
Partitioned Scheduling of Multi-Modal Mixed-Criticality
Real-Time Systems on Multiprocessor Platforms

Dionisio de Niz
SEI, Carnegie Mellon University

Linh T.X. Phan
University of Pennsylvania

Abstract—Real-time systems are becoming increasingly com-
plex. A modern car, for example, requires a multitude of control
tasks, such as braking, active suspension, and collision avoidance.
These tasks not only exhibit different degrees of safety criticality
but also change their criticalities as the driving mode changes.
For instance, the suspension task is a critical part of the stability
of the car at high speed, but it is only a comfort feature at low
speed. Therefore, it is crucial to ensure timing guarantees for
the system with respect to the tasks’ criticalities, not only within
each mode but also during mode changes.

This paper presents a partitioned multi-processor scheduling
scheme for multi-modal mixed-criticality real-time systems. Our
scheme consists of a packing algorithm and a scheduling al-
gorithm for each processor that take into account both mode
changes and criticalities. The packing algorithm maximizes
the schedulable utilization across modes using the sustained
criticality of each task, which captures the overall criticality
of the task across modes. The scheduling algorithm combines
Rate-Monotonic scheduling with a mode transition enforcement
mechanism that relies on the transitional zero-slack instants of
tasks to control low-criticality tasks during mode changes, so
as to preserve the schedulability of high-criticality tasks. We
also present an implementation of our scheduler in the Linux
operating system, as well as an experimental evaluation to
illustrate its practicality. Our evaluation shows that our scheme
can provide close to twice as much tolerance to overloads
(ductility) compared to a mode-agnostic scheme.

I. INTRODUCTION

Today, it is common to structure the verification of real-
time systems based on layers of features of different safety-
criticality levels. For instance, the automotive certification
standard ISO 26262 [15] identifies four criticality layers (A-
D) according to the safety criticality of the features. These
layers are characteristics of systems known as mixed-criticality
systems, in which higher-criticality tasks must be given higher
levels of assurance than lower-criticality tasks. At the same
time, modern real-time systems are becoming increasingly
adaptive. A modern car, for example, needs to adapt its
driving mode depending on the environmental conditions, and
each mode transition may require activations of new tasks,
deactivations of existing tasks, or changes of the criticalities of
other tasks. This increase in safety requirements and adaptivity
in real-time systems introduces a new research question: How
to ensure timing guarantees of tasks with respect to their
criticalities – not only in each mode, but also during each
mode transition?

There exists a rich literature on mixed-criticality scheduling
(e.g., [3], [4], [8], [18], [19], [23]) and multi-mode analysis
(see [32] for a survey) for real-time systems. However, to
the best of our knowledge, existing work does not consider
mixed-criticality and multi-mode simultaneously. This paper

aims to bridge this gap by considering the scheduling of
mixed-criticality tasks in multi-modal systems. We use an
automotive example that we defined out of features and
driving modes present in today’s sport vehicles (e.g. active
suspension) and real concerns from autonomous driving
researchers (e.g. pedestrian detection).

Motivating example. Consider an automotive system that ex-
ecutes four tasks on a two-processor platform: τp (pedestrian-
detection), τs (suspension-control), τb (blind-spot warning),
and τa (air-conditioner control). The system operates in three
modes,

〈
Street,Highway, IsolatedHOV1

〉
, and the respective

criticalities of each task in these modes are as follows:
τp :

〈
High, Low, Medium

〉
; τs :

〈
Low, High, High

〉
;

τb :
〈
High, High, Low

〉
; τa :

〈
Low, Low, Low

〉
.

In the above system, the criticality of a task—and hence
the criticality order between tasks—changes when the system
changes its mode. This can lead to conflicting schedulabil-
ity requirements during a mode transition. For instance, τp
has higher criticality than τs in the Street mode but lower
criticality than τs in the Highway mode; therefore, ensuring
the schedulability of τp is more important in the Street
mode, whereas guaranteeing the schedulability of τs is more
critical in the Highway mode. This conflict in the schedul-
ing requirements introduces a new challenge: to achieve the
schedulability of τp in the Street mode, it is necessary to
delay or stop τs during overloads, but this may make τs
unschedulable in the Highway mode, if the system enters the
Highway mode after τs has been delayed for too long.

Another challenge is how to determine a good partitioning
strategy that can protect high-criticality tasks from missing
their deadlines during overloads. One promising approach is
to pack tasks that exhibit a mix of high and low criticalities
into each processor [19] to enable overbooking2. However,
in multi-modal systems, a packing that is desirable (i.e., that
enables overbooking) in one mode may become undesirable
in another mode, and this change happens dynamically as the
system executes in a sequence of modes.

We demonstrate the above behavior using the two packings
in Table I. In the table, tasks within each pair of braces
are assigned to the same processor and their criticalities for
each mode are shown in the corresponding mode column.
It can be observed that P1 has a good mix of high and low
criticalities in the Street mode, but it has a poor criticality mix

1In the IsolatedHOV mode, the vehicle travels in an isolated lane, where
no passing is possible.

2Overbooking is the scheme that uses the scheduled execution budget of
a higher-critical task in excess of its nominal execution time (i.e., execution
time under overloads) to schedule lower-criticality tasks.

Packing Mode’s Criticality Mix
Street Highway IsolatedHOV

P1 =
〈
{τs, τb}, {Low, High}, {High, High}, {High, Low},
{τt, τa}

〉
{High, Low} {Low, Low} {Medium, Low}

P2 =
〈
{τs, τt}, {Low, High}, {High, Low}, {High, Medium},
{τb, τa}

〉
{High, Low} {High, Low} {Low, Low}

TABLE I
MULTI-MODE MIXED-CRITICALITY PACKINGS

({High, High}; {Low, Low}) in the Highway mode. Further,
although P1 becomes undesirable when the system switches
to the Highway mode, it has a good criticality mix again
({High, Low}; {Medium, Low}) when the system enters the
IsolatedHOV mode. In contrast, P2 has a good criticality mix
in both Street and Highway modes, but its criticality mix
is worse than that of P1 in the IsolatedHOV mode ({High,
Medium}; {Low, Low}) because the overloading of τs makes
the medium-criticality task τt miss its deadline instead of a
low-criticality task, as it happens in P1.
Contributions. This paper makes the following contributions:
• We present a multi-modal task-to-processor packing al-

gorithm that maximizes the schedulable utilization across
all modes. (Section VI)

• We introduce the concept of transitional zero-slack in-
stant that enables a mixed-criticality analysis during
mode changes, and we describe a method for computing
these instants. (Section III-B)

• We present a mode transition enforcement scheme based
on transitional zero-slack instants that ensures the absence
of criticality violations. (Section IV)

• We present an implementation of our technique on the
Linux OS, along with an experiment illustrating its prac-
ticality. (Section V)

Our evaluation on synthetic workloads shows that our schedul-
ing scheme can save up to half the number of processors, and
provides much better protection to high-criticality tasks during
overloads compared to a mode-agnostic scheme. (Section VII)

II. PROBLEM FORMULATION AND APPROACH OVERVIEW

A. System model and problem statement

A multi-modal mixed-criticality system is defined as

S def
= (Γ,P,M,Π),

where Γ is the set of tasks, P is the set of processors, M
is the set of modes, and Π ⊆ M ×M is the set of mode
transitions of the system. Each mode m ∈ M is associated
with a set of tasks Γm ⊆ Γ that are active in mode m.

Each task τi ∈ Γ is a periodic task, defined by τi
def
=

(Ci, C
o
i , Ti, Di, ζi), where Ci, Coi , Ti, and Di are the nominal

execution time, overload execution time, period, and relative
deadline of τi, respectively. In addition, ζi

def
= {ζmi | m ∈

M ∧ τi ∈ Γm}, where ζmi is the criticality of τi in mode
m, for all modes m in which τi is active. Unlike tasks, jobs
have fixed criticalities: the criticality of a job τi,k of τi is
the criticality of τi with respect to the mode in which τi,k is
released.

Categorization of tasks. A task τi is called an old task of
a mode transition (s, t) ∈ Π iff τi ∈ Γs \ Γt, a new task iff
τi ∈ Γt \ Γs, and a persistent task iff τi ∈ Γs ∩ Γt. Since
the criticality of a persistent task τi may change across the
transition, we view it as being made of two separate tasks,
τsi and τ ti , with the same timing parameters (Ci, Coi , Di, Ti)
but different criticality: τsi has criticality ζsi and its jobs are
released in s but not in t, and τ ti has criticality ζti and its
jobs are released in t but not in s. We call the former an
old-persistent task and the latter a new-persistent task of (s, t).

Mode change semantics. Each transition (s, t) ∈ Π is
associated with a mode change request (MCR) that triggers
the system to change its current mode from s to t. We assume
immediate mode change semantics for new tasks: as soon as
the MCR of (s, t) arrives, all new tasks of the transition release
their first jobs. In contrast, the first job of each new-persistent
task τ ti of (s, t) is released exactly Ti time units from the
last release of its corresponding old-persistent task τsi prior
to the MCR. Further, old and old-persistent tasks have no
new releases, and jobs that have been released but not yet
completed will continue to be executed after the mode change.

We assume that MCRs may arrive at any time; however,
consecutive MCRs are separated enough so that they do not
interfere with each other (which is a common assumption in
existing multi-mode work [32]). Mode transitions are non-
deterministic: if multiple transitions are enabled at the same
time, the system non-deterministically selects one.
Criticality violation. A criticality violation is said to occur
when lower-criticality jobs prevent a higher-criticality job from
meeting its deadline3; during a mode transition, this applies to
only lower-criticality jobs that are (still) active after the MCR.
Avoiding criticality violations, both within each mode and
during mode changes, is crucial to ensure timing guarantees
for higher-criticality jobs.
Objectives. Our goal is to design a scheduling scheme for
multi-modal mixed-criticality systems that can maximize the
schedulable utilization4 while ensuring the absence of crit-
icality violations. This goal is driven by the strict ranking
requirement of criticality: it is more important to guarantee
the schedulability of a higher-criticality job than to guarantee
the schedulability of all of its lower-criticality jobs. (As usual,
a job is schedulable if its deadline is met, regardless of mode
changes.) In this paper, we focus on implicit deadline tasks
(i.e., Di = Ti) for simplicity of discussion; however, our
method can easily be extended to explicit deadline tasks.

B. Overview of our approach

Our multi-modal mixed-criticality multiprocessor scheduling
scheme consists of (i) a mixed-criticality scheduling algorithm
that schedules tasks on each processor, and (ii) a multi-modal

3This can be caused by a criticality inversion, which is said to occur when
a lower-criticality job prevents a higher-criticality job from executing.

4Schedulable utilization is defined as the maximum utilization under which
an algorithm can guarantee the deadlines of any optimally-schedulable task,
e.g., the schedulable utilization bound of the Rate-Monotonic algorithm is
ln 2 for implicit deadline periodic tasks.

bin-packing algorithm that assigns tasks to processors. We
briefly introduce both below.

The mixed-criticality scheduling algorithm schedules tasks
on each processor using a multi-mode extension of the zero-
slack rate-monotonic (ZSRM) scheduling [8]. Specifically,
jobs are scheduled according to the Rate-Monotonic (RM)
algorithm; however, lower-criticality jobs will be stopped at
absolute zero-slack instants of their higher-criticality jobs, i.e.,
instants from which the higher-criticality jobs must not be
preempted by the lower-criticality jobs in order to meet their
deadlines under an overload condition. The absolute zero-slack
instant of a job is the release time of the job plus the (relative)
zero-slack instant of its task, which is computed based on
the task’s (nominal and overload) execution times and the
interference from higher-priority and higher-criticality tasks.
In contrast to unimodal systems, the criticality of a task can
vary across modes; as a result, its zero-slack instant can be
different in each mode and in each mode transition.

Our mixed-criticality scheduling scheme consists of two
phases: (1) at design time, it computes the zero-slack instants
of each task in each mode (called in-mode zero-slack instant)
and in each transition (called transitional zero-slack instant);
and (2) at runtime, it schedules tasks based on the RM
algorithm, while running an enforcement mechanism that stops
lower-criticality jobs at the in-mode zero-slack instant (when
the system is in a mode) or at the transitional zero-slack
instant (during a mode transition) of a higher-criticality job.
Sections III and IV discuss these two phases in detail.

The packing algorithm aims to maximize the utilization of
the system while enabling overbooking in as many modes as
possible. To achieve this, it assigns tasks to processors based
on both the tasks’ utilizations in each mode and the tasks’
sustained criticalities. Intuitively, the sustained criticality of a
task captures the overall criticality of the task across modes,
while ensuring that a higher criticality is more important (i.e.,
contributes more to the overall criticality) than all lower criti-
calities. This sustained criticality provides a unified criticality
value that can be used to determine how well a combination
of tasks on a processor protects high-criticality tasks during
overloads across all modes of the system. We present the
packing algorithm in Section VI.

III. MULTI-MODAL ZERO-SLACK INSTANTS

A. Zero-slack instant within a mode

The zero-slack instant of a task τi in a mode s, denoted by
Zsi , is computed in the same manner as in the single-mode
ZSRM [8]. For convenience, we reproduce a summary of
the computation here and refer the reader to [8] for the details.

We start by restating the schedulability guarantee under
ZSRM, as this influences the amount of preemption suffered
by a task. Under ZSRM, a task τi is guaranteed to execute for
Coi within its period Ti if no higher-criticality task τj executes
for longer than Cj . This guarantee has two implications:
First, τi is not guaranteed any computation time if any of
its higher-criticality tasks τj runs for more than Cj ; as a

result, in the computation of Zsi , every higher-criticality task
τj is considered to execute for only Cj . Second, during the
calculation of Zsi , every task τp with a lower criticality but a
higher priority than τi must be assumed to run possibly up to
its whole overload execution time Cop .
Computation of Zsi . When the system is in a mode s, each
job τi,k of τi executes in two states: it starts in the nominal
state, then switches to the critical state when it reaches its
absolute zero-slack instant (which is its release time plus Zsi).
In the nominal state, τi,k is scheduled with all other tasks
according to RM, regardless of their criticalities; in the critical
state, all tasks of lower criticalities than τi are stopped, and
τi,k is scheduled with only tasks of higher criticalities, also
according to RM. As a result, during the nominal state, τi,k
can suffer preemptions from the nominal interfering taskset,
denoted by Γsi,n, which consists of all tasks of higher-criticality
and all tasks of higher-priority and lower-criticality than τi in
mode s. In contrast, during the critical state, τi,k only suffers
preemptions from the critical interfering taskset, denoted by
Γsi,c, which consists of only higher-criticality tasks of τi in
mode s. Furthermore, observe that the interference caused by
a lower-priority higher-criticality task τj can only come from
a single job τj,h of τj (since the tasks are scheduled under
RM and thus, τj would have a longer period than τi); hence,
we only need to account for this interference once. Since τj,h
might arrive during either execution state of τi,k, the worst case
happens when τj,h arrives during the critical state of τi,k, as
this would be more likely to make τi,k unschedulable.

Based on the above interference on τi, we can compute the
zero-slack instant Zsi by first assuming that τi runs completely
in the critical state. We then compute the amount of slack
(i.e., the sum of the idle time slots) in the active interval –
from the release time to τi’s deadline, assuming that it runs
in the nominal state. This slack is used to “move” part of the
execution of τi from the critical state to the nominal state
(thus, deferring the Zsi instant). We then repeat this process
until no more slack is found in the nominal state, and the
final value of Zsi is the zero-slack instant of τi in mode s.
Preventing back-to-back high-priority preemptions. In [14]
the authors pointed out the possibility of back-to-back preemp-
tions in the original ZSRM [8]. This back-to-back preemption
can be prevented with a modification to the original enforce-
ment in [8], which is described in Appendix A.

B. Zero-slack instant in a mode transition (s, t)

Let τi be a task that is active in mode s or in mode t, i.e.,
τi ∈ Γs ∪ Γt. Observe that during a mode transition (s, t),
jobs of τi may experience interference from both jobs that
are released in mode s and jobs that are released in mode
t. Therefore, it is not possible to ensure that τi does not
experience a criticality violation based solely on Zsi and Zti .
In this section, we propose a new concept, called transitional
zero-slack instant, that can be used to guarantee the absence
of criticality violations for jobs during a mode transition.

First, we define the transitional interval of (s, t) as the
time interval from the instant the MCR of (s, t) occurs until

the earliest instant at which all jobs released in mode s have
either completed their executions or missed their deadlines.
By definition, the length of the transitional interval of (s, t) is
always upper bounded by the maximum relative deadline of
all tasks that are active in mode s (i.e., maxτi∈Γs Di).

Definition 1. The transitional zero-slack instant of τi in a
transition (s, t) is the maximum amount of time for which
any job τi,k of τi can be preempted by lower-criticality
jobs without making τi,k miss its deadline. The (absolute)
transitional zero-slack instant of a job τi,k is its release time
plus the transitional zero-slack instant of τi.

Recall from Section II that, if τi is a persistent task of (s, t),
its criticality may change across the transition. Therefore, we
consider it as two separate tasks: an old-persistent task, which
has the old criticality and whose jobs are released in mode s,
and a new-persistent task, which has the new criticality and
whose jobs are released in mode t. Since the old-persistent task
and the new-persistent task may have different sets of lower-
criticality tasks, we will compute two different transitional
zero-slack instants for each persistent task τi of (s, t): the first,
denoted by Zst,oldi , will be used to protect jobs of τi that are
released before the MCR; and the second, denoted by Zst,newi ,
will be used to protect jobs of τi that are released after the
MCR.5 In contrast, if τi is an old task or a new task of (s, t),
then it has one transitional zero-slack instant Zsti , which will
be applied to all of its jobs. To compute these transitional
zero-slack instants, we first identify the interfering jobsets of
τi during the transitional interval of (s, t).

C. Interfering jobsets of τi during a mode transition (s, t)

Let τi,k be any job of τi that is active during the transitional
interval of (s, t). Under our multi-modal mixed-criticality
scheduling, τi,k operates in two states: it starts in the nominal
state and, when its transitional zero-slack instant is reached,
it switches to the critical state. In the nominal state, τi,k
is scheduled with all active jobs; in the critical state, it is
scheduled with only higher-criticality jobs. Below, we quantify
the jobs that interfere with τi,k in each state. Note that we only
consider jobs whose release times or deadlines are within τi,k’s
lifetime (with maximum length of Ti).
Interfering jobset of τi,k in the critical state: Its interfering
jobset effectively consists of only higher-criticality jobs that
are (still) active after the MCR. In other words, this set consists
of (i) at most one job of each higher-criticality task τj of τi
in mode s (i.e., τj ∈ Γsi,c), and (ii) all jobs of each higher-
criticality task τh of τi in mode t (i.e., τh ∈ Γti,c).
Interfering jobset of τi,k in the nominal state: The jobs that
interfere with τi,k in its nominal state depends on τi’s type:
• If τi is an old or old-persistent task: Then τi,k is released

in mode s, and thus its interfering jobset consists of (i) all
jobs of each task τj of higher-criticality or higher-priority
than τi in mode s (i.e., τj ∈ Γsi,n) that are released before

5For simplicity of exposition, we use the same notation τi for both of its
corresponding old-persistent and new-persistent tasks, but distinguish the two
by explicitly referring to their task types.

the MCR and (ii) all jobs of each task τh of higher-
criticality or higher-priority than τi in mode t (i.e., τh ∈
Γti,n) that are released after the MCR.

• If τi is a new or new-persistent task: Then τi,k is released
in mode t, and thus its interfering jobset consists of (i)
at most one job of each task τj ∈ Γsi,n and (ii) all jobs
of each task τh ∈ Γti,n.

Based on the above observations, we can derive the maxi-
mum critical/nominal interfering jobset of each task τi (to be
applied to its jobs in their critical/nominal states) by taking the
largest set of interfering jobs that any job of τi can experience
during its lifetime. Algorithm 1 gives the pseudocode for
computing the critical/nominal interfering jobset for each task
τi that is active during the mode transition (i.e., τi ∈ Γs ∪Γt)
based on its type. Specifically, for each old or new task
(Lines 2–4 and 10–12), the algorithm computes one pair of
interfering jobsets,

〈
Jsti,c, J

st
i,n

〉
, to be used for computing Zsti .

In contrast, for each persistent task (Lines 5–9), the algorithm
computes two pairs of interfering jobsets,

〈
Jst,oldi,c , Jst,oldi,n

〉
and

〈
Jst,newi,c , Jst,newi,n

〉
, to be used for computing Zst,oldi and

Zst,newn , respectively.

Algorithm 1 ComputeInterferingJobSets(Γs,Γt)

1: for all τi ∈ Γs ∪ Γt do
2: if τi ∈ Γs\Γt then
3: Jsti,c ← GetOneJobPerTask(Γsi,c) ∪ GetJobsInInterval

(
0, Ti,Γ

t
i,c

)
4: Jsti,n ← GetMaxHybridJobSet

(
i,Γsi,n,Γ

t
i,n

)
5: if τi ∈ Γs ∩ Γt then
6: Jst,oldi,c ← GetOneJobPerTask

(
Γsi,c

)
∪ GetJobsInInterval

(
0, Ti,Γ

t
i,c

)
7: Jst,oldi,n ← GetMaxHybridJobSet

(
i,Γsi,n,Γ

t
i,n

)
8: Jst,newi,c ← GetOneJobPerTask

(
Γsi,c

)
∪ GetJobsInInterval

(
0, Ti,Γ

t
i,c

)
9: Jst,newi,n ← GetOneJobPerTask

(
Γsi,n

)
∪GetJobsInInterval

(
0, Ti,Γ

t
i,n

)
10: if τi ∈ Γt\Γs then
11: Jsti,c ← GetOneJobPerTask

(
Γsi,c

)
∪ GetJobsInInterval

(
0, Ti,Γ

t
i,c

)
12: Jsti,n ← GetOneJobPerTask

(
Γsi,n

)
∪ GetJobsInInterval

(
0, Ti,Γ

t
i,n

)

Algorithm 2 GetMaxHybridJobSet
(
i,Γsi,n,Γ

t
i,n

)
1: V si,n ← GetSlackVector

(
i,Γsi,n, Z

s
i

)
2: V ti,n ← GetSlackVector

(
i,Γti,n, Z

t
i

)
3: MCRImax ← 0
4: minSlack←∞
5: SlackStarts← GetSlackStartings

(
V si,n, V

t
i,n

)
6: for all p ∈ SlackStarts do
7: currentSlack← GetSlackInInterval

(
0, p, V si,n

)
+

GetSlackInInterval
(
p, Ti, V

t
i,n

)
8: if currentSlack < minSlack then
9: minSlack← currentSlack

10: MCRImax ← p
11: return GetJobsInInterval

(
0,MCRImax,Γ

s
i,n

)
∪

GetJobsInInterval
(
MCRImax, Ti,Γ

t
i,n

)
In Algorithm 1, the critical interfering jobsets for all tasks

and the nominal interfering jobsets of new and new-persistent
tasks are computed based directly on the above discussion.
However, computing the nominal interfering jobset of an old
or old-persistent task (Lines 4 and 7) is more challenging,
since this set highly depends on the instant at which the
MCR occurs. Since this instant is unknown at design time,
we first compute the worst-case MCR instant, MCRImax, that
leads to the maximum interference on a job of τi during
its nominal and critical states, and then use MCRImax to

derive the worst-case interfering jobset. This is done via the
function GetMaxHybridJobSet, shown in Algorithm 2. (The
key functions in Algorithm 2 are explained in Appendix B.)

Based on the computation of the interfering jobsets of τi,
we can now derive its transitional zero-slack instant(s).

D. Computation of transitional zero-slack instants

Algorithm 3 shows the pseudocode for computing the tran-
sitional zero-slack instant Zsti of each task τi, based on its
interfering jobsets. Here, taskset (Line 5) is the set of old,
old-persistent, new, and new-persistent tasks of (s, t). That
is, we maintain in taskset two separate tasks, old-persistent
and new-persistent, for each persistent task of (s, t). Thus, the
algorithm will compute two separate transitional zero-slack
instants for each persistent task of (s, t), as discussed earlier.
Note that we use Jsti,n and Jsti,c to refer to the nominal and
critical jobsets of every task τi in taskset, including when τi
is an old-persistent task or a new-persistent task.

Algorithm 3 ComputeTransitionalZeroSlackInstants(s, t)

1: ∀i, Zst,1i ← 0
2: ComputeInterferingJobSets(Γs,Γt)
3: repeat
4: ∀i, Zst,0i ← Zst,1i
5: for all τi in taskset do
6: V sti,n ← GetSlackVector(i, Jsti,n, Z

st,0
i)

7: V sti,c ← GetSlackVector(i, Jsti,c, Z
st,0
i)

8: Zst,1i ← GetSlackZeroInstant(i, V sti,n, V
st
i,c, Z

st,0
i)

9: until ∀i, Zst,0i = Zst,1i

10: ∀i, Zsti ← Zst,1i

At a high level, Algorithm 3 works as follows. It begins
with the worst-case assumption that there is no slack in the
nominal state of each task, and each task always needs to run
in the critical state. Then, it starts moving computation time
from the critical state to the nominal state as we discover
slack in the nominal state (using Algorithm 4). It then repeats
the process with the newly-computed zero-slack instant. Note
that, even though we only calculate the interfering jobset at the
beginning of the algorithm, the proportions of computation of
the interfering jobs that occur during the nominal state (Cn)
and during the critical state (Cc) change as we recalculate
the zero-slack instants (as we will show in Algorithm 4).
The algorithm converges when it cannot move the zero-slack
instant of any task towards its deadline.

To achieve the above, the algorithm maintains for each task
τi two variables, Zst,0i and Zst,1i , which store the zero-slack
instant values before and after an iteration, respectively. Both
Zst,0i and Zst,1i are initialized to zero (to indicate that there
is no slack in the nominal state). In each iteration (Lines 3–
9), the algorithm first calculates the slack vectors for τi in
the nominal and critical states (V sti,n and V sti,c), based on τi’s
nominal and critical interfering jobsets (Lines 6–7). Each
slack vector contains a sequence of slack regions ordered by
time; each slack region consists of a starting instant and a
duration. Based on the obtained slack vectors, the algorithm
then computes a new zero-slack instant (Zst,1i) for τi using
the function GetSlackZeroInstant(i, Vi,n, Vi,c, Z

st,0
i). With the

new zero-slack instant, the algorithm proceeds to the next
iteration and continues in the same manner until it converges
(∀i, Zst,0i = Zst,1i).

Algorithm 4 GetSlackZeroInstant(i, Vn, Vc, t0)
1: Cci ← Coi ; Cni ← 0
2: repeat
3: t1 ← StartOfTrailingSlack(i, Cci , Vc)
4: if t1 ≥ 0 and t1 ≤ t0 then
5: ku ← GetSlackInInterval(0, t1, Vn)− Cni
6: ku ← max(min(ku, C

c
i), 0)

7: Cci ← Cci − ku
8: Cni ← Cni + ku
9: else

10: ku ← 0
11: until ku = 0
12: return t1

Algorithm 4 shows the pseudocode for the function
GetSlackZeroInstant(i, Vn, Vc, t0). Intuitively, this function
divides the overload execution time Coi of τi into two parts:
Cci , the execution time in the critical state, and Cni , the
execution time in the nominal state. Initially, all execution
time is in the critical state (Cci = Coi) and the critical state
starts at time t0. The function then repeatedly (i) computes
a new starting time t1 for the critical state (Line 3) using
StartOfTrailingSlack(i, Cci , Vc), which gives the latest instant
where there are at least Cci units of slack within Vc (the slack
vector of τi in the critical state) that is before Ti, and then
(ii) moves the corresponding amount of execution time (ku in
Lines 5–6) from the critical state to the nominal state (Lines
7–8). The algorithm terminates when no more computation
can be moved (ku = 0), and it returns the final value of t1 as
the new value for Zst,1i in Line 8, Algorithm 3.

Example 1. To illustrate the above computation, consider a
system with two modes, s and t, that executes three (persistent)
tasks: τ1 =

(
T1 = 4, C1 = 2, Co1 = 2.25, ζs1 = 1, ζt1 = 3

)
;

τ2 =
(
T2 = 8, C2 = 1, Co2 = 1, ζs2 = 3, ζt2 = 1

)
; and τ3 =(

T3 = 16, C3 = 1, Co3 = 7, ζs3 = 2, ζt3 = 2
)
. Recall that in the

transition (s, t), each task τi has two transitional zero-slack
instants, τst,oldi and τst,newi . We will illustrate the computation
of the transitional zero-slack instant Zst,old3 of τ3.

Figures 1(a), 1(b) and 1(c) depict the timeline of τ3 with its
zero-slack instants in mode s, in mode t, and in the transition
(s, t), respectively. A solid box represents an actual execution,
whereas a dashed box represents an execution that would have
happened if the task had not been preempted or stopped.

To compute the interfering jobsets of the old-persistent task
τ3 (c.f. Algorithm 1), we first derive the worst-case MCR
instant MCRImax that leads to the maximum interference on τ3
during its nominal state and its critical state (c.f. Algorithm 2).
It can be observed from Figures 1(a) and 1(b) that, during the
nominal state, τ3 suffers more interference from τ1 in mode s
than in mode t. This is because τ1 has lower criticality than τ3
in mode s and thus, its interference includes all of its overload
execution time (Co1 = 2.25); however, it has higher criticality
than τ3 in mode t and hence, its interference includes only
its nominal execution time (C1 = 2). Observe also that the
interference from τ2 during τ3’s nominal state is the same in

21/4

1 1

Z

LC

HC

3/4MC

τ1

τ2

τ3

8 16

21/4 21/4

13/4 3/4

1/
4 2

2 13/4

3
s
(121/4)

(a) Source Mode Timeline

2 2 2 2

1 1

Z

HC

LC

21 22MC

τ1

τ2

τ3

8 16
3

t
(10)

(b) Target Mode Timeline

21/4

1 1

Z3

LC

HC

3/4MC

τ1

τ2

τ3

8 16

13/4

2

22

LC

HC

MC

MCRImax

21/4

1/
2

11/2 1
/2

st,old(91/2)

(10)

(c) Mode Transition Timeline

Fig. 1. Transitional Zero-Slack Computation Example

both modes (since Coi = Ci). Therefore, the interference from
τ1 and τ2 in mode s is larger than their interference in mode
t. On the contrary, in the critical state, τ3 experiences more
interference in mode t than in mode s, because τ2 is stopped
in mode t (which frees only 1 unit of execution) whereas τ1
is stopped in mode s (which frees 2 units of execution).

The above interference patterns lead to the worst-case MCR
instant at the zero-slack instant of τ3 in mode t (MCRImax =
10), as shown in Figure 1(c). Based on the obtained MCRImax

and the corresponding interfering jobset of τ3 in the nominal
state, using Algorithm 3 we can derive the transitional zero-
slack instant of τ3 (Zst,old3 = 9.5).

IV. RUN-TIME SCHEDULING WITH ENFORCEMENT

On each processor, our multi-modal mixed-criticality sched-
uler schedules tasks according to RM, and it uses an en-
forcement mechanism that stops (or drops) jobs based on
the in-mode and transitional zero-slack instants of tasks. (The
enforcement stops or drops a job following the strategy in Ap-
pendix A, but we simply use the term ‘stop’ for convenience.)

Recall from the definition of the transitional interval
of a transition (s, t) that, from the end of the transitional
interval onward, the system contains only jobs of new or
new-persistent tasks (released in mode t). It can easily be
shown that, if a job of τi is released after or at the end of
the transitional interval of (s, t), the maximum interference
it experiences over any interval is the same as the maximum
interference a job of τi would have experienced in an interval
of the same length if the system had operated in a single
mode t. Therefore, we can safely use the zero-slack instants
of tasks in mode t for the enforcement after the transitional
interval; consequently, the transitional zero-slack instant is
only applicable to jobs that are released before the end of the
transitional interval of (s, t).
Enforcement in a mode. After the system has transitioned to
a mode s and the transitional interval has ended, enforcement
works as follows: whenever an active job of each task τi
reaches its in-mode zero-slack instant Zsi , all released jobs of
tasks with lower-criticality than τi in mode s are stopped.
Enforcement upon an MCR. When the system is in mode
s and the MCR associated with an outgoing transition (s, t)
arrives, the system will enter the new mode (c.f. Section II) and
perform the enforcement instantaneously. The enforcement is
only performed on jobs that are active during the transitional
interval of (s, t), and the specific action depends on whether
the job arrives before or after the MCR. Specifically, let MCRI
be the arrival time of the MCR with respect to the release time

of an active job τi,k during the transitional interval. Then, the
enforcement on τi,k works based on the transitional zero-slack
instant Zsti of τi,k as follows:
• If MCRI ≥ Zsti , then the system immediately stops all

the jobs with lower-criticality than τi,k.6

• If MCRI < Zsti , then the system waits until the transi-
tional zero-slack instant Zsti to stop all jobs with lower-
criticality than τi,k.

The next lemma states the correctness of the enforcement; its
proof is available in Appendix C.

Lemma IV.1. The above run-time enforcement guarantees
that no job experiences criticality violations.

V. IMPLEMENTATION

We implemented our multi-modal zero-slack scheduler in a
Linux kernel module along with a user-level library to support
the development of multi-modal mixed-criticality systems.
An empirical evaluation of the run-time overhead of our
implementation is available in Appendix D.

A. Modal system

Our user-level library provides abstractions to build modal
systems that consist of a set of modal tasks and a system
mode transition manager. A modal task, in turn, is com-
posed of a collection of modal job functions (one for each
mode), a set of mode transitions, and an initialization function
(init()). A modal task is created by calling the function
start_modal_task() with a modal task structure that
contains pointers to the mode job functions, the init()
function, and the mode transitions (to be discussed shortly).
This library function forks a process and returns the process
ID of the newly-created process.

The main body of a modal task first calls the init()
function and then installs the mode transition signal handler.
After that, it enters an infinite loop that executes the job
function repeatedly. In each iteration, the loop first calls
the job function and then waits for the arrival of the next
period (wait_for_next_period()) before calling the
job function again7. The signal handler function is hidden

6Note that if MCRI > Zst
i and the criticality of τi,k is lower than that of

some new job(s) released after the MCR, then τi,k may not have enough time
to finish by its deadline if it executes for all of its Co

i , due to interference of
these higher-criticality new job(s). However, since all active lower-criticality
jobs of τi,k are stopped, τi,k will not experience a criticality violation.

7While our current implementation waits for the next period, this can be
easily changed to a generic arrival triggering function that waits for external
events, such as interrupts.

mode 1
function
running

waiting
next
period signal

handler

mode 2
function
running

wait
next period

wait
next period

period elapsed &
mode =1

period elapsed &
mode =2

signal arrived/
mode := signal_param

(a) Library

running

check
mode
change

waiting
next
period

suspend

check
suspension

period
elapsed

no mode
change

mode change /
change
reserve

mode change
mode=suspend

mode change
mode != suspend
change reserve

suspension
requested

wait
period

no suspension
requested

(b) Scheduler

Fig. 2. Mode Change State Machines

inside the runtime library; it only changes the mode variable to
the mode number that is sent by the mode transition manager.

We make two important observations about the mode
change signal handling: First, the signal handler runs inside
the modal task process under the scheduling parameters of that
process; hence, it does not interfere with other tasks. Second,
for tasks that are currently active, the new mode is not effective
until the next arrival of the job; that is, the lifetime of the
current job (from the current time to the next arrival) is not
modified. Instead, the new mode is registered within the signal
handler, which will be used upon the next arrival (within the
wait_for_next_period() function). At the next arrival,
the new job function is executed, and the kernel scheduler
then waits for the new period of the task.8 This behavior is
illustrated by the finite state machines in Figure 2(a).
Mode transitions. Task mode transitions are part of the modal
task structure, which contains, for each transition, the source
mode number, the target mode number, and the computed
transitional zero-slack instant(s) (c.f. Section III-B).

The final modal system is composed of system modes
and system mode transitions controlled by the system mode
manager. System modes are composed of a collection of task
modes that each contain a process ID and a mode number.
System mode transitions bundle tasks’ mode transitions. The
system mode manager triggers system mode transitions by
sending mode switch signals to each of the tasks, and then
instructs the kernel scheduler to start the transition, which
activates the corresponding transitional zero-slack instants.
The system mode manager runs as a persistent task across
all modes, with the highest criticality and highest priority.

B. Modal kernel scheduler

The kernel scheduler is a reservation-based scheduler that
assigns modal zero-slack reserves to each task. A modal
reserve is a collection of regular zero-slack reserves along
with transitions. A modal reserve is first created as an empty
reserve, and then zero-slack reserves are created and added to
the modal reserve. Once all the modal reserves have been cre-
ated, the mode transitions are added with their corresponding
transitional zero-slack instant(s). Finally, a modal reserve is
attached to a task upon its creation.

A special SUSPENSION mode is used to represent that

8Our implementation allows tasks to change their periods across modes.

a task is inactive. The kernel scheduler uses this mode to
suspend the task when it needs to be disabled in a particular
system mode. A task transitioning to the suspension mode
is disabled at the next period arrival (as expected). However,
when a task transitions from the suspension mode to an active
mode, the task is activated immediately, as required by our
mode change semantics (c.f. Section II). This is illustrated by
the finite state machine in Figure 2(b).

Our implementation uses a kernel scheduler thread that
changes the priorities and the scheduling policy of the tasks in
response to scheduling events and the current mode, following
the strategy of the non-intrusive kernel module in [9]. This
kernel thread is necessary to avoid changing the priority
inside the timer handler (triggered by an interrupt) in the
kernel module to avoid deadlocks, since changing the priority
modifies the priority queues. This technique is also used in
Linux/RK [26] and a similar kernel module scheduler in [17].

C. Mode change experiment timeline

To show the effect of mode changes on our system, we created
an experiment with three tasks (see Table II): a Suspension
task (τs), a Pedestrian Detection task (τp) and a (Coordinated)
Cruise Control task (τc). Each task can run in two modes,
Low Speed and High Speed. We designed the experiment to
focus our attention on the zero-slack instant of the task τs,
which was calculated at 13s for both the mode transition and
the target mode (High Speed).

Task T (s) C(s) Co(s) Criticality
Low Speed High Speed

Suspension (τs) 16 4 7 0 2
Pedestrian Detect. (τp) 4 2 2 2 0
Coord. Cruise Ctl. (τc) 8 1 1 1 1

TABLE II
SAMPLE EXPERIMENTAL CAR TASKSET

Fig. 3. Mode Change Timeline (ms)

Figure 3 shows the timeline of a change from the Low Speed
mode to the High Speed mode in the experimental task. The
X-axis shows time (in msec), and the Y -axis shows the task
that is active at the corresponding time (e.g., τp is active from 0
to 2000, as is shown by the solid bar that rises to τp’s marker).
The mode change was requested roughly at time t = 15s, which
is close to the end of the first hyperperiod (at t = 16s). We
observe the following effect of this mode change request from
the timeline: Even though all old jobs have finished, the new
jobs are only released at the next periods of the tasks (at t =
16s); this is consistent with our mode change semantics for
persistent tasks. In addition, when task τs overruns its zero-
slack instant at t = 29s (= 16s +13s), task τp is stopped to let

τs complete; this illustratres the effect of the enforcement. It
is worth highlighting that, around the same relative time from
the start of the first hyperperiod in the source mode (i.e., at
t = 13s), τp was not preempted by τs, because τp has higher
criticality and higher priority than τs in the source mode.

VI. MULTI-MODAL MIXED-CRITICALITY BIN-PACKING

As discussed in Section II-B, the main objective of our packing
algorithm is to maximize the utilization of the system while
enabling overbooking in as many modes as possible. Towards
this, we first define the sustained criticality of a task τi as the
overall criticality of the task across all modes, given by:

ζ∗i
def
=
∑
m∈M

(
|M|+ 1

)ζmi , (1)

where M is the set of modes of the system. Informally, each
summand in Eq. (1) captures the degree of importance (in
terms of schedulability requirements) of the task’s criticality in
each mode m. It is defined as the number of modes plus one to
the power of the task’s criticality in mode m, so as to preserve
the strict ranking of criticality (i.e., a higher-criticality task is
more important than any number of lower-criticality tasks).

In addition, we define the dominant criticality of τi as its
highest criticality in all modes, i.e., ζ̂i = maxm∈M ζmi .

Algorithm 5 Multi-modal mixed-criticality packing algorithm.
1: P ← {p1, p2, . . . , pk}, where k = max

m∈M

{⌈∑
τi∈Γm

Ci
Ti

⌉}
2: Γrest ← ∅
3: for all τi ∈ Γ in non-increasing ζ∗i and non-increasing

Coi
Ti

do
4: deployed← false
5: for all pj ∈ P in non-increasing fullness level of pmj where ζmi = ζ̂i do
6: if overloaded(τi) schedulable in overloaded(pj) then
7: deployed← true
8: break
9: if ¬deployed then

10: Γrest ← Γrest ∪ τi
11: for all τi ∈ Γrest do
12: deployed← false
13: while ¬deployed do
14: for all pj ∈ P in non-increasing fullness level of packed(pmj)

where ζmi = ζ̂i do
15: if ¬overloaded(τi) is schedulable in packed(pj) then
16: deployed← true
17: break
18: while ¬deployed do
19: P ← P ∪ new(pnew)
20: if overloaded(τi) schedulable in overloaded(pnew) then
21: deployed← true

At a high level, the packing is performed by verifying that
the total requirements of the tasks allocated to a processor
do not exceed the capacity of that processor. For this, we
describe the fullness level of a processor j as a vector
pj =

〈
p1
j , p

2
j , . . . , p

|M|
j

〉
, where pmj is the fullness level of the

processor in mode m, all for m ∈M. The fullness vectors of
the processors are then used together with the sustained and
dominant criticalities of the tasks to order processors and tasks
in our allocation algorithm. We refer to this algorithm as vector
Mixed-Criticality Packing (vMCP), since it is based on vector
packing, with processors modeled as vectors of capacities (one
for each mode) and tasks modeled as vectors of requirements.
The pseudocode for vMCP is shown in Algorithm 5.

Algorithm 5 starts by creating an initial set of processors
P whose combined capacity is equal to the largest taskset
utilization across all modes (Line 1). It then proceeds to the
first stage (Lines 2–10), in which it attempts to assign tasks to
the processors in a non-increasing order of sustained criticality
and utilization, assuming that each task τi runs for its overload
execution time Coi . In this order, each τi is tried on each of the
processors in P , ordered in non-increasing levels of fullness in
the mode m with the dominant criticality of τi (i.e., ζmi = ζ̂i).
The tasks that cannot be fitted on these processors are then
set aside in a set Γrest to be deployed in the second stage.

In the second stage (Lines 11–21), the algorithm deploys
the tasks in Γrest to the processors in P using the same orders
of tasks and processors as in the first stage, but assuming that
the tasks that have already been deployed in the first stage only
run for their nominal execution times (referred to as packed()
in Lines 14–15). If a task cannot be fitted onto any processor,
a new processor is added (Line 19), and the algorithm then
tries to deploy this task on the new processor, assuming that
the task overruns (Lines 20–21).

It can be observed that the resulting packing always ensures
all tasks are schedulable if the system does not overload.

Note that Algorithm 5 follows a best-fit strategy when
assigning a task to a processor. However, it can easily be
modified to use other variants, such as first-fit, worst-fit, etc.
Due to space constraints, we omit them here.

VII. EVALUATION

In this section, we present an evaluation of the proposed
vMCP algorithm using synthetic real-time workload. Our goal
is to evaluate how well the vMCP performs across different
criticality variations of the system compared to a baseline
mode-agnostic vector packing algorithm [7]. (To the best of
our knowledge, there exists no mode-aware packing algorithm
for multi-modal mixed-criticality systems).

A. Evaluation metrics: ductility and resource use

Observe that the conventional schedulability metric cannot
fully characterize the scheduling performance in a mixed-
criticality system, since two schedulers may both feasibly
schedule the system under nominal execution but one may
guarantee more schedulable higher-criticality tasks than the
other under an overload condition. To address this, we adapt
the ductility metric [19] to evaluate the capacity of a scheduler
in protecting high-criticality tasks during overloads, while
extending this metric to the multi-modal setting.

Formally, let k be the number of distinct criticality levels of
the tasks in the system, and assume without loss of generality
that all tasks have criticalities between 1 and k. To define the
ductility of a schedule in a mode, we consider all possible
overloading scenarios of tasks in each criticality level j. Each
scenario Ol is a k-tuple Ol = 〈Ol,k, . . . , Ol,1〉, where Ol,j = 0
if no tasks with criticality j overload, and Ol,j = 1 otherwise.
(Since there are k criticality levels, there are 2k scenarios
in total.) Corresponding to each overloading scenario Ol, we
define for every criticality level j a ductility value dl,j , which

characterizes the possibility that all tasks with criticality j
meet their deadlines under the overloading scenario Ol. That
is, for all 1 ≤ j ≤ k, dl,j = 1 if all tasks with criticality j
are guaranteed to meet their deadlines under the overloading
scenario Ol, and dl,j = 0 otherwise. The ductility of a
schedule in a mode m can then be computed by aggregating
all of its ductility values dl,j in mode m, scaled by an order
of magnitude between criticality levels:

ductility(m) =

k∑
j=1

(∑2k

l=1 dl,j
2kj + 1

)
.

The overall ductility of a schedule of a multi-modal system is
then given as the sum of all the ductilities ductility(m) for all
modes m. It can be observed that this ductility metric preserves
the strict ranking semantics of criticality, while enabling
comparison between different schedules during overloads.

B. Workload

In our experiments, we first generated five different types
of harmonic periods9, sampled from a uniform distribution
between 100 and 1000, which were used for all the tasks in
our experiments. For each generated period, we selected the
overloaded execution time uniformly at random between 10%
and 30% of the period. Finally, the nominal execution time
was selected uniformly at random between 50% and 100%
of the overloaded execution time. This enables us to explore
tasksets that do not suffer the internal fragmentation produced
by heavy tasks (e.g., a task that can consume close to, or
over 50% of the processor and ends up being packed on a
processor by itself) but still allows for a reasonable amount of
overbooking due to the difference between the nominal and
the overload execution time.

Next, we generated all possible variations of criticality-to-
priority relationships. These relationships were encoded in a
criticality vector, whose first, second, and third entry represent
the criticality assigned to the task with the highest, second-
highest, and lowest priority, respectively. In our experiments,
we used three modes and generated one criticality vector per
mode. These vectors are shown on the X-axis of Figure 4. (In
the figure, we only show a subset of the generated criticality
vectors to highlight interesting cases where tasks with different
priorities have different criticalities.)

C. Evaluation results

Resource savings. Figure 4 shows the number of processors
needed under the vMCP algorithm and under the baseline
vector packing with respect to different criticality vectors. The
data presented in the figure is the average of 100 experiments.

We observe the following from the results: First, vMCP is
able to reduce the number of required processors, independent
of the criticality vector. This is because vMCP is able to
“follow” the size of the tasks and the fullness of the processors
according to the criticality, whereas the baseline algorithm
frequently selects the wrong criticality (as it is agnostic to

9Note that it is common for a system to have harmonic periods, such as
Boeing avionics [11] and ARINC 653 [1] systems.

0

5

10

15

20

25

{0,
1,2
},{
0,1
,2}
,{0
,1,
2}	

{0,
1,2
},{
2,1
,0}
,{0
,2,
1}	

{0,
2,1
},{
0,2
,1}
,{0
,2,
1}	

{1,
0,2
},{
1,0
,2}
,{1
,0,
2}	

{1,
2,0
},{
1,2
,0}
,{1
,2,
0}	

{2,
0,1
},{
2,0
,1}
,{2
,0,
1}	

{2,
1,0
},{
2,1
,0}
,{2
,1,
0}	

{2,
1,0
},{
0,1
,2}
,{2
,0,
1}	

N
um

be
r o

f
Pr

oc
es

so
rs

 Vector Packing vMCP

Fig. 4. vMCP vs Vector Packing Across Criticality Variations

criticality changes across modes). Second, unlike vMCP, the
baseline packing uses more or fewer processors depending on
the alignment of the overall processor fullness across modes
and the criticality of the task being deployed; this is the case
for the second and the last columns. Finally, in most criticality
variations, vMCP is able to reduce the number of processors
by half, except for the two of the cases shown in the figure
(corresponding to the second and the last criticality vectors).
Ductility. In the second experiment, we reduced the number
of processors that the two packing algorithms were allowed to
allocate, to compare how well they can preserve ductility. Fig-
ure 5 shows the ductility values (normalized to the maximum
possible for the taskset) that vMCP and the baseline vector
packing algorithm can achieve for the same taskset if the num-
ber of processors that they are able to allocate is reduced. This
figure presents the average of 100 data points with tasksets
generated in the same fashion as in the previous experiment,
with the criticality vector {{2, 1, 0}, {0, 1, 2}, {2, 0, 1}}.

0

0.2

0.4

0.6

0.8

1

1.2

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

N
or

m
al

iz
ed

 D
uc

til
ity

Number of Processors

Vector Packing vMCP

Fig. 5. Ductility vs. Number of Processors

We can make three important observations from Figure 5:
First, vMCP keeps a higher ductility in all data points. Sec-
ond, the gap between vMCP and the normal vector packing
increases at first but later on becomes smaller, as the number
of processors becomes too small to produce a significant
difference. Finally, vMCP can achieve up to nearly twice the
ductility obtained by the baseline vector packing algorithm.

VIII. RELATED WORK

Timing analysis of multi-mode systems has been extensively
studied within the context of uniprocessors (see e.g., [10],
[12], [13], [27]–[30], [32], [33], [35], [36]) and it has recently
extended to multiprocessor platforms [20], [21], [24], [25].
The primary focus of this line of work has been on designing

mode change protocols that ensure schedulability in each mode
and during mode transitions (see [32] and references therein).
Formalization of mode change semantics for uniprocessor
setting has also been considered in [31]. However, none of
the existing solutions consider mixed-criticality constraints.

Several existing techniques also consider overload schedul-
ing. However, they either focus on online overload manage-
ment [6], [22] and proportions of resource allocation (instead
of deadlines met) [34] or provide a tradeoff encoding, such
as the elasticity concept in [5], which cannot encode the
mixed-criticality semantics. In contrast, our approach provides
a graceful degradation mechanism that guarantees that, in an
overload situation, deadlines can only be missed in reverse
order of criticality.

In the mixed-criticality domain, Baruah et al. [2]–[4] pro-
posed an alternative mixed-criticality model where tasks have
different execution times at different criticality levels. The
authors proposed a schedulability test to find the appropriate
priority ordering for mixed-criticality schedulability [3] and a
response-time test [4] for this model, and they also considered
sporadic tasks [4]. In contrast, our model includes only two
execution times that correspond to whether a task has over-
loaded or not, and we focus on graceful degradation guarantee
on overloads through the use of a zero-slack enforcement
that stops lower-criticality tasks. The schedulability of mixed-
criticality systems in multi-processors has also been studied
before. Mollison et al. [23] presented a method for distributing
tasks to processors based on the slack generated by the
difference between the worst- and best-case execution times.
Kelly et al. [18] presented a partitioned approach to scheduling
mixed-criticality tasks in multiprocessors that follows Baruah’s
task model. Our vMCP packing algorithm is based on vector
packing [7], [19], but considers the effect of mode changes on
criticality, which the existing approaches did not. It is worth
noting that none of the existing solutions have task models
that consider modes, which is the focus of the present paper.

IX. CONCLUSIONS

We have presented a partitioned scheduling scheme for multi-
modal mixed-criticality real-time systems on multiprocessor
platforms. Our scheme consists of a scheduling algorithm for
scheduling tasks on each processor and a bin-packing algo-
rithm for assigning tasks to processors that take into account
both mode and criticality changes. The scheduling algorithm
extends the existing unimodal zero-slack rate monotonic al-
gorithm [8] with a mode transition enforcement mechanism,
which relies on transitional zero-slack instants to preserve
the schedulability of high-criticality tasks and to ensure the
absence of criticality violations during mode transitions. The
packing algorithm uses the sustained criticality of tasks to
optimize the schedulable utilization of the systems across
modes. Our evaluation on synthetic tasksets shows that our
packing algorithm can save up to half the processors and can
preserve almost twice as much ductility as a baseline vector
packing scheme. Finally, we presented an implementation of

our scheduler in the Linux operating system, along with an
experimental evaluation to illustrate its practicality.

ACKNOWLEDGMENTS

This research was supported in part by the NSF grants CNS 1117185,
ECCS 1135630 and CNS 1329984, the ARO grant W911NF1110403,
the ONR grant N00014-13-1-0802, and the MKE (The Ministry of
Knowledge Economy), Korea, under the Global Collaborative R&D
program supervised by the KIAT (M002300089).

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development center.
This material has been approved for public release and unlimited
distribution. Carnegie Mellon is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.
DM-0000674

REFERENCES

[1] ARINC Standards. http://www.aviation-ia.com/standards/index.html.
[2] S. Baruah, V. Bonifaci, G. DAngelo, A. Marchetti-Spaccamela, S. Ster,

and L. Stougie. Mixed-criticality scheduling of sporadic task systems.
In ESA, 2011.

[3] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. RTAS, 2010.

[4] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In RTSS, 2011.

[5] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. RTSS, 1998.

[6] G. Buttazzo, M. Spuri, and F. Sensini. Value vs deadline scheduling in
overload conditions. In RTSS, 1995.

[7] A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for
ordered vector packing problems. Naval Research Logistics, 50(1), 2002.

[8] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In RTSS, 2009.

[9] D. de Niz, L. Wrage, A. Rowe, and R. R. Rajkumar. Utility-based
resource overbooking for cyber-physical systems. In RTCSA 2013, 2013.

[10] N. Fisher and M. Ahmed. Tractable real-time schedulability analysis for
mode changes under temporal isolation. In ESTIMedia, 2011.

[11] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz,
M. Atighetchi, and D. C. Schmidt. Integrated adaptive qos management
in middleware: A case study. Real-Time Systems, 2005.

[12] Q. Guangming. An earlier time for inserting and/or accelerating tasks.
Real-Time Systems, 41(3):181–194, 2009.

[13] Y. Hang and H. Hansson. Timing analysis for mode switch in
component-based multi-mode systems. In ECRTS, 2012.

[14] H.-M. Huan, C. Gill, and C. Lu. Implementation and Evaluation of
Mixed-Criticality Scheduling Approaches for Periodic Tasks. In RTAS,
2012.

[15] ISO/DIS 26262 road vehicles - functional safety. http://www.iso.org.
[16] M. Joseph and P. Pandya. Finding response times in a real-time system.

The Computer Journal, 29(5):390–395, 1986.
[17] S. Kato, R. Rajkumar, and Y. Ishikawa. A loadable real-time scheduler

suite for multicore platforms. Technical report, Department of Electrical
and Comptuter Engineering, Carnegie Mellon University, 2009.

[18] O. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-
priority mixed-criticality task sets. In TrustCom, 2011.

[19] K. Lakshmanan, D. de Niz, R. R. Rajkumar, and G. Moreno. Resource
allocation in distributed mixed-criticality cyber-physical systems. In
ICDCS, 2010.

[20] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization bounds for edf
scheduling on real-time multiprocessor systems. RTS, 28, 2004.

[21] J. Marinho, G. Raravi, V. Nelis, and S. M. Petters. Partitioned scheduling
of multimode systems on multiprocessor platforms: when to do the mode
transition. In RTSOPS, 2011.

[22] P. Mejia-Alvarez, R. Melhem, and D. Mosse. An incremental approach
to scheduling during overloads in real-time systems. In RTSS, 2000.

[23] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos. Mixed-criticality real-time scheduling for multicore systems.
In CIT, 2010.

[24] V. Nelis, J. Goossens, and B. Andersson. Two protocols for scheduling
multi-mode real-time systems upon identical multiprocessor platforms.
In ECRTS, 2009.

[25] V. Nelis, J. Marinho, B. Andersson, and S. M. Petters. Global-edf
scheduling of multimode real-time systems considering mode indepen-
dent tasks. In ECRTS, 2011.

[26] S. Oikawa and R. Rajkumar. Portable rk: a portable resource kernel for
guaranteed and enforced timing behavior. In RTAS 1999, 1999.

[27] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In ECRTS, 1998.

[28] L. T. X. Phan, S. Chakraborty, and I. Lee. Timing analysis of mixed
time/event-triggered multi-mode systems. In RTSS, 2009.

[29] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan. A multi-mode
real-time calculus. In RTSS, 2008.

[30] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of
multi-mode systems. In ECRTS, 2010.

[31] L. T. X. Phan, I. Lee, and O. Sokolsky. A formal semantic framework
for mode change protocol. In RTAS, 2011.

[32] J. Real and A. Crespo. Mode change protocols for real-time systems:
A survey and a new proposal. Real-Time Systems, 26:161–197, 2004.

[33] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven preemptive scheduling. RTS, 1(3), 1989.

[34] C.-S. Shih, P. Ganti, and L. Sha. Schedulability and fairness for
computation tasks in surveillance radar systems. In RTAS, 2004.

[35] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in
real-time systems with fixed priority or edf scheduling. In DATE, 2009.

[36] K. Tindell, A. Burns, and A. Wellings. Mode changes in priority
preemptively scheduled systems. In RTSS, 1992.

APPENDIX A: PREVENTING BACK-TO-BACK PREEMPTIONS

We observe that the back-to-back effect comes from a soft
enforcement at the zero-slack instants: the enforcement post-
pones the execution of lower-criticality, higher-priority tasks
τj , and it reactivates them after the zero-slack enforcement,
which results in a shorter inter-arrival time between τj’s jobs10

and consequently more preemptions from τj . This issue can be
prevented with the following modification: At the zero-slack
instant of τi, if τi has already executed for more than Ci, then
all the active jobs of the tasks with lower-criticality than τi are
dropped; otherwise, these jobs are only temporarily stopped,
but they will be dropped later if τi executes beyond Ci.

With the above modification, we can show that, if the
portion of Ci that τi executes after its zero-slack instant
(denoted by δi) is no more than Coi − Ci, then all the tasks
with lower-criticality and higher-priority than τi (denoted by
the set H lc

i) will have enough cycles to complete before Ti
elapses, despite any delay imposed on them.

Theorem IX.1. Every task τj ∈ H lc
i that is blocked by τi in

τi’s critical state finishes before τi’s deadline if τi does not
overload.

Proof: First, note that δi is calculated as part of the
calculation of the zero-slack instant Zsi of τi in the current
mode s. Specifically, Zsi is calculated such that the processing
time used by the higher-priority lower-criticality tasks (H lc

i)
during the interval [Zsi , Ti] is enough to fit δi + (Coi − Ci)
execution units. This processing time is the amount of time
that τi steals from the taskset H lc

i during τi’s execution in its
critical state, considering that all tasks τj ∈ H lc

i execute for
their overload execution times Coj .

Now, during the calculation of the zero-slack instant of each
task τj ∈ H lc

i , δi is taken into account as a blocking term. In
other words, the blocking term δi limits the processing time
available to H lc

i , and all tasks τj ∈ H lc
i are able to tolerate this

blocking and still finish executing for Coj time units by their
deadlines. Furthermore, the total processing time available to
H lc
i cannot exceed the processing time available to τi in its

critical mode after it has completed its nominal execution Ci
(i.e., it is bounded by Coi − Ci), because it is the amount of

10The distance between the restarting time of the postponed job of τj and
the arrival time of the next job of τj .

time τi steals from the taskset H lc
i during the calculation of

Zsi . Thus, all pending executions of the tasks τj ∈ H lc
i can be

completed with the budget Coi − Ci, if τi does not overload
and neither does any other task of higher-criticality than τj in
mode s (otherwise τj is dropped).

Note further that the tasks τj ∈ H lc
i are considered to be

running for Coj and hence, if they do not overload, Coj − Cj
execution time units will be available for H lc

j . If this property
is applied recursively, the theorem follows.

By the same argument, we can also show that the theorem
holds for transitional zero-slack instants. The absence of back-
to-back preemptions directly follows.

APPENDIX B: KEY FUNCTIONS IN ALGORITHM 2

The function GetSlackVector
(
i,Γsi,n, Z

s
i

)
(resp.

GetSlackVector
(
i,Γti,n, Z

t
i

)
) computes a sequence of

slack intervals, each with a starting time and a duration,
for τi from the simulated fixed-priority response-time
timeline [16], taking into account the preemptions from the
interfering taskset Γsi,n (resp. Γti,n). Specifically, the amount
of interference caused by an interfering job τj,k that is taken
into account (effective execution time CEj) to calculate the
slack vectors for τi depends on the criticality and the priority
of τj,k with respect to τi as follows: (1) If τj,k has higher
priority but lower criticality, then its effective computation
time is Coj when we calculate the slack in the nominal state,
because τj,k can overload before the zero-slack instant of τi.
(2) If τj,k has higher criticality, then its effective execution
time is Cj when we calculate the slack in the nominal
state, because τi is given a guarantee only if τj does not
overload. (3) Finally, if τj,k has higher priority and higher
criticality, then the effective execution time is Cj −Cnj when
we calculate the slack in the critical state, because we do not
need to consider the computation that already happens in the
nominal state of τj,k (see [8] for more details).

The function GetSlackStartings
(
V si,n, V

t
i,n

)
simulates two

response-time timelines – with the source interfering taskset
(V si,n) and with the target interfering taskset (V ti,n) – and it
returns all the starting instants of the slack intervals. Finally,
GetSlackInInterval(s, e, V) returns all the slack available from
the instant s to the instant e from the slack vector V .

APPENDIX C: PROOF OF LEMMA IV.1

Proof of Lemma IV.1: We will show, for every job
τi,k of any task τi in the system, that τi,k can never ex-
perience a criticality violation during its lifetime, based on
the characteristics of the transitional zero-slack instants and
zero-slack instants. Indeed, if τi,k’s release time and deadline
are outside the transitional interval of a mode transition, then
the enforcement based on its zero-slack instant in the mode
it is released always ensures that τi,k does not experience
a criticality violation. If τi,k’s lifetime spans across a mode
transition (s, t), then (1) τi,k does not experience a criticality
violation before the MCRI of (s, t), since the enforcement
based on its zero-slack instant in mode s would stop all
the lower-criticality tasks before they can make τi,k miss

its deadline, and (2) τi,k does not experience a criticality
violation after the MCRI, since the enforcement based on τi,k’s
transitional zero-slack instant would stop all lower-criticality
jobs that are active after the MCRI before they can make τi,k
miss its deadline. Similarly, we can also show that τi,k does not
experience a criticality violation when it is released after the
MCRI but within the transitional interval of a mode transition.
Thus, τi,k never experiences a criticality violation.

We also observe that, since the transitional zero-slack in-
stants are computed offline, the run-time enforcement involves
only monitoring MCR arrivals and stopping jobs accordingly,
which can be done efficiently.

APPENDIX D: MODE TRANSITIONS RUN-TIME OVERHEAD

To evaluate the scalability of our implementation, we con-
ducted an empirical analysis of its run-time overhead. We
focused on the overhead due to mode change and enforcement.
Experimental setup. Our experiments were performed on a
Lenovo Yoga 13 laptop with 8 GB of RAM and an i7-3537U
Intel processor with 4 MB of cache. The frequency of the
processor was fixed to 2 GHz. Our kernel module scheduler
was implemented and run in the Linux kernel 3.8.0-30 64 bits.
For the mode change overhead measurements, we used a single
task that (i) switched between two active modes (with period
of 200 ms and 400 ms, respectively), or (ii) switched from an
active mode (with a period of 400 ms) to an inactive mode,
and vice versa. Finally, to measure the enforcement overhead,
we ran a single task with a period of 200 ms and used the
response-time timer to enforce it.
Measurement results. Table III presents the average and the
worst-case values of the different types of overhead measured
in our experiments. Each presented overhead values were
computed from more than 1000 data points.

Action Average (ns) Worst Case (ns)
New job arrival without mode change 17,034 32,204
New job arrival with mode change 18,820 36,555
Transition into suspension 1,097 11,225
Resume from suspension 12,167 24,335
Mode change request 9,984 31,508
End-to-end mode change 11,770 35,859
Enforcement 8,281 21,735

TABLE III
MULTI-MODAL MIXED-CRITICALITY SYSTEM RUN-TIME OVERHEAD

The first two lines of Table III give the extra overhead a task
experiences in the presence of mode change. Specifically, the
first shows the cost of a job arrival (job dispatching) when no
mode change occurs (i.e., a regular job activation), whereas the
second shows the overhead of the same action when a mode
change happens. The mode change overhead is the difference
of these two values: in our measurements, it takes 1,786 ns
additional time on average to perform a mode change during
a job dispatching and 4,351 ns in the worst case.

The third and fourth lines show the overhead of a task
transitioning into and out of the suspension mode (the task
is in the suspension mode if it is not active), respectively. It is
worth noting that in the transition into the suspension mode,

we avoid reprogramming the new timers for the next period;
hence, a transition into the suspension mode is on average
faster than both the job dispatching of an active task and a
transition out of the suspension. In particular, during a new
job activation (including when a task transitions out of the
suspension mode), the timers for the new arrival and for the
zero-slack instant, as well as the response-time enforcement
timer, need to be programmed. In contrast, when a task goes
into the suspension mode, we only need to check that the
timers are inactive and do not need to reactive the thread (that
was waiting for the arrival of the next period).

The fifth line shows the overhead of processing a mode
change request, which was measured from the instant an MCR
is initiated until the instant all the tasks receive the mode
switch signals from the system mode manager. Note that, after
receiving the mode switch signal, each mode-switching task
executes its own signal handler with its own priority. This
signal handling consists of only a couple of instructions to
save the signal parameter with the number of the next mode
into the next_mode variable; in our experiments, we avoided
measuring this overhead, since the measurement itself would
take much longer than the execution of the instructions.

The sixth line of the table gives the end-to-end mode change
overhead. This is obtained by adding up the overhead of the
mode-change request processing and the extra overhead of job
activation due to mode change. While the two instructions exe-
cuted in the signal handler are part of the end-to-end overhead,
we did not include them (due to the reason mentioned above).

The final line in the table shows the overhead of the
enforcement for the case when the enforced tasks resume
in the next mode. In our implementation, a task is enforced
(stopped) by changing its priority to a non-real-time priority,
and this is done by the kernel scheduler task. Therefore,
the enforcement overhead was measured as the time starting
when the enforcement timer is triggered and ending when the
scheduler thread has finished changing the priority of the task.
Note that the worst-case enforcement overhead can include
preemptions to the kernel thread by interrupts or other kernel
threads, but these preemptions would also be experienced by
the enforcing task anyway. For the case when the enforced
tasks become inactive in the next mode, the enforcement is
equivalent to the transition into suspension, except that it
happens at the enforcement timer instead of at the period timer.

One final comment on the difference between the average
and the worst-case overheads is in order. This difference is
due to two effects: First, our kernel module takes advantage
of high-resolution timers that program the timer chip as needed
to be able to achieve nanosecond resolution. These timers
use a tree data structure inside the kernel itself to decide
when to program the timer chip and when not to. As a
result, the resulting overhead is higher when the timer chip
is programmed and lower when the timer chip was already
previously programmed or when we do not setup or cancel any

new timer11. These overhead values could be reduced by using
periodic timers instead of using one-shot timers for the period.
Due to timing constraints, we could not investigate this option;
however, we plan to explore more efficient implementations
based on periodic timers in our future work.

11Our implementation is an extension of the ZS-QRAM scheduler imple-
mentation, which uses these one shot-timers since the task periods change
constantly.

