-
ecution time. For each task set, we run each experiment for
60 seconds, and record the deadline miss ratio for each task
using the st trace tool provided by LITMUSRT.

3The maximum bandwidth of a VCPU is 1, since we assume
that it can only execute on one core at a time.
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Figure 3: CDF plots for scheduling overhead for different schedulers over 30 seconds.

Following the methodology used in [13] to generate real-
time tasks, our evaluation uses synthetic real-time task sets.
The tasks’ periods are chosen uniformly at random between
350ms and 850ms, and the tasks’ deadlines are set equal
to their periods. The tasks’ utilizations follow the medium
bimodal distribution, where the utilizations are distributed
uniformly over [0.0001, 0.5) with probability of 2/3, or [0.5,
0.9] with probability of 1/3. Since there are five cores for
running the guest domains, we generate task sets with total
utilization ranging from 1.1 to 4.9, with a step of 0.2. For
a specific utilization, we first generate tasks until we exceed
the specified total task utilization, then we discard the last
generated task and use a “pad” task to make the task set
utilization match exactly the specified utilization. For each
of the 20 task set utilizations, we use different random seeds
to generate 25 task sets for each bimodal distribution. In
total, there are 20 (utilization values) × 25 (random seeds)
= 500 task sets in our experiments.

Each generated task is then distributed into four different
domains in a round-robin fashion. We apply compositional
scheduling analysis to compute the interface of each domain,
and to map the computed interface into a set of VCPUs to
be scheduled by the VMM scheduler. In our evaluation,
we use harmonic periods for all VCPUs. We first evaluate
the real-time schedulers using CPU-intensive tasks in the
experiments, followed by a study on the impacts of cache on
the different real-time schedulers using cache-intensive tasks
with large memory footprints (Section 4.7).

4.3 Scheduling Overhead
In order to measure the overheads for different schedulers,
we boot 4 domains, each with 4 VCPUs. We set each
VCPU’s bandwidth to 20%, and distribute the VCPUs to
5 PCPUs for the rt-partition scheduler in a round-robin
fashion; for the rt-global and credit schedulers, we allow
all guest VCPUs to run on all 5 PCPUs. We run a CPU-
intensive workload with a total utilization of 3.10. We use
the EDF scheme in both rt-global and rt-partition sched-
ulers, as the different priority schemes only differ in their
placement of a VCPU in the RunQ. In the Xen scheduling
framework, there are three key functions related to sched-
ulers as described in Section 3.2. We measure the overheads
as the time spent in the do schedule function as schedul-
ing latency, the time spent in the context switch, and the
time spent in the context saved. Note that context saved is
necessary only in rt-global schedulers, as they have shared
queues. For rt-partition and credit schedulers, the running
VCPU is inserted back to run queue in do schedule function.
To record these overheads, we modify xentrace [32] and use
it to record data for 30 seconds.

Figure 3 shows CDF plots of the time spent in the three
functions for different schedulers. Since 99% of the values
are smaller than 3 microseconds (except for rt-global in the
context switch function, which is 3.266 microseconds), we

cut the X-axis at 3 microseconds for a clear view, and in-
clude the 99% and maximum values in the legend for each
scheduler. We observe the following:

First, as is shown in Figure 3a, the rt-global scheduler
incurred a higher scheduling latency than the rt-partition
scheduler. This is because the rt-global scheduler experi-
enced the overhead to grab the spinlock, and it had a run
queue that was 5 times longer than that of the rt-partition
scheduler. The credit scheduler performed better than the
rt-global scheduler in the lower 60%, but performed worse
in the higher 40% of our measurements. We attribute this
to the load balancing scheme in the credit scheduler, which
must check all other PCPUs’ RunQs to “steal” VCPUs.

Second, Figure 3b shows that the context switch over-
heads for all three schedulers were largely divided into two
phases: approximately 50% of the overhead was around
200 nanoseconds, and the remaining was more than 1500
nanoseconds. We find that the first 50% (with lower over-
head) ran without actually performing context switches,
since Xen defers the actual context switch until necessary:
when the scheduler switches from a guest VCPU to the IDLE
VCPU, or from the IDLE VCPU to a guest VCPU with
its context still intact, the time spent in the context switch
function is much shorter than a context switch between
two different guest VCPUs. We can also observe that con-
text switch in rt-global has a higher overhead. We attribute
this to the global scheduling policy, where the VMM sched-
uler moves VCPUs around all PCPUs, and would cause
more preemptions than a partitioned scheduling policy like
rt-partition.

Third, Figure 3c shows the time spent in the context saved
function for the rt-global scheduler. Recall that this function
is NULL in the rt-partition and credit schedulers, since the
current VCPU is already inserted back into the run queue by
the do schedule function. We observe that, for the rt-global
scheduler, around 90% of the overhead was 200 nanoseconds
or less, and the 99% value was only 1224 nanoseconds. We
attribute this to the extra overhead of grabbing the spinlock
to access the shared run queue in the rt-global scheduler.

Overall, in 99% of the cases, the overhead of all three
functions (do schedule, context switch, and context saved)
for all schedulers was smaller than 4 microseconds. Since we
use a 1 ms scheduling quantum for both the rt-global and
the rt-partition schedulers, an overhead of 4 microseconds
corresponds to a resource loss of only 1.2% per scheduling
quantum. Notably, in contrast to an OS scheduler – which
is expected to handle a large number of tasks – the VMM
scheduler usually runs fewer than 100 VCPUs as each VCPU
typically demands much more resources than a single task.
As a result, the run queue is typically much shorter, and
the overhead for grabbing the lock in a shared run queue is
typically smaller than in an OS scheduler.

4.4 RT-Xen 2.0 vs. Credit Scheduler



We conduct experiments to compare the real-time perfor-
mance of the default credit scheduler in Xen and our RT-Xen
2.0 schedulers. All guest domains run the pEDF scheduler
in the guest OS. For the credit scheduler, we configure each
domain’s credit and cap as the sum of all its VCPU’s band-
widths, as described in Section 4.1. For comparison, we also
plot the results for the gEDF and gDM schedulers in RT-Xen
2.0 using a periodic server.
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Figure 4: credit vs. RT-Xen 2.0 schedulers

Figure 4 shows the results. With the credit scheduler,
even when the total workload utilization is as low as 1.1,
10 % of the task sets experienced deadline misses, which
clearly demonstrates that the credit scheduler is not suit-
able for scheduling VMs that contain real-time applications.
In contrast, our real-time VM schedulers based on the gEDF
and gDM policies can meet the deadlines of all task sets at
utilizations as high as 3.9. This result highlights the impor-
tance of incorporating real-time VM schedulers in multicore
hypervisors such as Xen. In the following subsections, we
compare different real-time VM scheduling policies in RT-
Xen 2.0.

4.5 Real-Time Scheduling Policies
We now evaluate different real-time VM scheduling policies
supported by RT-Xen 2.0. We first compare their capability
to provide theoretical schedulability guarantees based on
compositional scheduling analysis. We then experimentally
evaluate their capability to meet the deadlines of real-time
tasks in VMs on a real multi-core machine. This approach
allows us to compare the theoretical guarantees and exper-
imental performance of real-time VM scheduling, as well
as the real-time performance of different combinations of
real-time scheduling policies at the VMM and guest OS
levels. In both theoretical and experimental evaluations, we
used the medium-bimodal distribution, and we performed
the experiments for all 25 task sets per utilization under
the rt-global and rt-partition schedulers.

Theoretical guarantees. To evaluate the four scheduling
policies at the VMM level, we fix the guest OS scheduler to
be either pEDF or gEDF, and we vary the VMM scheduler
among the four schedulers, pEDF, gEDF, pDM and gDM.
For each configuration, we perform the schedulability test
for every task set.
Performance of the four schedulers at the VMM level: Fig-
ures 5(a) and 5(b) show the fraction of schedulable task sets
for the four schedulers at the VMM level with respect to the
task set utilization when fixing pEDF or gEDF as the guest
OS scheduler, respectively. The results show that, when we
fix the guest OS scheduler, the pEDF and pDM schedulers at
the VMM level can provide theoretical schedulability guar-
antees for more task sets than the gDM scheduler, which in
turn outperforms the gEDF scheduler, for all utilizations.
Note that the fraction of schedulable task sets of the pEDF
scheduler is the same as that of the pDM scheduler. This is
because the set of VCPUs to be scheduled by the VMM is

the same for both pDM and pEDF schedulers (since we fixed
the guest OS scheduler), and these VCPUs have harmonic
periods; as a result, the utilization bounds under both sched-
ulers are both equal to 1 [18]. The results also show that
the partitioned schedulers usually outperformed the global
schedulers in terms of theoretical schedulability.
Combination of EDF schedulers at both levels: Figure 5(c)
shows the fraction of schedulable task sets for each task
set utilization under four different combinations of the
EDF priority assignment at the guest OS and the VMM
levels. The results show a consistent order among the four
combinations in terms of theoretical schedulability (from
best to worst): (pEDF, pEDF), (gEDF, pEDF), (pEDF,
gEDF), and (gEDF, gEDF).

Experimental evaluation on RT-Xen 2.0. From the
above theoretical results, we observed that pEDF and gEDF
have the best and the worst theoretical performance at both
levels. Henceforth, we focus on EDF results in the experi-
mental evaluation. We have not observed statistically dis-
tinguishable differences between DM and EDF scheduling
in their empirical performance, and the DM results follows
similar trends to EDF scheduling.
Experimental vs. theoretical results: Figures 6(a) and 6(b)
show the fractions of schedulable task sets that were pre-
dicted by the CSA theory and that were observed on RT-Xen
2.0 for the two EDF schedulers at the VMM level, when fix-
ing pEDF or gEDF as the guest OS scheduler, respectively.
We examine all 25 task sets for each level of system, and
we find that whenever a task set used in our evaluation is
schedulable according to the theoretical analysis, it is also
schedulable under the corresponding scheduler on RT-Xen
2.0 in our experiments. In addition, for both pEDF and
gEDF schedulers, the fractions of schedulable task sets ob-
served on RT-Xen 2.0 are always larger than or equal to
those predicted by the theoretical analysis. The results also
show that, in contrast to the trend predicted in theory, the
gEDF scheduler at the VMM level can often schedule more
task sets empirically than the pEDF scheduler. We attribute
this to the pessimism of the gEDF schedulability analysis
when applied to the VMM level, but gEDF is an effective
real-time scheduling policy in practice due to its flexibility
to migrate VMs among cores.
Combination of EDF schedulers at both levels: Figure 6(c)
shows the fraction of empirically schedulable task sets at dif-
ferent levels of system utilization under four different com-
binations of EDF policies at the guest OS and VMM levels.
The results show that, at the guest OS level, the pEDF
scheduler always outperform the gEDF scheduler. Further,
if we fix pEDF (gEDF) for the guest OS scheduler, the gEDF
scheduler at the VMM level can often schedule more task
sets than the pEDF scheduler.
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Figure 7: Average total VCPU bandwidth comparison.
To explain the relative performance of pEDF and gEDF

in a two-level scheduling hierarchy, we investigate the cor-
responding set of VCPUs that are scheduled by the VMM
when varying the guest OS scheduler. For the same task
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Figure 5: Theoretical results: schedulability of different schedulers at the guest OS and the VMM levels.
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Figure 6: Experimental vs. theoretical results: schedulability of different schedulers at the guest OS and the VMM levels.

set, the VCPUs of a domain under the pEDF and gEDF
schedulers can be different; hence, the set of VCPUs to be
scheduled by the VMM can also be different. Figure 7 shows
the total bandwidth of all the VCPUs that are scheduled by
the VMM – averaged across all 25 task sets – at each level
of system utilization for the pEDF and gEDF schedulers at
the guest-OS level. The horizontal line represents the total
available resource bandwidth (with 5 cores).

The figure shows that gEDF as the guest OS scheduler re-
sults in a higher average total VCPU bandwidth compared
to pEDF; therefore, the extra resource that the VMM allo-
cates to the VCPUs (compared to that was actually required
by their tasks) is much higher under gEDF. Since the re-
source that is unused by tasks of a higher priority VCPU
cannot be used by tasks of lower-priority VCPUs when VC-
PUs are implemented as periodic servers, more resources
were wasted under gEDF. In an overloaded situation, where
the underlying platform cannot provide enough resources at
the VMM level, the lower-priority VCPUs will likely miss
deadlines. Therefore the poor performance of gEDF at the
guest OS level results from the combination of pessimistic
resource interfaces based on the CSA and the non-work-
conserving nature of periodic server. We study deferrable
server, a work-conserving mechanism for implementing VC-
PUs, in Section 4.6

In contrast, when we fix the guest OS scheduler to be ei-
ther pEDF or gEDF, the set of VCPUs that is scheduled
by the VMM is also fixed. As a result, we observe more
VCPUs being schedulable on RT-Xen 2.0 under the gEDF
scheduler than under the pEDF scheduler at the VMM level
(c.f., Figure 6(c)). This is consistent with our earlier ob-
servation, that the gEDF scheduler can often schedule more
task sets than the pEDF scheduler empirically because of
the flexibility to migrate VMs among cores.

4.6 Periodic Server vs. Deferrable Server
As observed in the last set of experiments, realizing VMs
as periodic servers suffers from the non-work-conserving
nature of the periodic server algorithm. Henceforth, we
compare the real-time performance of the periodic server

against the deferrable server (which implements VMs in a
work-conserving fashion).Theoretically, the deferrable server
scheme can suffer from back-to-back effects, in which higher-
priority server executes back to back causing lower-priority
servers to miss deadlines. While the back-to-back effect
affects deferrable server’s capability to provide theoreti-
cal schedulability guarantees, in practice back-to-back ef-
fect happens infrequently and its negative impacts are often
dominated by the benefits of the work-conserving property
of deferrable server, as shown in our experimental results.
For this, we repeat the experiments in Section 4.5 with a
deferrable server configuration.

Figure 8a and Figure 8b show the fraction of schedulable
task sets with the periodic server and with the deferrable
server, respectively. It can be observed that, when pEDF
is used in the guest OS (Figure 8a), the two servers are in-
comparable in terms of the fraction of schedulable task sets.
This is because there is little slack time in each VCPU’s
schedule (recall from Figure 7 that the total VCPU band-
width for pEDF in the guest OS is close to the actual task
set utilization) and thus a deferrable server behaves almost
like a periodic server. In contrast, when the guest OS is
using gEDF (Figure 8b), using gEDF in the VMM with a
deferrable server clearly outperforms the other three com-
binations. We attribute this to the work-conserving behav-
ior of the deferrable server, which can take advantage of
the available slack time at runtime to improve the system
schedulability.

Another interesting observation is that, when pEDF is
used in RT-Xen 2.0, the difference between the performance
of the two servers is not obvious. We attribute this to the
VCPU parameters calculated based on CSA: The computed
bandwidth of a VCPU is often larger than half of the avail-
able bandwidth of a PCPU. As a result, when a partitioned
scheduler is used in RT-Xen 2.0, every PCPU is either able
to feasibly schedule all tasks (if it only executes one VCPU)
or is heavily overloaded (if it executes two or more VCPUs).
In the former case, there is no deadline miss on the PCPU
under either server; in the latter, using deferrable server can-
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Figure 8: Fraction of schedulable task sets using deferrable server and periodic server.

not help improve the deadline miss ratio much, since there
is often no slack available when the PCPU is heavily over-
loaded.

Finally, Figure 8c shows four configurations of the gEDF
and pEDF scheduling policies with a deferrable server. We
can observe that generally global scheduling in VMM out-
performs partitioned scheduling empirically. Further, for the
same VMM scheduler, using pEDF in the guest OS results
in better performance compared to using gEDF.

4.7 Cache Intensive Workloads
Our previous experiments use CPU-intensive workloads
with small memory footprints. In comparison, a memory-
intensive workload may be more affected by VCPU migra-
tions caused by a global VM scheduler because of cache
penalty. To study the impacts of cache effects, we conduct a
new empirical comparison between rt-global and rt-partition
schedulers using a memory-intensive workload. The Intel i7
processor used in this set of experiments contains 6 cores,
each core owns dedicated L1 (32KB data, 32KB instruction)
and L2 (256KB unified) cache, while all cores share a uni-
fied 12MB L3 cache. The last-level cache is inclusive [5],
which means the data that is in a PCPU’s L2 cache must
also be in the shared L3 cache. Therefore, the cache penalty
of a VCPU migration is usually associated with latency dif-
ference between core-specific private cache (L1 or L2) and
the shared L3 cache. On the i7 processor the latency dif-
ference between L2 and L3 cache is 18 cycles [6], about 5
nano-seconds per cache line (64B). The local L2 cache size
is 256 KB (4096 cache lines), therefore, a VCPU migration
may result in a cache penalty as high as 4096 x 5 ns = 20 µs.
However, due to the widely used cache pre-fetch technology,
the observed migration penalty is usually much less than the
worst case. In comparison to a VMM scheduling quantum of
1 ms, we hypothesize the VCPU migration would not incur
a significant performance penalty. 4

To create significant cache penalty from VCPU migra-
tions, we designed the memory access pattern of our tasks
as follows. We allow each task to access a fixed sized ar-
ray within the L2 cache. The access pattern is one element
per cache line, and we store the next element’s index in
the current element, so that it is data dependent and the
improvement from cache pre-fetch can be mitigated. Re-
cent work in compositional scheduling theory also considers
cache impact [47], but assumes there is no shared cache.
Therefore, we keep the other parameters of the task sets the
same as our previously generated workload. The impact of
cache has received significant attention in the context of one
level scheduling [40,42,50]; we defer integrating them into a
two-level hierarchal scheduling to future work.

We use pEDF in the guest OS so that the cache penalty

4This analysis is valid only for processor with a shared last-
level cache. For platforms with multiple last-level caches,
global scheduler can have a higher cache-miss penalty, as
shown in an earlier study at the OS level [13].
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Figure 9: Cache-intensive workloads (guest OS with pEDF)

are attributed only to the VMM-level schedulers. We com-
pare the real-time performance of the gEDF and pEDF
VMM schedulers. As shown in Figure 9, gEDF again out-
performs pEDF despite the cache penalty. This confirms the
benefits of a global scheduling policy outweighs the cache
penalty caused by the VCPU migration on a multicore plat-
formed with shared last-level cache.

5. RELATED WORK
Since our RT-Xen 2.0 scheduling framework is shaped by
both theoretical and practical considerations, we discuss re-
lated work in both the theory and the systems domain.

5.1 Theory perspective
There exists a large body of work on hierarchical schedul-
ing for single-processor platforms (see e.g., [14, 25, 26, 43]),
which considers both DM and EDF schemes. In RT-Xen
2.0, we use the method in [43] to derive the interfaces under
partitioned DM and partitioned EDF schedulers.

Recently, a number of compositional scheduling tech-
niques for multicore platforms have been developed
(e.g., [15,27,31,37,39,47]), which provide different resource
models for representing the interfaces. For instance, an
MPR interface [27] abstracts a component using a period, a
budget within each period, and a maximum level of concur-
rency, whereas a multi-supply function interface [15] uses a
set of supply bound functions. Our evaluations on RT-Xen
2.0 were performed using the MPR model for the domains’
interfaces [27], but the RT-Xen 2.0 scheduling framework is
compatible with most other interfaces, such as [15, 47] and
their variations as discussed in Section 3. In the future RT-
Xen 2.0 can serve as an open source platform for the commu-
nity to experiment with different hierarchical schedulability
analysis.

5.2 Systems perspective
The implementation of hierarchical scheduling has been in-
vestigated for various platforms, including (1) native plat-
forms, (2) Xen, and (3) other virtualization platforms. We
describe each category below:
Native platforms: There are several implementations



of hierarchical scheduling within middleware or OS ker-
nels [10, 17, 24, 38, 41, 44]. In these implementations, all
levels of the scheduling hierarchy are implemented in one
(user or kernel) space. In contrast, RT-Xen 2.0 imple-
ments schedulers in the VMM level, and leverages existing
real-time schedulers in the guest OS, thereby achieving
a clean separation between the two levels of scheduling.
Furthermore, leveraging compositional schedulability anal-
ysis, RT-Xen 2.0 also enables guest domains to hide their
task-level details from the underlying platform, since it only
requires a minimal scheduling interface abstraction from
the domains.

Other Xen approaches: Several recent efforts have added
real-time capabilities to Xen. For example, Lee et al. [36]
and Zhang et al. [51] provides a strict-prioritization patch
for the credit scheduler so that real-time domains can always
get resource before non-real-time domains, and Govindan et
al. [29] mitigates priority inversion when guest domains are
co-scheduled with domain 0 on a single core. Yoo et al. [49]
used similar ideas to improve the credit scheduler on the
Xen ARM platform. While these work can help real-time
applications, they employ heuristics to enhance the existing
schedulers and is not supported by analytical guarantees. In
our earlier work RT-Xen 1.0 [35, 45], we focused on single-
core scheduling with fixed priority. RT-Xen 2.0 provides a
new multicore real-time scheduling framework.
Other virtualization approaches: There are other
virtualization technologies that rely on architectures other
than Xen. For instance, KVM [7] integrates the VMM with
the host OS, and schedules VCPUs together with other
tasks in the host OS. Hence, in principle, any real-time
multicore Linux scheduler [13, 16, 19, 22, 30] could be con-
figured to apply two-level hierarchical scheduling in KVM,
but with limited server mechanism support. As an example,
Checconi et al. [20] implemented a partitioned-queue EDF
scheduler for scheduling multicore KVM virtual machines,
using hard constant-bandwidth servers for the VCPUs and
global fixed-priority scheduling for the guest OS scheduler.
The same group also investigated the scheduling of real-time
workloads in virtualized cloud infrastructures [23]. Besides
KVM, the micro-kernel like L4/Fiasco [3] can also be used
to achieve hierarchical scheduling, as demonstrated by
Yang et al. [48] using a periodic server implementation.
Lackorzynski et al. [34] exported the task information to
the host scheduler in order to address the challenge of
mixed-criticality systems in a virtualized environment.
Härtig et al. [33] studied a multi-resource multi-level
problem to optimize energy consumption. Crespo et al. [21]
proposed a bare-metal VMM based on a para-virtualization
technology similar to Xen for embedded platforms, which
uses static (cyclic) scheduling. In contrast, RT-Xen 2.0
provides a scheduling framework spanning the design space
in terms of global and partitioned scheduling, dynamic and
static priority, periodic and deferrable servers. We also
provide an comprehensive experimental study of different
combinations of scheduling designs.

6. CONCLUSIONS
We have designed and implemented RT-Xen 2.0, a new real-
time multicore VM scheduling framework in the Xen virtual
machine monitor (VMM). RT-Xen 2.0 realizes global and
partitioned VM schedulers, and each scheduler can be con-
figured to support dynamic or static priorities, and to run
VMs as periodic or deferrable servers. Through a compre-
hensive experimental study, we show that both global and
partitioned VM scheduling can be implemented in the VMM
at moderate overhead. Moreover, at the VMM scheduler

level, in compositional schedulability theory pEDF is better
than gEDF in schedulability guarantees, but in our exper-
iments their actual performance is reversed in terms of the
fraction of workloads that meet their deadlines on virtual-
ized multicore platforms. At the guest OS level, pEDF re-
quests a smaller total VCPU bandwidth than gEDF based
on compositional schedulability analysis, and therefore using
pEDF in the guest OS level leads to more schedulable work-
loads on a virtualized multicore processor. The combination
of pEDF in guest OS and gEDF in the VMM therefore re-
sulted the best experimental real-time performance. Finally,
on a platform with a shared last-level cache, the benefits of
global scheduling outweigh the cache penalty incurred by
VM migration.
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[33] H. Härtig, M. Völp, and M. Hähnel. The case for
practical multi-resource and multi-level scheduling
based on energy/utility. In RTCSA, 2013.
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