
Co-design of Control and Platform with Dropped Signals∗

Damoon Soudbakhsh1 Linh T.X. Phan2 Oleg Sokolsky2

Insup Lee2 Anuradha Annaswamy1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology
email: {damoon, aanna}@mit.edu

2 Department of Computer and Information Sciences, University of Pennsylvania
{linhphan,sokolsky,lee}@cis.upenn.edu

ABSTRACT
This paper examines a co-design of control and platform in the
presence of dropped signals. In a cyber-physical system, due to
increasing complexities such as the simultaneous control of sev-
eral applications, limited resources, and complex platform archi-
tectures, some of the signals transmitted may often be dropped.
In this paper, we address the challenges that arise both from the
control design and the platform design point of view. A dynamic
model is proposed that accommodates these drops, and a suitable
switching control design is proposed. A Multiple Lyapunov func-
tion based approach is used to guarantee the stability of the system
with the switching controller. We then present a method for opti-
mizing the amount of platform resource required to ensure stability
of the control systems via a buffer control mechanism that exploits
the ability to drop signals of the control system and an associated
analysis of the drop bound. The results are demonstrated using
a case study of a co-designed lane keeping control system in the
presence of dropped signals.

1 Introduction
Implementation issues in controller design have lately received a
lot of attention in the context of cyber-physical systems design
[28]. Embedded control systems typically consist of several control
loops, with different parts of each control application being mapped
onto different processors that communicate over one or more com-
munication buses. With increasing complexity in the embedded
systems, the gap between high-level control models and their ac-
tual implementations inevitably widen. Control engineers are typ-
ically concerned with analyzing and simulating controllers based
on well-defined models of both the plant and the controller being
designed. During this process, the control design process does not
include implementation aspects such as the computational time or
delays that enter the picture due to shared resources and sched-
ules with varying protocols. Once the control design is complete,
has been analyzed and simulated, it is the task of the embedded
systems engineer to come up with software implementations (e.g.,
in C) of the different control blocks (e.g., from MATLAB speci-
∗This work was supported in part by the National Science Founda-
tion grants ECCS-1135815 and ECCS-1135630.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS2013 ’13 Philadelphia, PA USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

fications) and implement the software on a hardware architecture
or platform. Here too, the constraints and needs of the control sys-
tems are often neglected while carrying out the software design and
implementations.

The main problem that can be attributed to the gap between the
control models and their implication is the delay between the signal
sensed at the plant output and the signal sent to the control actua-
tor. In many of the typical approaches used on the control side,
a worst case of end-to-end sample delays is assumed and suitable
control laws are designed based on statistical properties or upper-
bounds of delays. This assumption introduces a strict constraint on
the platform design, where the platform needs to guarantee that all
samples must meet the delay bounds. However, the actual delay
that a control system experiences on a platform varies with time
and can be significantly different from and smaller than the worst-
case delay. As a result, designing the platform under the worst-case
assumption often wastes a lot of resource.

In this paper, we propose a co-design of control and platform that
allows samples to be dropped if their end-to-end delays are more
than a delay threshold. Based on both matrix analysis and multiple
Lyapunov functions, the control algorithm ensures stability in the
presence of a certain number of drops which may occur at any time
within the time window. A platform analysis method based on a
buffer control mechanism is proposed that ensures that for a given
platform, the maximum number of dropped samples does not ex-
ceed that is allowed by the control design. As validated using aca-
demic examples and numerical studies of a lane-keeping control
system of an automotive system, this tight coupling between the
platform and control system not only helps optimize the resource
use efficiency but also enables more flexibility in the system design.

Related Work: There exist several efforts that aim to close the gap
between control and platform in the embedded system domain, for
instance, the development of the synchronous language paradigm
[4], time-triggered languages like Giotto [12] and other related for-
malisms such as PTIDES [32]. Efforts in the control systems do-
main in this direction have been the focus of Networked Control
Systems (NCS) [14, 31], whose approach has been the study of
distributed controllers communicating over a network. Research
in NCS has addressed problems such as delays suffered by control
samples, dropped samples and jitter, and their impact on control de-
sign, stability, and performance. There have also been attempts to
close this gap through a systematic co-design of controllers and the
platform [7,15,16,19,23,26,27,29]. Quite often some of these co-
designs lead to an inherent switched system whose stability is an-
alyzed using tools such as Average Dwell time approach [13], and
common quadratic Lyapunov functions [1,18]. Research in NCS in
the context of dropped signals has been carried out in [1,15,17,30].
The common approach is to use a sample and hold block and an-

alyze system stability [14, 17, 30]. Very few of these papers how-
ever have dealt with co-designs. Using a drop frequency metric
based on maximum number of drops after each successful signal
was presented in [1, 15, 30]. However, these studies result in con-
servative analysis since each successful sample should compensate
for a number of drops.

Several task models within the real-time systems community have
also been designed to enable data drops. For instance, the (m;k)-
firm task model in [11] enables up to k−m jobs to miss their dead-
lines for any k consecutive jobs, which is a form of dropping. Sev-
eral analysis methods have been proposed for the (m;k) task model
(e.g., [20–22]); however, they focus on the scheduling of a given
set of (m;k) tasks instead of analyzing the maximum bound on the
number of drops.

Computation of the maximum number of drops in the absence
of buffer control was considered in [15]. In theory, the approach
in [15] can be extended to capture the buffer control mechanism.
However, it may not scale for large systems, since it is based on
automata verification, which requires explorations of a complete
state space. Our analysis provides a closed-form solution based
on a purely algebraic analysis, which can be done efficiently. In
addition, our buffer control mechanism can also enable more re-
source savings, especially for settings where the worst-case delays
are much larger than that of the threshold delay.
Contributions: In §3 we present a dynamic model that not only
accommodates the underlying dynamics of the plant that is being
controlled but also the possibility that the control input used may be
subjected to drops; using this model we provide analytical bounds
to guarantee the closed-loop stability in presence of multiple drops
(§4). We then present a multiple Lyapunov functions approach to
prove the stability of the resulting switching controller without and
with drops, which further improves the above analysis bounds (§5).
Based on the improved bounds, we propose a buffer control mech-
anism and an associated platform analysis technique to improve the
resource required by the control system while ensuring the control
stability (§7). Finally, we demonstrate the utility of our co-design
method using a case study of a lane keeping system (§8). Our eval-
uation results show that our method can help save the platform
resource needs by an order of magnitude, and it enables a larger
design solution space compared to a baseline approach.

2 Definitions
We define Lyapunov Like Functions (LLF), switching systems, and
related stability properties, which are used throughout this paper.

The system of interest in this study is a switching system with n̄
modes

x[k+1] = fi(x[k]), i = 1,2, · · · , n̄ (1)

We denote the jth instant at which the system switches to mode i
as t j

i .Lyapunov Like Functions (LLF) and the stability result of (1)
using LLF are stated below [9]:

DEFINITION 1. Consider system (1) over the time interval Ti =

(t j+i
i , t j−`

`) over which fi is active. A positive definite function Vi(x[t]),
with Vi(x0) = 0 and Vi(x)� 0 for x 6= x0, is called an LLF for sys-
tem (1), equilibrium point x0, and Ti if it remains bounded over Ti,
i.e.,

Vi(x[t
j+i
i])≤ h(Vi(x[t

j−`
`])) (2)

with h being a continuous function, h(·) : ℜ+→ℜ+ and h(0) = 0.

THEOREM 1. If there exist (i) LLFs Vis for i = 1,2, · · · , n̄ of
system (1) over all intervals Ti’s where fi is active, and (ii) their

corresponding starting values at active switching times are mono-
tonically non-increasing, i.e.,

Vi(x[t
(j+1)+
i])≤Vi(x[t

j+
i]), (3)

then the system is stable.

PROOF. The proof can be found in [6].

REMARK 1. We note that condition (i) is satisfied for h(x) = x,
when Vi is a Lyapunov function for system i. Hence the switching
system in (1) is stable if Lyapunov functions, rather than LLFs, exist
for subsets of the n̄ systems in (1), and Theorem 1 is satisfied.

The following well known matrix inequality is useful:

LEMMA 2. Consider a linear map A with spectral radius r(A)=
sup |λ |,λ ∈ σ(A), where σ(A) is a set containing eigenvalues of A.
Then for any ρ > r(A), ∃a > 1 such that ‖Ak‖ ≤ aρk,∀k ≥ 1.

The following class of switched systems is of interest in this paper:

x[k+1] =
{

A1x[k] k1 ≤ k ≤ k1 + i
A2x[k] k1 + i≤ k ≤ k1 + i+ j (4)

where A1 is stable and A1 and A2 satisfy the following inequalities:

||Ak
1|| ≤ a1λ

k
1 , a1 > 1, 0≤ λ1 < 1 (5)

||Ak
2|| ≤ a2λ

k
2 , a2 > 1, λ2 ≥ 0 (6)

Throughout this article, we adopt the following to show symmet-
ric matrices [

A ∗
B D

]
for

[
A BT

B D

]
(7)

3 Statement of the Problem
The specific plant to be controlled is assumed to be linear time-
invariant with the following state-space form:

Figure 1: Schematic overview of the control of a plant using a DES.

ẋ(t) = Acx(t)+Bcu(t) (8)

where, x(t) ∈ℜp and u(t) ∈ℜq are states and inputs, respectively.
The goal is to design u(t) so that x(t) tends to zero asymptotically
with the closed-loop system remaining bounded. We assume that
the plant is periodically sampled with a fixed period T , and define
τ = τa + τs + τc (Fig. 1), where τs, τc, and τa are the processing
times for the sensor task, the control computation, and the com-
puted output to be communicated to the actuator. We define τth
as a threshold value for τ and assume that τth < T . If the delay
τ exceeds τth, we assume that the control computation may arrive
too late for it to be effective in controlling the plant. If τ < τth,
we deem the information useful and use it at time τth. Denoting

A def
= eAcT , B1

def
= (

∫ T−τth
0 eAcν dν)Bc, and B2

def
= (

∫ T
T−τth

eAcν dν)Bc
leads to the following discrete-time plant-model [3]

x[k+1] = Ax[k]+B1u[k]+B2u[k−1] (9)

when τ < τth. This is assumed to be the nominal case, and (9) can
be used to design the requisite controller. Suppose a controller of
the form

u[k] = Kx[k] (10)

is used, we obtain the closed-loop system

X [k+1] =
[

A+B1K B2K
I 0

]
X [k] def

= AnX [k] (11)

where X [k] = [x[k]T ,x[k− 1]T]T . In this paper, it is assumed that
a K exists such that An is stable. A less restrictive approach when
this assumption does not hold can be found in [2]. We refer to
this case, when τ < τth, as the nominal case. It is quite possible
that τ > τth, which may be because of the lack of availability of
the processor or due to large communication lag between proces-
sors, and is assumed to occur infrequently. In such a case, as the
information available to the controller is significantly delayed, we
simply assume that the message is dropped and use the previous in-
put u[k−1], i.e., employ the zero-order-hold algorithm. If starting
at any time k, for m consecutive instants, the delay τ continues to
be larger than τth with τ < τth at k−1, then it follows that

u[k+ j] = u[k−1], j = 0,1, . . . ,m−1 (12)

That is, the signal has m drops during which no new control input
is computed, but rather the old input is used.

In summary, if starting at time k1,{
i f τ < τth for k1 < k ≤ k1 + i (13a)
if τ > τth for k1 + i≤ k ≤ k1 + i+ j (13b)

then the corresponding control input is chosen as

u[k] =
{

Kx[k] for k1 ≤ k < k1 + i (14a)
u[k1 + i] for k1 + i+1≤ k ≤ k1 + i+ j (14b)

If (14a) is used, the closed-loop system corresponds to (11). If
(14b) is used, the closed-loop system becomes more complex and
is derived below.

Suppose the drops occur starting at k = k1 + i1. If j = 1 in (14b),
then

x[k+1] = Ax[k]+Bu[k−1] (15)

where B def
= B1 +B2, and from (14b),

u[k−1] = Kx[k−1]. (16)

Therefore, with X [k] = [x[k]T ,x[k−1]T]T , the closed-loop dynam-
ics becomes

X [k+1] =
[

A2 +AB1K +BK AB2K
I 0

]
X [k−1] def

= A(1)
m X [k] (17)

For a general j number of drops, we have that

u[k] = u[k− j] = Kx[k− j].

Therefore the underlying dynamics is given by

X [k+1] =
[

A j+1 +A jB1K +∑
j−1
l=0 AlBK A jB2K

I 0

]
X [k− j]

def
= A(j)

m X [k− j] (18)

It is interesting to note that j = 0 corresponds to the nominal case,
with A(0)

m coinciding with An in (18).
In summary, suppose that starting at k, the signal was dropped

for the next j` instants, and i` instants where it was not dropped,

for ` = 1,2, . . . , p, over N = ∑
p
`=1(i`+ j`+ 1) samples. Let m be

defined as

m def
=

p

∑
`=1

j` n def
=

p

∑
`=1

(i`+1) (19)

Then the evolution of the switched system over a time window
[k,k+N], N = m+n, is given by

X [k+N] = Aip
n A(jp)

m · · ·Ai2
n A(j2)

m Ai1
n A(j1)

m X [k] (20)

We note that (20) is a valid description of the underlying system
for all k ≥ 0 that is subjected to m < m0 drops over N samples.

REMARK 2. We note that in (20), over any interval [k,k+N],
the sequence j1, i1, · · · , jp, ip can vary, with p varying as well, with
the only constraint that m≤ m0 and the i’s such that n = N−m≥
n0.

We analyze the stability of (20) in the next section.

4 Stability of the Switched System with a max-
imum of m0 Drops

We address the stability of (20) in this section using a common
Lyapunov function and the matrix inequality in Lemma 2.

THEOREM 3. System (20) with finite drops m ≤ m0 is stable if
there are n≥ n0 successful signals in any interval of N samples.

PROOF. Noting ‖A1A2‖ ≤ ‖A1‖ · ‖A2‖, we get the following

‖X [k+N]‖ ≤ ‖Aip
n ‖ · ‖A(jp)

m ‖· · ·‖Ai1
n ‖ · ‖A

(j1)
m ‖ · ‖X [k]‖ (21)

The system is stable if j1 6= 0 and
p

∑
`=1

log(
∥∥∥Ai`

n

∥∥∥)+ p

∑
`=1

log(‖A(j`)
m ‖)< 0 (22)

On the other hand, if j1 = 0, the system is stable if

p

∑
`=1

log(
∥∥∥Ai`

n

∥∥∥)+ p−1

∑
`=1

log(‖A(j`)
m ‖)< 0 (23)

Using ‖Ai
n‖ ≤ anλ i

n and ‖A(j)
m ‖ ≤ ‖Ā j‖ ≤ āλ̄ j, it follows that the

system is stable if

p logan +(n− p) logλn +(p−1) log ā+m log λ̄ < 0 (24)

That is, ‖X [k+N]‖ ≤ ‖X [k]‖ if

n≥ m0 log
(
āλ̄
)
+(m0 +1) log(an)

| logλn|
+m0. (25)

Since the above arguments hold for any k and N such that over
[k,k+N], a total of up to m0 signals are dropped and n≥ n0 signals
are not dropped, system (20) is stable.

EXAMPLE 1. To examine the validity of the Theorem 3, we con-
sider the following discrete time plant

A =

[
1 0.4
3 0.3

]
, B1 =

[
0.3
0.3

]
, B2 =

[
0.7
0.7

]
.

A control input as in (14) was used, with K =
[
−0.7195 −0.2157

]
.

With this K, it was found that

An =


0.7842 0.3353 −0.5037 −0.1510
2.7841 0.2353 −0.5037 −0.1510

1 0 0 0
0 1 0 0

 .

Figure 2: Comparing the methods of Example 1.

Condition (24) for stability resulted in the dependence of n on m il-
lustrated in Fig. 2. The red line is found by using (24) to find the re-
quired n after m consecutive dropped signals. The blue dashed line
is derived by computing norms of (21) iteratively until the prod-
uct never becomes larger than 1. The results in Fig. 2 are with
assumption that the packet dropouts in in any interval m+ n+ 1
consist of only up to m messages that occur consecutively. It can
be seen that (24) provides a lower bound for n without the need for
iterative computation of the norms.

5 Stability Conditions with m Drops Using a
Multiple Lyapunov Function Approach

Although Theorem 3 provides an analytical guarantee for stability
of system (20), it is rather restrictive as it uses Lemma 2. Therefore,
in this section, we examine an alternate approach for the stability
of (20) using Multiple Lyapunov Functions. We define Γ

(i j)
mn as

Γ
(i j)
mn

def
= Aip

n A(jp)
m · · ·Ai2

n A(j2)
m Ai1

n A(j1)
m (26)

so that the overall system with m drops and n nominal signals with
m≤ m0 and n≥ n0 can be written as

x[k+1] = Γ
(i j)
mn x[k]. (27)

Note that Γ
(i j)
mn is not constant and varies with the actual sequence

of j1, i1, ..., jp, ip, and p.

ASSUMPTION 4. System (27) with Γ
(i j)
mn as defined in (26) is

stable for any combination of i` and j`, ` = 1, · · · , p, any p, and
m,n given by (19).

We note that the above assumption is not restrictive since according
to Theorem 3, for any m, there exists a large enough n that makes
Γ
(j)
mn stable.
We start with k = ki, and assume without loss of generality that

j1 drops occur starting at ki + 1 (see Fig. 3). System (27) consists
of two modes, the dropped mode, and the stable mode, with the
dropped mode occurs from ki to ki + j1 + 1 and the stable mode
from ki + j1 +1 to ki + i1 + j1 +1. Defining

k2i = k2i−1 + j1 +1 and k2i+1 = k2i +N, i = 1,2, · · · (28)

it follows that the system dynamics is equivalent to the switched
system with two modes{

z[k2i] = A(j1)
m z[k2i−1] (Dropped Mode) (29a)

z[k2i+1] = Aip
n A(jp)

m · · ·Ai2
n A(j2)

m Ai1
n z[k2i] (Stable Mode)(29b)

We now state and prove the stability of the switched system in (29)
in Theorem (5).

Figure 3: Relation between sequence of (28) and ki.

THEOREM 5. The system in (27) is stable if there exist symmet-
ric matrix Pm � 0 and scalar γ such that the following are satisfied:

(1) [−γPm ∗
PmA(j)

m −Pm

]
≺ 0, j = 0, . . . j∗, j∗ ∈ [0,m0] (30)

(2) Γ
(i j)
mn

T
PmΓ

(i j)
mn −Pm ≺ 0, where Γ

(i j)
mn is defined in (26).

PROOF. Theorem 5 is proved by showing that there is an LLF
for both modes (29a) and (29b) satisfying conditions (i) and (ii) in
Theorem 1 (see for example Fig. 4).

Step 1: Dropped mode (29a): We focus on the interval [k2i−1,

k2i−1+N]. Defining Vm[k] = z[k]T Pmz[k], where Pm � 0 satisfies (30),
we obtain that

(A(j1)
m

T
PmA(j1)

m)− γPm ≺ 0 for any j ∈ [0,m0]. (31)

Therefore for h(Vm) = γVm, we obtain that

Vm[k2i+1]≤ h(Vm[k2i−1]) i = 1,2, · · · (32)

Since k2i−1 and k2i+1 are two consecutive instants that the dropped
mode is active, it follows that conditions (i) and (ii) of Theorem 1
are satisfied for the dropped mode.

Step 2: Stable mode (29b): Here, we focus on the interval [k2i,
k2i +N]. It can be seen that over this interval, there are i1 nominal
signals, followed by j2 drops, then i2 nominal signals, and so on
until ip nominal signals ending at k2i+1, followed by the sequence
{ j′1, i

′
1, · · · , j′q, i

′
q} with the property

p

∑
`=2

j`+
q

∑
`=1

j′` ≤ m0. (33)

The underlying dynamics is then given by z[k2i +1] = A(0)
m z[k2i] (34a)

z[k2i+2] = A
i′q
n A

(j′q)
m · · ·A(j′1)

m Aip
n · · ·Ai2

n A(j2)
m Ai1

n z[k1
2i] (34b)

where A(0)
m = An. It therefore follows from (34a) that

Vm[k2i +1]≤ h(Vm[k2i]) (35)

for h(Vm)
def
= Vm. We note that since there are at most m0 drops

from k2i−1 to k2i+1 as well as from k2i to k2i+2, and since (33)
holds (34b) can be written as

z[k2i+2] = Γmnz[k2i], (36)

where Γmn satisfies Assumption 4. Therefore, we obtain from con-
dition (2) of Theorem 5 that

Vm[k2i+2]<Vm[k2i] (37)

We note that conditions (i) and (ii) of Theorem 1 are satisfied for
the stable mode. This proves Theorem 5.

Theorem 5 suggests the following procedure for determining a sta-
ble switching system (27):

V

k1 k1 + j∗ k1 +N

Vn

Vm

Vn

Vm

Figure 4: Multiple Lyapunov Functions: Dashed red lines show the
Lyapunov-Like Function Vm, when the system is in unstable mode, and solid
blue lines show LLF of the stable mode, Vn.

1. Find symmetric positive definite matrix Pm and constant γ

such that the following LMI are satisfied:[−γPm ∗
PmA(j)

m −Pm

]
≺ 0 for j = 0, · · · ,m (38)

2. Evaluate Q(i j)
mn = Γ

(i j)
mn

T
PmΓ

(i j)
mn −Pm for m drops. If Q(i j)

mn is
not negative definite, increase n.

REMARK 3. A less restrictive but computationally more expen-
sive approach than Theorem 5 is to find a common quadratic Lya-
punov function (CQLF) for all possible Γ

(i j)
mn . We note that existence

of such CQLF is guaranteed following Theorem 3.

EXAMPLE 2. We consider the discrete time system of exam-
ple 1. Figure 5 shows the maximum number of drops in the window
of size N using the results of Theorem 5. Figure 6 compares the
results of Theorem 5 with those of Theorem 3, illustrating that the
former are much less restrictive compared to the matrix inequali-
ties in Lemma 2. We note that the difference between the results of
Theorem 3 presented in Fig. 6 and those presented in Fig. 2 come
from the possibility that m drops can occur at any time over an
interval N.

Figure 5: Number of allowed
dropped samples in interval N.

Figure 6: Comparison of Theo-
rem 5 versus Theorem 3.

6 Lane Keeping System
The control task is to keep a vehicle in its lane with radius R (Fig.
7). A one track model of a Ford Taurus was used for this purpose
[25]. Dynamics of the vehicle can be described by [24].

d
dt


e1
ė1
e2
ė2

= Ac


e1
ė1
e2
ė2

+Bcδ +Gψ̇des (39)

where, e1 is the position error, e2 is the yaw angle error, and the
control input δ is the steering angle at the wheels. We assume the
vehicle is traveling on a straight road for which the desired yaw

Figure 7: Vehicle model.

rate ψ̇des = V/R is zero. This continuous time model was dis-
cretized with a sampling period T = 50ms and delay threshold of
τth = 35ms, resulting in

A =


1.0000 0.0447 0.1319 0.0027

0 0.7969 5.0769 0.1425
0 0.0003 0.9932 0.0450
0 0.0102 −0.2538 0.8063



B1 =


0.0403
2.2593
0.0203
1.1344

 , B2 =


0.0407
0.9065
0.0204
0.4415

 .
where A, B1, and B2 are the discrete time delayed matrices as de-
fined in (9). The switching control strategy described in §3 was im-
plemented, with K =−

[
1.6258 0.2695 4.0015 0.0454

]
. Val-

ues m and the corresponding n were computed so that Γmn satisfied
conditions (1) and (2) of Theorem 5. The variations in m with n are
plotted in Fig. 8. These results show that as n and therefore N in-
creases, m changes. This information directly provides guidance to
the platform designer as it indicates the allowable number of drops
over a given time interval.

Figure 9 shows resulting closed-loop system performance of e1
and e2 for the case of N = 6 and m = 1, which illustrates a satisfac-
tory quality of control performance. We note that although MLF
resulted in 17 nominal samples for 1 drop, increasing the window
size revealed that in the window size of 40 samples, the system can
tolerate even the worst case combination of up to 7 drops.

Figure 8: n versus m in the lane
keeping system.

Figure 9: Response of the vehicle
with m = 1 and N = 6.

7 Optimizing Resource via Platform Control
In this section, we describe our approach to optimize platform re-
source while ensuring the stability of the control system designed
in §5. In particular, we will design the platform so that we can guar-
antee an upper bound m0 for the number of drops in any interval of
N samples for which stability is guaranteed as in Theorem 5. We

assume that the system has been partitioned into a set of tasks that
are mapped onto different processing elements (PEs) of a fixed plat-
form architecture (c.f. Fig. 10), which is given a priori. Our goal
is to minimize the amount of resource (expressed in terms of pro-
cessor frequency or communication bandwidth) that the PEs must
provide to ensure the control stability.

As was discussed earlier, samples that arrive at the plant after
a large delay are not useful: if its end-to-end delay is more than
a threshold, τth, it will be dropped by the control algorithm. We
say that a sample is stale if its current delay is more than τth. In the
traditional resource dimensioning, the PEs must provide enough re-
source to ensure there are no stale data. However, such guarantee is
not needed for our design, because our control algorithm allows up
to (any) m0 dropped samples over a sliding window of N samples,
without loosing stability (c.f. Theorem 5).

Our Approach. To optimize the platform resource, we employ a
buffer control mechanism that drops samples as soon as they be-
come stale. The resource dimensioning can then be done by se-
lecting the smallest processor frequencies (network bandwidths)
for the PEs, such that the maximum number of samples that are
dropped by the platform over any N input samples under the above
mechanism satisfies the maximum bound m0 given by the control
design. This can be done in an iterative manner: we start with a
chosen minimum frequency (bandwidth) for each PE and increase
it until the computed drop bound is no more than the bound permit-
ted by the control system.

Before discussing the buffer control mechanism and the drop
bound analysis in detail, we first describe the platform architecture.

7.1 System architecture
Fig. 10 shows a typical platform architecture for the control system.
It consists of multiple PEs connected via FIFO buffers, where each
PE represents a processor (e.g., ECU) or a network (e.g., CAN bus).

System Model

sensor data actuator
data

…

PE1 PE2 PEn

end-to-end delay

β1 β2 βn

T1 T2 Tn

(period T)

buffer

P
abstract PE

task

!
 sensor data

item

actuator data
item

Figure 10: A platform architecture for a control system.

The sensor input data samples, upon arriving at the system, will
be processed by the sequence of control tasks running on the PEs.
The delay from the instant a sample enters the platform until it is
fully processed is called the end-to-end delay. The sensor data are
sampled at a sampling period of T , and all tasks are data-driven.

We assume that the input buffer of each PE is sufficiently large to
avoid buffer overflows.1 The resource available to the control task
at each PEi is modeled by a pair of service functions, βi = (β u

i ,β
l
i),

where β u
i (∆) and β l

i (∆) denote the maximum and minimum num-
ber of samples that can be processed by the PE over any time in-
terval of length ∆ time units, respectively, for all ∆ ≥ 0. These
functions can be computed based on the PE’s operating frequency
(network bandwidth) and the worst-case and best-case execution
demands of each sample [8].

Note that the architecture shown in Fig. 10 shows only the ex-
ecution flow of the control system. In a complete setting (e.g.,
Fig. 14), the system may share the platform resource with other
applications; hence, we first compute the service functions, βi, of
the resource available to the control task at each PE (e.g., using the

1The maximum buffer size can be computed using the method
in [8].

Real-Time Calculus (RTC) technique [8]) and then apply them to
the architecture shown above.

7.2 Buffer control mechanism
Observe that partially processed samples at intermediate PEs may
already become stale, i.e., their delays exceed the threshold τth.
Therefore, it is safe to drop these samples at the intermediate PEs
instead of continuing processing them until they are fully processed.

The buffer control mechanism works during run-time at each
buffer in the system (see Fig. 11) as follows. When sensor sam-
ples enter the first PE, we record their arrival times and use these
timestamps to determine their current delays. When a sample ar-
rives at or while waiting in a buffer, if its current delay is more than
or equal to the threshold τth, it will be dropped from the buffer.

System Model

sensor data actuator
data

…

PE1 PE2 PEn

end-to-end delay

T1 T2 Tn

(period T) data
drop

data
drop

data
drop shaper

sensor-to-actuator delay = !th

data
drop

β1 β2 βn

Figure 11: Buffer control mechanism for the platform.

Recall that our control algorithm assumes a delay of τth for non-
drop samples; to enforce this, we implement a shaper at the last
PE to shape the output samples (see Fig. 11). This shaper reads
the fully processed samples, and it holds every sample for exactly
τth−d time units before sending to the actuator, where d is the end-
to-end delay of the sample.2 Thus, the sensor-to-actuator delay of
each sample is always τth.

The use of buffer mechanism helps improve the resource use ef-
ficiency in two ways. First, since some dropped stale samples are
permissible, the amount of computation (bandwidth) resource re-
quired by the control system is less than that is required to guaran-
tee that the absence of stale data. Second, the amount of resource
needed to further process these stale samples can now be saved or
used to process other applications.

We note that our choice of the buffer control mechanism is based
on its run-time efficiency. However, our analysis can be extended
to consider more complex mechanisms, such as one that drops a
sample if the sample is predicted to be stale. We assume that
the resource overhead required for the buffer control mechanism
is negligible (or has already been accounted for when computing
the service functions βi).

7.3 Drop bound analysis under buffer control
We now present a method for computing the maximum number
of samples that are dropped under the proposed buffer mechanism
(see Fig. 11). Specifically, for any given N ≥ 1, we will compute
m, the maximum number of samples that are dropped over a sliding
window of N consecutive input samples.

We first recall the minimum convolution operator and an existing
result from [5]. Let f ,g ∈ R→ R. The minimum convolution of f
and g, denoted by f ⊗g, is given by

(f ⊗g)(∆) = inf
0≤δ≤∆

{
f (δ)+g(∆−δ)

}
, ∀ ∆≥ 0.

THEOREM 6. Consider a data stream being processed by a plat-
form that consists of a sequence of n PEs, where each PEi offers a
pair of service functions, βi = (β u

i ,β
l
i), to the stream. Then, the

overall resource given by the platform to the stream is given by a
pair of service functions, β = (β u,β l), where β u = β u

1 ⊗β u
2 ⊗·· ·⊗

β u
n and β l = β l

1⊗β l
2⊗·· ·⊗β l

n.
2Since the buffers implement data drop mechanism, d ≤ τth.

Based on the above result, we will transform the original plat-
form (see Fig. 11) into an equivalent new platform consisting of a
single PE, which offers a pair of service functions equal to β (c.f.
Theorem 6). As is shown in Fig. 12, this platform employs the
proposed buffer control mechanism, where the buffers of the PE
implement the data drop mechanism and the output data are passed
through a shaper before being sent to the actuator (c.f. §7.2). Since
the transformed platform offers the same amount of resource to the
sensor data stream and it uses the same data drop mechanism as the
original platform does, the maximum number of samples that are
dropped and the maximum end-to-end delay of samples that are not
dropped in both systems are the same.

T

PE

!

sensor
data item

actuator
 data item

task

data
drop

data
drop shaper

 T

end-to-end delay

sensor-to-actuator delay = !th

Figure 12: The transformed system that is used for the analysis.

From the above observation, we can compute the drop bound
by analyzing the transformed system shown in Fig. 12. Since the
shaper does not drop any samples, we only need to consider the
parts of the system before the shaper. Without loss of generality,
we assume β u is sub-additive and β l is super-additive.3 We first
verify a special case in which no samples are dropped, i.e., m = 0.

LEMMA 7. No samples are dropped by the system iff

∀∆≥ 0, α
u(∆)≤ β

l(∆+ τth), (40)

where αu(∆) = d∆/Te for all ∆≥ 0.

PROOF. Since input samples arrive at the system every T time
units, the maximum number of samples that arrive over any inter-
val of length ∆ is αu(∆) = d∆/Te, for all ∆ ≥ 0. In addition, the
minimum number of samples that can be processed by the PE over
any interval of length ∆ is β l(∆). From [8], the maximum delay
experienced by the input samples is given by

d = sup
{

inf
{

δ | δ ≥ 0 ∧ α
u(∆)≤ β

l(∆+δ)
}
| ∆≥ 0

}
.

Hence, d ≤ τth iff (40) holds. In other words, no samples are
dropped iff (40) holds. This proves the lemma.

We next outline the analysis for the general case, where m > 0.
We denote by ei the ith input sensor sample for all i≥ 1, and by

e0 a dummy initial data sample that has a worst-case execution de-
mand of 0 (hence it will not be dropped). Further, drop(S) denotes
the number of samples in S that are dropped, where S is any set of
consecutive input samples. Lemma 8 identifies a characteristic of
the N samples with the highest number of samples being dropped.

LEMMA 8. Suppose S is a set with the highest number of dropped
samples among all sets of N consecutive input samples. Then,
there exists a set S∗ of N consecutive samples such that drop(S∗) =
drop(S), where (i) the first sample of S∗ is dropped, and (ii) the
sample immediately before the first sample of S∗ (if any) is not
dropped.

PROOF. Suppose S = [ek ek+1 · · · ek+N−1], where k ≥ 1. If S
satisfies the conditions (i) and (ii), then the lemma trivially holds.
Otherwise, there are two cases:
3A function f is sub-additive iff f (∆)≤ f (δ)+ f (∆−δ) for all 0≤
δ ≤ ∆. By contrast, f is super-additive iff f (∆)≥ f (δ)+ f (∆−δ)
for all 0≤ δ ≤ ∆.

Case 1: ek is not dropped. Then, there exists a subsequent sam-
ple in S that is dropped (since drop(S) > 0). Let ek+ j be the first
sample in S that is dropped, where 1≤ j≤N−1. Then, all the sam-
ples from ek to ek+ j−1 are not dropped. This implies drop(S1) = 0,
where S1 = [ek · · · ek+ j−1]. Let S∗ = [ek+ j · · · ek+N−1+ j]; S2 =
[ek+ j · · · ek+N−1]; and S3 = [ek+N · · · ek+N−1+ j]. Then, S = S1 ∪
S2 and S∗ = S2 ∪ S3. Thus, drop(S∗) = drop(S2) + drop(S3) ≥
drop(S2) = drop(S2)+ drop(S1) = drop(S). By the definition of
S, we imply drop(S∗) = drop(S). Further, by construction, S∗ sat-
isfies both conditions (i) and (ii).

Case 2: Both ek and ek−1 are dropped, and k > 1. Let ek− j−1
be the last sample before ek that is not dropped, where 1 ≤ j ≤
k− 2, or j = k− 1 if no such sample exists. Define S∗ = [ek− j
· · · ek− j+N−1]. Based on a similar argument as above, we can de-
rive drop(S∗)≥ drop(S), and thus drop(S∗)≥ drop(S).

Since S∗ exists in both cases, the lemma holds.

Based on Lemma 8, we only need to consider sets of N consec-
utive samples that begin with a sample that will be dropped and
that immediately follow a sample that will not be dropped. Let
S = [ek ek+1 · · · ek+N−1], where k ≥ 1, be any such set. Fig. 13 il-
lustrates the arrival and drop patterns of the samples in S for the
two cases, τth ≤ T and τth > T .

Ik+3 Ik+2

time

T K k+1 k+2 k+3 k+4

 T

tk tk+1 tk+2 tk+3

✗
Ik Ik+1

τth

(a) Critical intervals when τth ≤ T .

time

T

τth

k k+1 k+2 k+3 k+4

T

tk tk+1 tk+2 tk+3

✗
Ik+1 Ik+2 Ik+3 Ik

(b) Critical intervals when τth > T .

Figure 13: The arrival and drop patterns of the samples in S.

In the figure, each up-arrow labeled by k+ j represents the ar-
rival of the input sample ek+ j, for all j ≥ 0. Each down-arrow at
time tk+ j represents the latest instant by which ek+ j must be fully
processed, which is also the instant when ek+ j is dropped if it has
not yet been fully processed. Observe also that ek is dropped at tk,
i.e., exactly τth time units after its arrival. Each following sample,
ek+ j , will be dropped at time tk+ j, if it has not been fully processed
by the time instant tk+ j, where tk+ j = tk+ j−1 +T for all j ≥ 1.
Definitions. For each sample ei, the time interval over which either
ei must be fully processed or it will be dropped at the end of the
interval is called the critical interval of ei, denoted by Ii. As is
shown in Fig. 13, Ii = (ti − τth, ti], if τth ≤ T , and Ii = (ti, ti+1],
otherwise.

A service pattern of the PE is captured by an accumulative func-
tion C(t), where C(t) gives the number of samples that can be pro-
cessed by the PE over the time interval (0, t]. By definition, we
imply that C(t) is a valid service pattern of the PE iff ∀ t ≥ 0,∀∆≥
0, β l(∆)≤C(t +∆)−C(t)≤ β u(∆).

Under a valid service pattern C(t) of the PE, the total number
of samples that can be processed over the critical interval Ii is then
Ci =C(ti)−C(ti−τth). We call Ii a zero-service interval under this
service pattern iff Ci = 0.

LEMMA 9. Given any service pattern C(t) of the PE. Let s be
the number of zero-service intervals in N critical intervals from
Ik to Ik+N−1 (see Fig. 13) under the service pattern C(t). Then,
drop(S) = s, if τth ≤ T , and drop(S)≤ s, otherwise.

PROOF. Case τth ≤ T : As is shown in Fig. 13(a), each sample
ei (i ≥ k) arrives at the beginning of Ii and must be processed by
the end of Ik so as not to be dropped. Further, the last sample
before ei has either been finished or dropped at time ti−1, i.e., before
Ii begins. Thus, the resource given to ei is exactly the resource

available over the interval Ii. Hence, ei is dropped iff the number
of samples that can be processed over Ii is zero, i.e., Ii is a zero-
service interval under the service pattern C(t). Hence, the number
of dropped samples in S is the number of zero-service intervals.

Case τth > T : First, since ek is dropped at the end of Ik, the
number of samples that can be processed over the interval Ik is
zero. Thus, Ik is a zero-service interval under C(t).

Next, observe that if a critical interval is not a zero-service inter-
val, then no samples are dropped over the interval. This is because
at most one sample is required to be fully processed over each l Ii
(since only ei is required to finish by the end of Ii but this sample
may have been finished before Ii begins).

Further, any sample ei−1, with i > k, is either finished or dropped
before Ii begins. Hence, all the resource available over Ii will be
given to ei first and only the remaining resource (if any) is given
to the subsequent samples. As a result, ei is dropped only if the
number of samples that can be processed by the PE over Ii is zero,
or in other words, Ik+ j is a zero-service interval under C(t).

From the above, the number of samples in S\{ek} that are dropped
is no more than the number of zero-service intervals from Ik+1 to
Ik+N−1 under the service pattern C(t). Since ek is dropped and Ik is
a zero-service interval, the number of samples in S that are dropped
is no more than the number of zero-service intervals from Ik to
Ik+N−1 under the given service pattern. This proves the lemma.

Based on the above lemma, we can compute an upper bound on
the number of dropped samples in S by first constructing a worst-
case service pattern, Ĉ(t), that results in the maximum number of
zero-service intervals; the maximum bound m is the number of zero
service intervals in N consecutive intervals of Ĉ(t). The idea is to
have the PE provide resource over as minimal critical intervals as
possible without violating its lower service function β l , and within
each such interval provide as much resource as possible without vi-
olating the upper service function β u. This service pattern confirms
to β while resulting in minimum zero-service intervals.

The next lemma gives a formula for a worst-case service pattern
Ĉ(t) of the PE for the case τth ≤ T . A worst-case service pattern for
the case τth > T can be constructed in a similar manner; we omit
this case due to space constraints.

LEMMA 10. Suppose τth ≤ T . Let Ĉ(t) be a service pattern
such that Ĉ(0) = 0 and for all i ∈ N:

• For all 0 < δ ≤ τth,

Ĉ(iT +δ) =

{
Ĉ(iT), if Ĉ(iT)≥ β l(iT + τth);
min
{

β u(iT +δ),Ĉ(iT)+β u(δ)
}
,otherwise.

• For all τth < δ ≤ T ,

Ĉ(iT +δ) = min
{

β
u(iT +δ),Ĉ(iT + τth)+β

u(δ − τth)
}
.

Then, Ĉ is a worst-case service pattern of the PE, i.e., Ĉ results in
the maximum number of dropped samples over any N consecutive
samples, for any N ≥ 1. Further, the number of zero-service inter-
vals of Ĉ(t) for any given N is ∑

N
i=1
{

1 | Ĉ(iT)≥ β l(iT + τth)
}

.

PROOF SKETCH. Consider the zero-offset arrival pattern of the
input data stream, i.e., each sample ei arrives at the time instant
(i− 1)T , for all i ≥ 1. Then, Ii = (iT, iT + τth] is the critical in-
terval of ei, during which ei must be fully processed so as not to
be dropped. Further, I′i = (iT + τth,(i + 1)T] is an interval dur-
ing which the buffer is always empty, because at the time instant
iT +τth, either ei has already been fully processed or ei is dropped.

Hence, the amount of resource that is available for the critical in-
tervals is minimum if the amount of resource allocated to all the I′i
is maximum.

Further, recall that the upper service function β u is sub-additive
and the lower service function β I is super-additive. Hence, we im-
ply from the construction of Ĉ(t) that for each critical interval Ii, ei-
ther (1) Ii is a zero-service interval, if providing no resource during
this interval does not violate the lower service function β l , or (2)
the maximum amount of resource permissible by the upper service
function β u is allocated to Ii, otherwise. In addition, the amount
of resource provided to all the intervals I′i according to Ĉ(t) is the
maximum amount that is permissible by β u during these intervals,
and this amount of resource is wasted (since the buffer is always
empty during these intervals).

Based on the above, we can derive that Ĉ(t) results in the max-
imum number of zero-service intervals for the zero-offset arrival
pattern. In addition, it can be shown that the zero-offset arrival pat-
tern is a pattern that incurs the highest number of samples being
dropped among all the arrival patterns of the input data stream, for
all N ≥ 1. Also, the formula for computing the number of zero-
service intervals of Ĉ(t) can be derived directly from the construc-
tion of Ĉ(t). This proves the lemma. Due to space constraints, we
omit the details.

The next corollary follows directly from the above lemma.

COROLLARY 11. Suppose τth ≤ T . The maximum number of
samples that are dropped over any N consecutive samples, for any
N ≥ 1, is the number of zero-service intervals of Ĉ(t) for the given
N (defined in Lemma 10).

Finally, as a result of Lemma 9, the drop bound given by Corol-
lary 11 is a tight bound.

8 Case Study
This section presents a case study of the lane keeping system in §6
to demonstrate the utility of our co-design method and its benefits
iagainst a baseline method (which is described in §8.1).

8.1 Experimental setup

T1 , T2 : control tasks
 m1 : control message

CAN Bus

T1

T3

Fixed Priority

T2
T4

Fixed Priority
sensor actuator

Tn T5

Earliest Deadline First

ECU1 ECU2

ECU3

m1

…

… m2 m3 m4

Figure 14: System architecture for the lane keeping system.

Fig. 14 shows a lane keeping system that is mapped onto a CAN
architecture. Each sensor value that arrives from the sensor cluster
is first processed by the control task T1 on ECU1. The processed
slip value is then sent to ECU2 via the message m1. Upon arriv-
ing at ECU2, the slip value is used by T2 to compute the steering
angle, which is required by the wheel brake actuator for the wheel
steering thus keeping the vehicle in lane. In addition, the platform
also executes other applications (tasks T3 to Tn, and messages mi,
i≥ 2).

In our evaluation, the sampling period of the input sensor data is
T = 50ms. ECU1 and ECU2 employ the preemptive fixed-priority

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

Baseline
Co-design

(a) ECU2 frequency = 30 MHz

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

Baseline
Co-design

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

(b) ECU2 frequency = 60 MHz

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

Baseline
Co-design

E
C

U
1

 p
ro

ce
ss

o
r

fr
e

q
u

e
n

cy
 (

M
H

z)

Delay threshold (ms)

(c) ECU2 frequency = 90 MHz

Figure 15: ECU1 processor frequency for different delay thresholds.

Co-design

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

Baseline

CAN Bus: 125 kBits /sec

(a) Low speed bus (125 kBits/s)

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

Baseline

Co-design

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

CAN Bus: 250kBits /sec

(b) Medium speed bus (250 kBits/s)

20

15

10

 5

10 20 30 40 50 60 70 80 90 100

Co-design

40

35

30

25

45

50

ECU2 processor frequency (MHz)

D
e

la
y

 t
h

re
sh

o
ld

 (
m

s)

Baseline

CAN Bus: 500kBits /sec

(c) High speed bus (500 kBits/s)

Figure 16: ECU1 design feasibility regions with respect to different bus speed values.

(FP) scheduling policy, where T3 (resp. T4) has a higher-priority
than that of T1 (resp. T2). The message m1 shares the bus with other
higher-priority messages under the non-preemptive FP scheduling.
We assumed a fixed frame length for every CAN frame in the sys-
tem and a fixed frequency for ECU3.

Given the above setting, we applied our control design algorithm
to compute the drop bound that the lane keeping system can ac-
commodate. For the platform analysis, we used the RTC analysis
methods [8,10] to compute the service functions, βT1 , βT2 , βm1 , that
capture the resource available to T1, T2, and m1, respectively. These
values were used as inputs to our method and the baseline method.

Our evaluation focuses on the minimum frequency that ECU1
must operate at to guarantee the control quality of the lane keeping
system. For this, we considered different frequencies of ECU2 and
different bus speed values. For each frequency of ECU2, we var-
ied the delay threshold τth within the feasible control design range
(τth ≤ T = 50ms) and determined the minimum frequency of ECU1
to ensure the control quality under the considered threshold delay.

Our method selects the frequency using the approach in §7. The
baseline method does not employ buffer control, and it selects the
smallest processor frequency such that the maximum end-to-end
delay of the sensor data, computed using the conventional RTC
analysis [8], is no more than the delay threshold τth.

8.2 Evaluation results
Resource savings. Fig. 15 shows the minimum frequency of ECU1
computed using the two methods for three different frequencies of
ECU2 (30MHz, 60MHz, and 90MHz) and a medium-speed CAN
bus (250 kBits/s). We observe that the co-design method consis-
tently outperforms the baseline method. For example, compared
to the baseline method, our method reduces the frequency by 50%
when τth = 35ms, and it improves over 4 times when τth = 50ms.

Further, when the delay threshold falls within the shaded area, no
solutions exist under the baseline method, whereas it is possible to
design ECU1 using our co-design. For instance, when τth = 20ms
and ECU2 operates at 30MHz, a frequency of 30MHz for ECU1
is sufficient to guarantee the control quality using the co-design
method. On the contrary, the baseline method requires an infinite-
valued frequency (hence, not shown in the figures), which is infea-
sible.

Impact of delay threshold. It can be observed from Fig. 15 that
smaller threshold values require higher processor frequencies. This
is expected because the resource demands of the control tasks in-
crease as the threshold decreases. Since smaller delay threshold
typically results in better control quality, the obtained results can
be used to find a threshold value that balances the tradeoff between
control quality and platform resource.

Design space exploration. The obtained results also help guide the
platform design exploration. For instance, for a 15ms delay thresh-
old, ECU1 requires an unbounded frequency under both methods if
ECU2 operates at 30MHz, based on the results shown in Fig. 15(a).
Then, a feasible solution only exists if we increase the frequency of
ECU2 or the bus bandwidth. This is validated by the results in
Fig. 15(b): when the frequency of ECU2 is increased to 60 MHz,
a minimum of 40MHz for ECU1 becomes sufficient to meet the
control objective under the co-design method. Note, however, that
under the baseline method, we need to increase the frequency of
ECU2 further, since the computed frequency for ECU1 is still un-
bounded.

Fig. 16 illustrates the feasibility design regions for ECU1 under
three different bus speeds: low (125 kBits/s), medium (250 kBits/s)
and high (500 kBits/s). The areas under the baseline and co-design
curves in each figure correspond to the regions for which a feasi-

ble frequency exists for ECU1 under our co-design method and the
baseline method, respectively. We observe that as the frequency of
ECU2 increases, the feasible range of the delay threshold is also
widen, enabling smaller delay thresholds and thus better control
quality. Similarly, as the bus data rate increases, the feasible region
is also enlarged for both methods. This is expected, since the bus
bandwidth is the constraint factor of these feasible regions. These
feasible regions can be used to optimize the platform resource un-
der a given resource constraint.

We also observe from Fig. 16 that the feasible region of the base-
line method consistently falls strictly inside that of the co-design
method. Further, when ECU2 operates at 10 MHz, no solution ex-
ists for the baseline method, regardless of the threshold delay and
bus speed values. Thus, our co-design method not only enables re-
source savings but also provides more flexibility for the platform
design.

9 Conclusion
We have presented a control and platform co-design method for
cyber-physical systems, which allows dropped samples to optimize
resource while guaranteeing the control quality. We have developed
a dynamic model including delay and analyzed its stability switch-
ing theory criteria. First using matrix inequalities, an upper bound
for the maximum number of packet dropouts in any interval was
derived to guarantee stability. Then a more practical approach us-
ing a multiple Lyapunov functions was developed and proved. The
latter allowed more freedom in the platform design. A buffer con-
trol mechanism was introduced that utilizes the control design ca-
pability in accommodating dropped samples to reduce the resource
requirements of the system. We have also presented a technique
for computing the drop bounds under the proposed mechanism,
and demonstrated how they can be used for dimensioning the plat-
form resource. Our evaluation results of a lane keeping control
system case study shows that our co-design method not only helps
improves the resource use efficiency by an order of magnitude but
also enables design solutions that are infeasible under the conven-
tional baseline design approach.

10 References
[1] A. Annaswamy, S. Chakraborty, D. Soudbakhsh,

D. Goswami, and H. Voit. The arbitrated networked control
systems approach to designing cyber-physical systems. In
NecSys, 2012.

[2] A. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami,
and S. Chakraborty. Arbitrated network control systems: A
co-design of control and platform for cyber-physical
systems. In Workshop on Control of Cyber Physical Systems,
2013 (submitted).

[3] K. J. Aström and B. Wittenmark. Computer-controlled
systems (3rd ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1997.

[4] G. Berry and G. Gonthier. The esterel synchronous
programming language: design, semantics, implementation.
Science of Computer Programming, 19(2):87 – 152, 1992.

[5] J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet. Springer,
2001.

[6] M. S. Branicky. Multiple Lyapunov functions and other
analysis tools for switched and hybrid systems. IEEE
Transactions on Automatic Control, 43(4):475 – 482, 1998.

[7] A. Cervin and J. Eker. The control server: a computational
model for real-time control tasks. In ECRTS, 2003.

[8] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-based
embedded system designs. In DATE, 2003.

[9] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson.
Perspectives and results on the stability and stabilizability of
hybrid systems. Proceedings of the IEEE, 88(7):1069–1082,
2000.

[10] W. Haid and L. Thiele. Complex task activation schemes in
system level performance analysis. In CODES+ISSS, 2007.

[11] M. Hamdaoui and P. Ramanathan. A dynamic priority
assignment technique for streams with (m, k)-firm deadlines.
Computers, IEEE Transactions on, 44(12):1443–1451, 1995.

[12] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: a
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84 – 99, jan 2003.

[13] J. Hespanha and A. Morse. Stability of switched systems
with average dwell-time. In CDC, 1999.

[14] J. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent
results in networked control systems. Proceedings of the
IEEE, 95(1):138–162, 2007.

[15] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy,
K. Lampka, and L. Thiele. A hybrid approach to
cyber-physical systems verification. In DAC, 2012.

[16] M. Lemmon and X. S. Hu. Almost sure stability of
networked control systems under exponentially bounded
bursts of dropouts. In HSCC, 2011.

[17] Q. Ling and M. Lemmon. Robust performance of soft
real-time networked control systems with data dropouts. In
CDC, 2002.

[18] O. Mason and R. Shorten. On common quadratic Lyapunov
functions for stable discrete-time LTI systems. IMA Journal
of Applied Mathematics, 69(3):271–283, 2004.

[19] P. Naghshtabrizi and J. Hespanha. Analysis of distributed
control systems with shared communication and computation
resources. In ACC, 2009.

[20] E. Poggi, Y. Song, A. Koubaa, Z. Wang, et al. Matrix-dbp for
(m, k)-firm real-time guarantee. RTSS, 2003.

[21] G. Quan and X. Hu. Enhanced fixed-priority scheduling with
(m, k)-firm guarantee. In RTSS, 2000.

[22] P. Ramanathan. Overload management in real-time control
applications using (m, k)-firm guarantee. IEEE Transactions
on Parallel and Distributed Systems, 10(6):549–559, 1999.

[23] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated
scheduling and synthesis of control applications on
distributed embedded systems. In DATE, 2009.

[24] D. Soudbakhsh and A. Eskandarian. Vehicle lateral and
steering control. In A. Eskandarian, editor, Handbook of
Intelligent Vehicles, pages 209–232. Springer London, 2012.

[25] D. Soudbakhsh, A. Eskandarian, and D. Chichka. Vehicle
collision avoidance maneuvers with limited lateral
acceleration using optimal trajectory control. ASME Journal
of Dynamic Systems, Measurement, and Control, In Press,
2013.

[26] P. Tabuada. Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Transactions on Automatic
Control, 52(9):1680 –1685, sept. 2007.

[27] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and
S. Chakraborty. Optimizing hierarchical schedules for
improved control performance. In SIES, 2010.

[28] W. Wolf. Cyber-physical systems. Computer, 42(3):88 –89,
march 2009.

[29] F. Xia and Y. Sun. Control-scheduling codesign: A
perspective on integrating control and computing. Dynamics
of Continuous, Discrete and Impulsive Systems - Series B,
13(S1):1352–1358, 2006.

[30] M. Yu, L. Wang, T. Chu, and G. Xie. Stabilization of
networked control systems with data packet dropout and
network delays via switching system approach. In CDC,
2004.

[31] W. Zhang, M. Branicky, and S. Phillips. Stability of
networked control systems. IEEE Control Systems,
21(1):84–99, 2001.

[32] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler.
Execution strategies for ptides, a programming model for
distributed embedded systems. RTAS, 2009.

