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Abstract— This paper addresses co-design of platform and
control of multiple control applications in a network control
system. Limited and shared resources among control and non-
control applications introduce delays in transmitted messages.
These delays in turn can degrade system performance and cause
instabilities. In this paper, we propose an overrun framework
together with a co-design to achieve both optimal control perfor-
mance and efficient resource utilization. The starting point for
this framework is an Arbitrated Network Control System (ANCS)
approach, where flexibility and transparency in the network are
utilized to arbitrate control messages. Using a two-parameter
model for delays experienced by control messages that classifies
them as nominal, medium, and large, we propose a controller
that switches between nominal, skip and abort strategies. An
automata-theoretic technique is introduced to derive analytical
bounds on the abort and skip rates. A co-design algorithm is
proposed to optimize the selection of the overrun parameters. A
case study is presented that demonstrates the ANCS approach,
the overrun framework and the overall co-design.

I. INTRODUCTION AND RELATED WORK

Embedded computing systems (ECS) are ubiquitous in a
wide range of applications including transportation, energy,
and healthcare. Design of ECS faces several challenges, es-
pecially in the context of high performance, due to strict
requirements such as safety, real-time deadlines, and mini-
mum power consumption. These systems typically consist of
several control and non-control applications in which their
components communicate via shared resources. The presence
of several applications with different priorities and limitations
on the processing elements introduces resource contention.
Specifically, messages can be occasionally delayed, arriving
too late to be useful. It is therefore highly desirable to address
the design of ECS that directly accommodates the presence of
imperfect message transmissions, provides efficient resource
utilization, and meets stringent performance specifications. In
several applications including automotive and aircraft systems,
it is often possible to design both the implementation network
and the controller concomitantly, with the choice of the
network parameters depending on the plant, the quality-of-
control requirements, and the type of controller, and simi-
larly the choice of the controller parameters depending on
the characteristics of the network (for example delay, jitter,
etc). We refer to such flexible networked control systems as
arbitrated networked control systems (ANCS) [1]–[5]. This
paper presents a co-design of implementation platform and
control in ANCS so as to simultaneously result in efficient
resource utilization and desired real-time control performance.

Existing research in co-design of control and implementa-
tion platform in the presence of non-ideal message transmis-
sions can be categorized in two parts: i) Designing controllers
to achieve desired performance and ii) Designing communi-
cation protocols to achieve efficient resource utilization. The
former consists of procedures for the estimation of worst-case
delays of messages and design of controllers that are robust
to such delays. This approach however can be pessimistic and
often leads to inefficient control performance or resource uti-
lization. The latter consists of defining a deadline for messages
and employing a switching control strategy that depends on
this deadline; if the message does not exceed the deadline, a
nominal controller is employed, and if it does, the message is
aborted. A slight but important variation of the abort strategy is
to skip the next message rather than aborting the current mes-
sage, so as to free up resources at the next instant. Such skip
and abort messages lead to different dynamic characteristics
as well as different implications on the efficiency of resource
utilization. This paper proposes an overrun framework that
includes a nominal-skip-abort control strategy which switches
between three modes depending on the delay that all messages
experience. Based on this switching strategy, we introduce an
automata-theoretic technique to derive analytical bounds on
the abort and skip rates that an application experiences on
the platform, and a numerical algorithm for the co-design
of platform and control that utilizes the platform analysis
and switching control design to achieve satisfactory control
performance and efficient resource utilization.

The problem of control and platform design in the presence
of non-ideal transmissions of closed-loop messages has been
the focus of several investigations (see, for example, [1], [2],
[4]–[25]). In the control systems domain, the main approach
used is to design the controller based on the estimation of
worst-case delays (ex. [1], [6]–[10], [21]). Although such
approaches can improve over a baseline design that completely
neglects any implementation delays, they still introduce a
stringent constraint on the platform resources to guarantee
such delays for all messages. Designing the controllers based
on messages with worst-case delays often leads to inefficient
performance during normal operation of the system, as such
messages may occur rarely. Alternatively one can use schedul-
ing techniques and corresponding resources to design desired
delays that each message can experience [11]. This however
may result in very high implementation costs. Furthermore, it
may be impossible to design a system based on worst case
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delays, as the latter may be unbounded depending on the
network configuration [10].

An abort strategy that drops any message whose arrival
exceeds a specified deadline has been explored in the literature
as well [1], [4], [5], [10], [12], [14], [15]. This leads to a
switched control system whose stability has been analyzed
using Multiple Lyapunov Functions [4], [10], Norm-based ap-
proaches [4], and common quadratic Lyapunov functions [1],
[5], [12], [14]. Modifying the control law for consecutive
aborted signals to improve the overall performance has been
studied in [5], [14], [16]–[18]. While all of these methods
based are improvements over those based on worst-case de-
lays, and can be proved to be stable, they may still lead to
inefficient resource utilization. This is because all messages
that are aborted have to be computed until the specified
deadline thereby wasting resources over this period.

In contrast to the abort strategy, a skip strategy, which
consists of dropping the next message when the current mes-
sage exceeds a deadline, has been explored to a much lesser
extent [19], [20], [22], [26]. The skipping is implemented
in some of these papers by doubling the sampling period
of the next message when the current message exceeds the
deadline. As mentioned earlier, the skip strategy has a direct
advantage over the abort one in terms of resource utilization.
When messages experience inordinately large delays, the skip
strategy has obvious shortcomings, necessitating a careful
stability analysis.

The above discussions clearly imply that a combined skip-
abort strategy for messages with overruns together with an
optimal set of parameters that characterize abort and skip
conditions is desirable. Although control and platform design
with overruns have been considered previously (see for exam-
ple [23]–[25]), most existing research assumes either zero or
a factor of the sampling time as the deadline of samples in
their control design (see for example [14], [26]), and both the
deadline and the number of deadline misses in a given window
are given a priori in the platform analysis. To the best of
our knowledge, our work is the first to provide a constructive
approach to determine these parameters.

This paper proposes a co-design framework where trans-
parencies and flexibilities in the implementation network, and
connections between controllers and implementation can be
accommodated, leading to an Arbitrated Network Control
System [1]. Our main contributions, which build further on
earlier work in [2]–[5], can be summarized as follows:

• a nominal-skip-abort control strategy based on two delay
threshold parameters to enable efficient resource use;

• an automata-theoretic approach for modeling the platform
and for analyzing the maximum number of skip and abort
samples under the proposed control strategy;

• an expanded dynamic model of the plant for each of the
nominal, abort, and skip cases, and a stability analysis of
the resulting switched system; and

• a co-design algorithm that optimizes the threshold param-
eters to result in efficient resource utilization and desired
control performance.

Our evaluation results show that the proposed co-design with
skip and abort can help save resource by an order of magnitude

compared to a nominal co-design approach while still ensur-
ing the desirable control performance as well as co-design
approaches that use simpler switching combinations such as
nominal and abort only.

This paper is organized as follows. Section II introduces
the problem statement including the platform architecture and
the dynamic model of the plants to be controlled. Before
presenting the overrun framework, we first present the nominal
case in §III when all messages meet their deadlines, and
discuss both the platform design and the control design. The
overrun framework is introduced in §IV, and a two-parameter
model to represent message deadlines is presented. Section V
presents the corresponding control designs and stability results
for the closed-loop system. Section VI includes the platform
analysis for the overrun framework. We present the co-design
algorithm in §VII, which is evaluated through a case study
with six applications in §VIII. Concluding remarks are given
in §IX.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Before stating the co-design problem, we first present the
models of the platform and the control applications.
A. Platform Architecture
The typical platform we consider consists of a set of process-
ing elements (PEs) connected via FIFO buffers, where each
PE represents a single-core processor (for example ECU) or
a network (for example CAN bus). Each PE processes one
or more tasks of control and non-control applications in the
network1. The end-to-end delay of a sample, t , is defined as
the duration from the instant the sample arrives at the system
until it is fully processed.

Figure 1 shows an example of the platform architecture
with four ECUs and a CAN bus. This platform processes
three control applications and a non-control application. In
the figure, {T1,T2,T3}, {T4,T5,T6}, and {T7,T8,T9} are the
sets of tasks of the first, second, and third control applica-
tion, respectively, whereas T10 is the task of the non-control
application. An example for Tasks 1,4, and 7 is preprocessing
and pre-filtering of sensor data. Similarly, Tasks 2, 5, and
8 can be associated to sending data from one node in the
network (where measurements occur) to another point where
the control inputs are computed, and Task 3, 6, and 9 are
dedicated to for compute actuators’ inputs. An example of
non-control applications is collecting data with low frequency
for offline data analysis (such as for maintenance check).

Upon arriving at the system, the sensor input data items
(samples) of each control application will be processed on a
sequence of PEs before being used to actuate the physical
plant. As an example, in Figure 1, the sensor data of the first
application (produced by the sensor 1) will first be processed
by T1 on ECU1, whose output will then be transmitted on the
bus via the message T2 to ECU3. Upon arriving at ECU3, the
data will then be processed by T3, and the final output data
will then be used by the actuator 1. The end-to-end delay of

1In this paper, we use the term ‘task’ to indicate either a compute function
executed on a processor or a message transmitted on a network. Further, we
define the execution demand of a task to be the execution time of the task in
the former case and the message size in the latter case.
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Fig. 1: An example of the platform architecture for the control
applications. The shaper is discussed in §III-C and the skip and abort
strategies (indicated as [S] and [A]) are discussed in §IV. More details
of how the control strategy is implemented and details of the feedback
(shown in dashed orange line) are in Section IV-B.

a sample in this example is the time duration from the instant
it arrives at ECU1 until the instant it leaves ECU3.

We assume that the processors schedule their tasks using
a fully preemptive fixed-priority scheduling algorithm (for
example Rate Monotonic [27]), whereas the network schedules
its messages according to a non-preemptive fixed-priority
algorithm (as is the case for CAN bus).2

The sampling period and the priority of each application
are assumed to be given a priori. All tasks of an application
share the same priority as that of the application, and their
worst-case execution demands are given a priori. In addition,
the sizes of the buffers are set to be sufficiently large, for
example equal to the maximum buffer sizes computed using
the method in [28], to avoid buffer overflows.
B. Control Applications
The problem considered here is the control of n applications,
whose plant models are assumed to be of the form

ẋi(t) = Aixi(t)+Biui(t� ti), (1)

where xi(t) 2 ¬p and ui(t) 2 ¬q are the states and inputs of
the system, respectively, and (Ai,Bi) are controllable for all
i = 1 : n. Arbitrary delays ti occur due to shared resources.
The problem is to carry out a CPS co-design and choose u(t)
so that x(t) tends to zero asymptotically for all n plants, while
consuming minimal resources in the implementation platform.
For ease of exposition, we set

Ac
def
= Ai, Bc

def
= Bi, and t def

= ti, i = 1 : n (2)

and denote the corresponding state and input as x and u,
respectively. Extension to the case when the plant dynam-
ics varies with i is relatively straightforward. For ease of
exposition, we assume that t  h, the sampling time. The
corresponding sampled data model is given by

x[k+1] = Ax[k]+B11(t)u[k]+B12(t)u[k�1], (3)

where

A def
= eAch, B11(t)

def
= (

Z h�t

0
eAcn dn)Bc, B12(t)

def
= (

Z h

h�t
eAcn dn)Bc.

2These scheduling policies are chosen because they have small run-time
overheads and are most commonly used in practice; however, our analysis
method can easily be modified to consider other scheduling algorithms. Note
also that each processor employs a uniprocessor scheduling algorithm instead
of a multi-core scheduling algorithm because it has a single core.

C. The End-to-End Delay t
The main focus of this paper pertains to t , its implications
on control performance, and its dependence on the platform
architecture. As mentioned in §II-A, t is the duration from
the instant the message arrives at the first task to the instant it
is fully processed by the last task of the application. The fact
that there are several control and non-control applications that
have to be processed by the platform imply that this delay t
is (a) non-negligible, and (b) can vary significantly. In the rest
of the paper, we address this aspect of the delay and show that
by a co-design of the controller and the platform, the desired
control performance can be met with the available platform
resources.

The final point to note regarding the delay is the delay tp
due to actuator dynamics. While in general t , the end-to-end
delay from a plant output to the plant input should include tp
as well, for ease of exposition, we set tp = 0. An extension
to tp 6= 0 is relatively straight forward.

III. NOMINAL CO-DESIGN

The problem is the stabilization of n plants given by (3)
in the presence of a non-zero delay t . We focus in this
section on the nominal case, which is defined as the case
when t  tth, where tth is a value that is small enough for
closed-loop control to be effective. In §III-A, we describe
the platform analysis for this case and in §III-B, we propose
a nominal control design for this case, based on a linear-
quadratic regulator.
A. Nominal Platform Analysis
In the nominal case, the control design requires that every
sample of an application must be fully processed by the
platform within the delay threshold tth of the application. We
briefly describe how this feasibility condition can be analyzed
using the Real-Time Calculus (RTC) method [28], [29].

In the RTC method, the arrival pattern of the input data
stream of a task is modeled using a pair of arrival functions,
(au,a l), where au(D) and a l(D) specify the maximum and
minimum number of data items that arrive at the task’s buffer
over any interval of length D, for all D � 0. Similarly, the
resource availability of a PE can be modeled using a pair of
service functions, (b u,b l), where b u(D) and b l(D) specify
the maximum and minimum number of items that can be
processed over any interval of length D, for all D� 0.

Based on the models of the input data streams and resource
availability of the PEs, we can compute the maximum bound
on the end-to-end delay of an application in a compositional
manner. For example, the end-to-end delay of the first appli-
cation shown in Figure 1 is bounded above by the sum of the
maximum processing (transmission) delays of its tasks, i.e.,

twc = d1 +d2 +d3, (4)

where d1, d2, and d3 are the worst-case delays of T1,T2, and
T3, respectively. By definition, the upper arrival function of
the input data of T1 is au

1 (D) = dD/he. Since T1 is the highest-
priority task, ECU1 first provides all its available resource to
T1 and only gives the remaining to the lower-priority tasks.
As the ECU provides D execution units over any interval of D
time units, the lower service function of the resource available
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to T1 is b l
1(D) = bD/wcet1c, where wcet1 is the worst-case

execution demand of T1. Then, d1 is given by [28], [29]:

d1
def
= sup

�
inf{t � 0 | au

1 (t) b l
1(t + t)} | t � 0

 
. (5)

Further, the arrival function of the output data of T1,
which is also the input arrival function of T2, is given
by [28], [29]: au

2 = ((au
1 ⌦b u

1 )↵b l
1)�b u

1 , where ( f ⌦g)(t) =
inf0st( f (s)+g(t� s)), ( f ↵g)(t) = supu�0( f (t+u)�g(u)),
( f � g)(t) = min{ f (t),g(t)}, and b u

1 (D) is the upper service
function of the resource available to T1. Based on au

2 and re-
source availability of the CAN bus, we compute the maximum
transmission delay d2 of T2 and the input arrival function au

3
of T3 in the same fashion. Similarly, the maximum delay d3
of T3 can then be computed based on the arrival function au

3 .
Based on the results in [29], we can also derive the service

functions of the remaining resource after processing T1, T2 and
T3 on ECU1, the bus, and ECU3, respectively. These service
functions are then used to compute the worst-case delays of
the tasks of the next highest-priority application, and so on.

Depending on whether the end-to-end delay of each applica-
tion is always less than or equal to the application’s threshold
tth, we can then determine whether the platform is feasible
for the applications. If it is not, the platform resource will
be increased in an iterative manner until all applications have
their end-to-end delays within their respective thresholds tth.
B. Nominal Control Design

We now derive a control design for the plant in (3) that
explicitly accommodates t with the assumption that tth = twc.
For the sake of analytical tractability, we assume that t < h is
a constant. By defining an extended state X(k) = [xT [k],uT [k�
1]]T , plant (3) can be written as

X [k+1] =


A B12
0 0

�
X [k]+


B11

I

�
u[k]

def
= G0(t,h)X [k]+Q0(t,h)u[k], (6)

Equation (6) suggests that a state feedback controller in the
form of

u[k] = K0x[k]+G0u[k�1] (7)

can stabilize the system. The closed-loop system is then given
by

X [k+1] =


A+B11K0 B12 +B11G0
K0 G0

�
X [k] def

= GnX [k]. (8)

The controller in (7) is chosen so as to minimize a quadratic
cost function Jn as

min . Jn
def
=

•

Â
0
(X [k]T QX [k]+u[k]T Ru[k]), (9)

where Q and R are the weighting matrices on augmented states
and inputs, respectively. The optimal gain K = [K0 G0] is
derived by solving the following discrete-time Riccati equation
for a positive definite matrix P0 � 0

GT
0 P0G0�P0�GT

0 P0Q0(Q0P0Q0+R)�1QT
0 P0G0+Q = 0 (10)

and using the following relation

K = (QT
0 P0Q0 +R)�1(QT

0 P0G0). (11)

C. Implementation of the Nominal Co-design
The discussions in the above two sections imply that as

long as twc < h, a control design can be carried out as in (7)
for the plant in (6), where t = twc. The platform resources
therefore have to be such that twc computed using (4) does
not exceed h. Any time-variations in t between (0,twc) can
be accommodated by using the shaper shown in Figure 1. By
locating the shaper at the last PE and having it hold every fully
processed sample for exactly tth�t time units before sending
to the actuator, we can ensure that the sensor-to-actuator delay
of each sample is always tth.

IV. AN OVERRUN FRAMEWORK

The implicit assumption made for the nominal co-design
discussed in §III is that twc is small compared to the sampling
period, which is valid only when there are sufficient platform
resources. In addition, the derivation of twc was conservative,
which implies that messages that actually experience a delay
of twc are rare. We therefore address in this section the
possibility that t varies, and allow some of the messages to be
overrun, i.e. t < tth for some messages, and t > tth for others.
The overrun framework proposed includes the delineation of
overrun strategies with two parameters, control designs based
on these strategies, stability guarantee, and a co-design that
ensures desired control performance and minimal resource
utilization.
A. Overrun framework with two delay-parameters

In this framework, we assume that there are two parameters
tth1 and tth2, where tth2 is a value close to the worst-case
upper bound that all delays are expected not to exceed, while
tth1 is an average value of delay experienced by messages. We
consider three possible cases,
A1. Nominal: t  tth1: That is, the message has a delay less

than the threshold tth1, i.e. the delay is small.
A2. Skip: tth1 < t  tth2: Here the computation of the control

input at the next instant of time is skipped, and the delay
is medium

A3. Abort: t > tth2: The computation of the current control
input is aborted, as the delay is large.

B. Implementation of the overrun framework
We now describe how the two-parameter frameworks can

be implemented for each control application Ci executing
on the platform. Let T1, · · · ,Tn be the sequence of tasks of
the application. Further, let PEi the processing element that
processes Ti, for all i = 1 : n. As an example, in Figure 1, the
three tasks T1,T2 and T3 of the first control application are
processed by PE1, PE2, and PE3. Here, PE1 is ECU1, PE2 is
the CAN bus, and PE3 is ECU3.

To implement the overrun strategy, we introduce a buffer
control mechanism that proactively removes data items from
the buffers based on their current delays, as follows:

• If the current delay of a fully processed data item in the
output buffer of Tn is less than tth1, the item will be
delayed by a shaper until its delay reaches exactly tth1;
this corresponds to the nominal case (A1).

• If the delay of a fully processed data item in the output
buffer of Tn is larger than tth1 but less than or equal to
tth2, then PEn will send a notification message to PE1,
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informing PE1 to immediately discard the next sensor
data item as soon as it arrives at the input buffer of T1.
This implements the skip strategy (A2).

• For each Ti, i = 1 : n, if the current delay of a data item
in the input buffer of Ti is equal to tth2, the item will
be removed from the buffer3; this implements the abort
strategy (A3),

The skip and abort strategies at the buffers, as well as
the shaper in the nominal case are illustrated by the Abort,
Skip, and Shaper blocks in Figure 1 through the orange
blocks marked S, A, and S (in white letter), respectively. The
notification message from PEn to PE1 (for skipping) of each
application is illustrated as a dashed orange arrow in this
figure. All removal actions and notification messages of the
buffer control mechanism are assigned a special priority that
is higher than that of the applications’ tasks and messages.

Remark 1. Since the removal actions and notification mes-
sages of the buffer control mechanism always have higher
priority than the tasks and messages of the applications, their
run-time overhead can be incorporated into the analysis.

We note that this buffer control mechanism helps improve
the resource use efficiency in two ways. First, since not all data
items need to be processed, the amount of computation and
communication resource required by each control application
is reduced compared to the conventional platform design ap-
proach, where all data items must be fully processed. Second,
since the platform discards data items as soon as they are
not needed by the control application, the amount of resource
needed to further process these data items can be saved or
used to process other applications.
V. CONTROL DESIGNS FOR A TWO-PARAMETER OVERRUN

FRAMEWORK

Using an Abort Only strategy may need very large thresh-
olds in order to avoid excessive drops, leading to a conser-
vative control performance. On the other hand, using skip
strategy alone demands the system to accommodate worst
case execution that may be large and rare, and introducing
unnecessary wait times for useless and potentially destabiliz-
ing messages. In such scenarios, it is more efficient to use a
two-parameter overrun framework which takes advantage of
both strategies, outlined in §IV-A.

Starting with two threshold parameters tth1 and tth2 with
tth1  tth2. Cases A1, A2, and A3 are invoked as described in
§IV-A. That is, if t  tth1, the messages belong to the nominal
case. If tth1 < t  tth2, then the skip strategy is employed and
we set

u[k+1] = u[k], (12)

If t > tth2, computation of u[k] is aborted and u[k] is set to a
previously computed value. That is at any time k, if the delay
t continues to be larger than tth2 for j consecutive instants,
with t < tth1 at k�1, or tth1 < t  tth2 at k�2, then it follows
that

u[k+ `] = u⇤[k�1], `= 0 : j�1. (13)

3Note that the end-to-end delay of this data item will always be larger than
tth2.

where u⇤[k�1] is a previously computed value.
In what follows, we discuss the underlying dynamics in all

three cases and derive the corresponding control strategy. A
summary of these cases can be found in Table I.

TABLE I: Two-parameter overrun framework: i) Nominal t < tth1,
ii) Skip tth1  t < tth2, and iii) Abort t > tth2, u⇤[k] is a function of
previous states and inputs.

A1. Nominal mode, t  tth1 (see Table Ia): the dynamics is
given by (6) with t = tth1.

A2. Skip mode tth1 < t  tth2 (see Table Ib): a skip at k
results in no new inputs at interval [tk+1, tk+2]. Therefore,
the input at [tk, tk+1] directly affect the dynamics at k+2
with the resulting dynamics

x[k+2] = Ax[k+1]+B1u[k]. (14)

Noting that input u[k] had arrived with a corresponding
delay t > tth1, the state at k+1 can be computed as

x[k+1] = Ax[k]+B22u[k�1]+B21u[k]. (15)

where

B21
def
= (

Z h�tth2

0
eAsn dn)Bc, and B22

def
= (

Z h

h�tth2

eAsn dn)Bc.

Using (15), augmented state X [k] = [xT [k],uT [k� 1]]T ,
and (7), we can write the underlying dynamics of A2

X [k+2] =


A2 +(AB21 +B1)K0 AB22 +(AB21 +B1)G0
K0 G0

�
X [k] def

= GsX [k] (16)

A3. Abort mode, t > tth2 (see Table Ic): can happen after a
nominal or a skip and results in aborting the computations
of u[k] and using a previously computed value instead.
That is at any time k, the delay t continues to be larger
than tth2 for j consecutive instants, with t < tth2 at k�1,
then it follows that

u[k+ `] = u⇤[k], `= 0 : j�1. (17)

where u⇤[k] is a previously computed value. For example,
if a standard zero order hold is used, with j = 1

u⇤[k] = u[k�1]. (18)

With such an abort strategy as in (17), and the closed-loop
dynamics is given by

X [k+1] =


A B
0 I

�
X [k] def

= GaX [k] for k = k1 + `. (19)

5
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Alternately, u⇤[k] can also be derived using other compensation
strategies (see [5]).
The above discussions indicate that the underlying plant dy-
namics is given by (6) in the nominal mode, (16) in the skip
mode, and (19) in the abort mode.

Suppose, in general, starting at k, there are i` instants of
nominals, followed by j` skip instants (each with a length of
2h), followed by r` instants of aborts, for `= 1 : p, with

nn
def
=

p

Ầ
=1

i` msk
def
=

p

Ầ
=1

j` mab
def
=

p

Ầ
=1

r` (20)

then the evolution of the composite switched system over a
time window [k,k+N], N = 2msk +mab +nn, is given by

X [k+N] = Gsp
a G jp

s Gip
n · · ·Gr1

a G j1
s Gi1

n X [k] (21)

In addition, suppose that sufficient information is available
about the implementation platform such that in an interval
of N samples, msk0, upper-bound on the number of skipped
messages and mab0 upper-bound on the number of aborted
messages exist, that is

msk  msk0, mab  mab0, and nn � nn0,

where nn0
def
= N�2msk0�mab0, and msk0 and mab0 are known.

We now state and prove the stability of the switched system
in (21) in Theorem 1. The following definition is useful:

ā�2
overall(msk0,mab0,N)

def
= gmab0

a · gmsk0
s · gnn0

n . (22)

where gn,gs, and ga are parameters determined in Theorem 1.

Theorem 1. System (21) is stable (exponentially stable) if
there exist positive definite matrix P� 0, and positive scalars
gn < 1, and gs,ga > 0 such that the following LMI


�gnP ⇤
PGn �P

�
� 0, (23)


�gsP ⇤
PGs �P

�
� 0, (24)


�gaP ⇤
PGa �P

�
� 0, (25)

and
ā�2

overall(msk0,mab0,N) 1(< 1). (26)

are satisfied. āoverall(msk0,mab0,N) is a lower bound on the
exponential decay rate of signals over interval of N samples.

Proof. See Appendix A.

Corollary 2. When there are no overruns, i.e. msk0 =mab0 = 0,

āoverall = g�0.5N
n0 (27)

where gn0 is the solution gn in (23).

We define a normalized decay rate aoverall as ā1/N
overall, which

can be shown to be independent of the observation window.

Defining rp
skip and rp

abort the allowable skip and abort rates
specified by the platform as

rp
skip

def
=

msk0

N
(28)

rp
abort

def
=

mab0

N
, (29)

it is easy to see that

a�2
overall(r

p
skip,r

p
abort) = g

1�2rp
skip�rp

abort
n grp

abort
s g

rp
skip

a . (30)

Equation (30) implies that the augmented states of the system
decay at a rate greater than aoverall(r

p
skip,r

p
abort). A measure for

quality of control can be defined based on this value as

Jc = a�2
overall(r

p
skip,r

p
abort). (31)

From (30) in Theorem1, it follows that the control design
is not stable if aoverall < 1. Stability will therefore be ensured
by requiring the stronger condition that aoverall > a⇤, where
a⇤ > 1 is pre-specified. We denote that the control design is
feasible in such a case.

A summary of the overall control design for the two-
parameter overrun framework include the following steps:

1) Given a tth1 and tth2, find the nominal control gains K =
[K0 G0] by solving (10) for P0 and using (11). This
results in the closed-loop dynamics (8).

2) Construct the system dynamics in the skip mode
(eq.(16)).

3) Construct the system dynamics in the abort mode
(eq. (19)), if ZOH strategy is used; a similar equation
can be derived if the DCC method is used instead.

4) Given msk0,mab0, and N, compute parameters (gn,gs,ga)
of the system in each mode by solving the LMIs (23)-
(25).

5) Compute actual maximum drop rates (rp
skip,r

p
abort) as in

(28)-(29), and the normalized overall decay rate, aoverall
as in (30). If aoverall > a⇤, the control design is feasible.
Otherwise, the control design is infeasible.

Remark 2. The most important point to note is that Steps 1)
to 5) imply that the control design above is always stable for
a given tth1 and tth2 if aoverall > a⇤. Theorem 1 starts with
a feasible solution, since in case of no skip and abort, we
only solve (23), which using a Schur complement is the same
as finding gn such that GT

n PGn � gnP � 0. This equation is
the discrete-time Lyapunov equation and is satisfied for stable
matrix G (closed loop system), and a gn  1.

The stability result in Theorem 1 can be extended to general
nonlinear systems in the presence of nominal, skip, and abort
modes, with maximum skip and abort rates. This is stated in
Corollary 3.

Corollary 3. Suppose that the underlying switching nonlinear
dynamics is given by

x[k+1] =

8
><

>:

fnominal(x[k],t) for t  tth1 (32a)
fskip(x[k],t) for tth1 < t  tth2 (32b)
fabort(x[k],t) for t > tth2. (32c)

System (32) is stable if

6
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1) There exist Lyapunov-Like Functions [4], [30] Vi(x[k])>
0 for nominal, skip, and abort modes of the system (i =
1,2,3), respectively.

2) There exist a window of N consecutive samples such that

Vi(x(k1 +N))�Vi(x(k1))< 0, 8k1 > 0, i = 1,2, or 3.
(33)

Proof. The Corollary is proved through the direct applica-
tion of [31], Theorem 3.2 to the switched system in equa-
tions (32a,b,c).

We provide an additional example to illustrate Corollary 3

Example 1. Consider the following nonlinear discrete-time
system, which switches between fnominal and fabort , with a
maximum number of allowable drops ma over a window of
N samples, where fnominal is defined by [32]

z[k+1] =
au[k�1]
1+ z[k]2

(34)

u[k] =
bz[k]

1+u[k�1]2
(35)

with a2  a0 < 1 and b2  a0, where x(k)
def
= [z(k),u(k�1)]T .

The nonlinearity fabort is defined by (34), and the relation
u[k] = u[k� 1] instead of (35). We show the stability of the
switched system (between fnominal and fabort ) by choosing
Lyapunov-like functions V1 = V2 for both fnominal and fabort ,
defined as

V1[k] = z[k]2 +u[k�1]2 (36)

Evaluating the change in V1 along the trajectories of fnominal ,
it can be shown that

V1[k+1]�a0V1[k] = z[k]2(�a0 +
b2

(1+u[k�1]2)2 )

+ u[k�1]2(�a0 +
a2

(1+ z[k]2)2 )

< z[k]2 (

<0z }| {
�a0 +b2)+u[k�1]2(

<0z }| {
�a0 +a2)< 0,

(37)

Similarly, we consider along the trajectories of fabort , for an
a1 > 1

V2[k+1]�a1V2[k] = z[k]2(�a1 +
b2

(1+u[k�1]2)2 )

+ u[k�1]2(�a1 +1)

< z[k]2 (

<0z }| {
�a1 +b2)+u[k�1]2(

<0z }| {
�a1 +1)< 0.

(38)

Since a0 < 1, and a1 > 1, one can find an aN = ama
1 aN�ma

0
and an N such that aN < 1. From inequalities (37) and (38),
it is easy to show that Vi[k+N]�aNVi[k] < 0 for all k � k1,
i = 1,2, satisfying condition 2). The choice of V1 implies that
condition 1) is also satisfied. Therefore the overall switched
nonlinear system is stable.
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Fig. 2: Basic components of the platform.
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Fig. 3: A composition of platform components (concerning App1).

VI. PLATFORM ANALYSIS UNDER OVERRUN SEMANTICS

In this section, we introduce an automata-theoretic technique
for analyzing the maximum long-term abort and skip rates
that an application experiences on the platform, for a given
resource availability, under the implementation strategy de-
scribed in Section VI-A1. For this, we first present the au-
tomata model of the platform. We then discuss how automata
verification can be used to derive the maximum number of
aborts mab0 and skips msk0 experienced by an application
within a sliding window of length N, for any given pair of
delay thresholds (tth1,tth2) with 0 tth1  tth2  h. The long-
term abort (skip) rate can then be bounded by the ratio of the
maximum number of drops (skips) within the sliding window
to the window size, and their results are used in each step
of the exploration of threshold parameters in the co-design
algorithm. Typically, a larger window size leads to tighter abort
and skip rates but longer analysis time. One possibility is to
choose the smallest window size such that the corresponding
abort (skip) rates do not decrease as the window size increases;
however, our analysis is safe under any window size.
A. Automata-theoretic modeling of the platform
The platform can be modeled in a compositional manner as a
composition of three basic components, as shown in Figure 2:

• Sensor: models the generation of the sensor data stream
of an application;

• Application: models the task processing of an application,
according to the overrun semantics;

• PE: models the amount of resource that a PE provides to
each connected application based on its scheduling policy.

We first explain the interfaces of these components, and then
present the automata models of their internal semantics.

As an example, Figure 3 shows the model of part of the
platform that processes the highest-priority application App1
of the architecture shown in Figure 1, which is formed by
connecting the Sensor, Application and PE components of the
application based on the components’ interfaces.

1) Interfaces of the basic components

As shown in Figure 2, the Sensor component is character-
ized by two parameters, sID and h, which denote the identifi-
cation and sampling period of the corresponding application.
It has two output variables, (x, t), where x denotes the number
of new data items the component generates, and t is their

7
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discrete time stamp. These data items serve as inputs to the
corresponding Application component.

The Application component is characterized by: sID, the
application identification; n, the number of tasks; and Ek, the
worst-case execution demand of the kth task, for all k = 1 : n.
It has two types of inputs: (1) the variables (x, t) produced by
the Sensor of the application; and (2) the amount of resource
provided to task k by the PE that executes this task, for all k =
1 : n. In addition, the Application has three internal variables:

• i: the index of the task that is processing the current data
sample of the application. Note that, since tth2 h and all
unfinished items with current delays equal to tth2 will be
aborted, at most one sample of each application is in the
platform at any time. We refer to this item as the current
item, and we refer to the task that is currently processing
this item as the current task of the component;

• skip: a binary value denoting whether the next data
sample should be skipped (skip= 1) or not (skip= 0);

• status[1..N]: an array of N elements representing the
status of N most recent samples (including the current
one) of the application. Specifically, statusl takes value
0, 1, or 2 if the lth most recent data item is processed
successfully, skipped, or aborted, respectively.

Finally, the component has two output variables, pid and e,
which represent the identification of the PE executing the
current task and the task’s remaining execution demand.

The PE component is characterized by the identification,
pID, and speed of the corresponding PE. It has m input ports
that are connected to m Application components that execute
on this PE, with Application j having higher priority than
Application j + 1, for all j = 1 : m� 1. Thus, the PE only
provides service to Application j when pid j = pID. Finally, for
each input port j of the PE, there is a corresponding output port
that is associated with the output variable s j, which denotes
the amount of service (in terms of execution time units)
available to the corresponding Application component. When
the PE implements a non-preemptive fixed-priority scheduling
policy, the component also has an internal variable, cur, which
represents the index of the task that was processed but has not
yet been completed in the previous time unit.

2) Semantics of the Sensor component

The semantics of a Sensor component is captured by an
Event Count Automata (ECA) [33] extended with a clock
variable, which is shown in Figure 4(a). This ECA has a
single count variable, x, which counts the number of data items
that are generated by the automaton since the last time x was
reset. Each state of the automaton is associated with a rate
vector, [l,u], where l and u denote the minimum and maximum
number of data items that are generated by the automaton in
each unit of time when the automaton is in this state. For
instance, while the automaton is in the initial state, which
is associated with the rate vector [0,1], it generates 0 to 1
data item in each time unit. Each transition is associated with
a guard on the count variables or the clock variable, which
specifies the condition under which the transition is enabled. In
addition, it may also be associated with a reset of the variables,
which takes place when the transition is taken.

The ECA in Figure 4(a) describes the arrival of the sensor
samples of an application. The first sample of an application
can arrive at the system any time between time 0 and h, and
every subsequent item arrives exactly h time units after the
previous one. As is shown in the figure, initially the component
is in the state initial, where it generates at most one item
per time unit (modeled by the invariant [0,1]). If no item is
generated after h�1 time units (modeled by the guard t = h�1
and x = 0), the component will move to the state arriving.
At arriving, the component generates the first data item in
the next time unit (modeled by the invariant [1,1]) and then
moves to the state waiting (captured by the guard x = 1). In
contrast, if the first item is generated before h�1 time units
have passed, the component will move directly to the state
waiting. In either case, the component will reset both x and t
to zero upon entering waiting. It will then remain in waiting for
exactly h�1 time units (during which no item is generated, as
captured by the guard [0,0]) and will move to the state arriving.
The component will then stay in arriving for exactly one time
unit and generates exactly one data item before transitioning
to waiting.

3) Semantics of the Application component

The semantics of the Application component is modeled
by the finite automaton shown in Figure 4(b), whose guards
are described in Table II. Initially, the component is in the
idle state and the variable skip is set to zero, which indicates
that the next incoming item will not be skipped. While the
component is in this state, if the guard g0 is true, i.e., a new
item has arrived (x = 1) and this item will be skipped (skip=
1), then the component will perform the reset R0. Specifically,
it will reset the value of skip to zero (so that the next data item
will not be skipped) and update the status array to indicate
that the most recent item is skipped (status1  1) and that
the status of the existing items remains unchanged (status j 
status j�1)4. If the guard g1 is true, i.e., a new item has arrived
(x = 1) and this item will not be skipped (skip= 0), then the
component will move to the state busy while performing the
reset R1. In particular, the index of the task processing this
data item is reset to 1 (i 1), indicating that the item will be
processed by the first task; the remaining execution time of
this task is set to its worst-case execution demand (e E1);
the array status is updated to indicate that the the new item
is not skipped or aborted (status1 0) and the status of the
existing items remains unchanged.

Once entering the busy state, the component will remain in
this state as long as the current data item is not fully processed
by all n tasks and its current delay is less than tth2, i.e., the
guard g2 holds. In addition, at each time unit while g2 holds,
the component will update the index of the task that will be
processing the current item (i) in the next time unit and its
remaining execution time (e) based on whether the service
available (si) is sufficient to complete the task that is currently
processing the item (see reset R2). In contrast, if the current
delay of the task reaches tth2 (guard g3 holds) or the item
has been fully processed (guard g4 holds), the component will

4Note that since there is a new item, the existing ( j�1)th most recent item
now becomes the jth most recent item.

8
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(a) ECA model of Sensor (tth2 < h).
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(a)  ECA model of an input stream ("th2 < h).  !

(b)  Automata model of data processing at the buffers.  !(b) Automaton model of Application. (c) Automaton model PE with FP scheduling.

Fig. 4: Automata models of the Sensor, Application and PE components.

Case Guard Reset Explanation
Init Rinit : skip 0; 8 1 i N, statusi 0; Variable initialization
0 g0 : x = 1 ^ skip = 1 R0 : skip  0; status1 1; New sample arrives,

8 2 i N, statusi  statusi�1; being skipped.
1 g1 : x = 1 ^ skip = 0 R1 : i 1;e E1; status1 0; New sample arrives,

8 2 j  N, status j  status j�1; not being skipped.
2 g2 : i n ^ t < tth2 R2 : i if e = s then i+1 else i; Current sample is unfinished, with

e if e = si then Ei+1 else e� si; current delay < tth2.
3 g3 : i n ^ t = tth2 R3 : skip  0; status1  2; Current sample is unfinished, with

current delay = tth2, thus being aborted.
4 g4 : i > n R4 : skip  if tth1 < t  tth2 then 1 else 0; Current sample is finished.

TABLE II: Transition guards and transitions for the automata in Figure 4(b).

return to the idle state and wait for the next item to arrive. In
the former case, the execution of the current item is aborted
and thus, its status is changed to aborted (status1 2) and the
next item will not be skipped (skip 0), which is reflected by
the reset R3. In the latter case, the current item is successfully
processed and thus, the next item will be skipped if the delay
of the current item is greater than tth1 and less than or equal
to tth2, which is reflected by the reset R4.

4) Semantics of the PE component

Figure 4(c) shows the automaton that models the processing
semantics of a PE that implements the fully-preemptive fixed-
priority scheduling (FP) policy. As was discussed earlier, the
PE executes m Application components; where, the current
task of Application j is only executed by the PE when pid j =
pID. Therefore, the service provided to Application j (denoted
by s j) is zero if pid j 6= pID. Otherwise, the service provided
to Application j is the minimum of the execution demand e j
of the application and the remaining service of the ECU after
having processed all higher-priority Application components k
with pidk = pID. This is reflected by the reset R f p shown in
the automaton.
B. Computing the skip and abort bounds
The maximum number of aborts (skips) in a sliding window
of N can be established using verification technique. Recall
that the processing status of the samples in the current
window of an application is captured by the status array,
where statusl is equal to 0, 1, or 2 if the lth most recent
data samples is processed successfully, skipped, or aborted,
respectively, for all l = 1 : N. Therefore, the numbers of
skipped and aborted items in the current window are given by
numSkips = Â1lN{statusl | statusl = 1} and numAborts =
Â1lN{statusl | statusl = 2}, respectively.

As a result, given any constant value U , we can verify
whether U is a valid upper bound on the number of skips
in any window of N (consecutive) samples by verifying the
Linear Temporal Logic (LTL) formula:

2(numSkipsU), (39)

which states “Always, numSkips is less than or equal to U .”
Thus, to determine the maximum number of skips in any

window of length N, we perform a binary search on the value
U , starting with the largest value dN/2e5. The maximum
number of skips over any window of length N, denoted by
msk0, is then chosen as the smallest value of U for which (39)
holds. The maximum number of aborts in a window of length
N, denoted by mab0, can be obtained in a same manner, except
that we initially start with N as the maximum value of U .
Discussions. The proposed automata-theoretic approach can
easily be implemented using existing verification tools. For
example, using the SAL toolset (http://sal.csl.sri.com), the
automata model of a component can be implemented as a
module, and the composition of these modules and verifica-
tion of the LTL formula can be done automatically. In our
experiments, we relied on the SAL toolset for the implemen-
tation of the automata models and their verification, and we
implemented the binary search procedure as a C program that
calls the SAL toolset to perform the verification of the LTL
formula at each search step.

We note that the composition of the automata models
can easily be constructed syntacally (and done automatically
using the SAL toolset), and thus it is highly efficient. The
complexity of our approach lies primarily in the verification
of the LTL formula [34]. In general, automata verification
is more expensive than purely analytical approaches, such as
Real-Time Calculus or real-time scheduling theory. However,
since all existing analytic approaches cannot capture the state
semantics used by our overrun strategy, we have relied on
an automata-theoretic method in this paper. Extending an
analytical approach to capture and analyze systems with state-
based semantics as ours is interesting but highly non-trivial,
and we defer this investigation to future work.

VII. CO-DESIGN ALGORITHM

With the overrun framework and the corresponding control
designs described in §IV to §V, and the platform analysis

5Note that at most one sample is skipped for any two consecutive samples.
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for overruns in §VI, we propose a co-design of control and
platform in this section, using the two-parameter overrun
strategy. The discussions with implementation platform in §VI
showed that the platform analysis starts with twc and h to
compute msk0,mab0, and N associated with the pair (tth1,tth2).
The control design in §V requires (tth1,tth2,msk0,mab0,N) and
returns a decay rate aoverall (see Figure 5), with the overall
control design becoming infeasible if aoverall < 1. Together,
the overall performance of the controller and the platform
is then quantified by a Joverall = r1Jc + r2Jp, where Jc is
the control performance cost, Jp is the platform cost, and
r1,r2 2 R are constant parameters. Jc is determined by (31),
which depends on the control parameters gn,ga,gs, and the skip
and abort rates rp

skip,r
p
abort . Jp is chosen so as to reflect trade-

off between resource utilization and control performance in a
given application. The goal of the co-design algorithm is to
find the optimal parameters tth1 and tth2 that minimize a cost
Joverall.

Fig. 5: A snapshot of the proposed co-design.

Suppose we choose Jp = Â1 jn Jk
p, where Jk

p is the overall
resource utilization of the application k, which can be approx-
imated by

Jk
p ⇡ wcet/h⇥ (1� rp

skip� rp
abort/2). (40)

where wcet is worst-case execution demand. The insight of this
approximation is that (i) whenever a sample is skipped, all the
resource demanded by the sample is saved, and (ii) when a
sample is aborted, the system may have executed a fraction
of its demand, which can be as small as one execution time
unit and as large as (wcet� 1) execution time units. Jk

p can
therefore be viewed as a platform cost for application k using
average values for delays between threshold values and the
worst-case delay 6.

Our co-design algorithm proceeds in four steps, which
correspond to 1) initialization, 2) determining thresholds for
application Ci, 3) updating worst case delays for application
Cj, j � i, and 4) repeating steps 2 and 3 for i = 1 · · ·n. If
the above steps result in a feasible control design, then the
fourth step of the codesign reduces the network bandwidth and
returns to step 1. All parameters related to the ith application
are denoted with a superscript i. Details of these steps are as
follows.
1. Initialization:

1.a. Compute twc for all applications C1, · · · ,Cn using tech-
niques presented in §III-A, where C1 and Cn are the
highest and lowest priority applications, respectively.

6We note that (40) gives one possible computation of Jp that we use to
optimize the resource use; however, our co-design algorithm works for any
other approximations of Jp, and it always produces a safe design regardless
of the choice of Jp.

1.b. Set t i
th1 = t i

th2 = t i
wc for application Ci. In this case,

there are no overruns and rpi
skip = rpi

abort = 0.
1.c. Compute the control cost Ji

c in (31) using corollary 2,
the platform cost Ji

p, and the overall cost Ji
overall for a

fixed set of parameters r i
1 and r i

2.
1.d. Define a set S to include (t i

wc,t i
wc) as well as two

perturbed delay points (t i
wc � dt i,t i

wc) and (t i
wc �

dt i,t i
wc�dt i), with dt i⌧ t i

wc.
2. Exploration of application Ci:

2.a. For each element in S, find the maximum abort and
skip rates rpi

skip and rpi
abort from platform analysis.

2.b. Compute the parameters (gn,gs,ga)i by solving
LMI (23)-(25). Check if the control design is feasible,
i.e. if a i

overall > a⇤i .
2.c. For each element in S, if the co-design is feasible:

compute Ji
c, Ji

p, and Ji
overall for all elements in S,

replace the previous Ji
overall with the new value if

Jinew

overall < Jiold

overall and update (t i
th1,t i

th2) as in

(t i
th1,t i

th2) = argmin(Ji
overall(t1,t2)).

2.d. Expand the search area with adding more elements to
the set S by exploring (t1�dt,t2), (t1,t2�dt), and
(t1�dt,t2�dt) for each (t1,t2)2 S. In this step, the
previously visited pairs and the pairs which violate the
constraint t1  t2 are not considered.

2.e. Repeat steps 2.a-2.c until there are no more points to
explore.

3. Exploration of lower priority applications. Use (tth1,tth2)
for ith application and update twc for lower priority appli-
cations (i = i+1), starting from 1.b. Note that the updated
twc are smaller than previously computed values due to the
overrun framework of the higher priority applications.

4. Reduce network Bandwidth. If feasible design achieved in
step 3 for all applications, reduce the network bandwidth,
return to step 1, otherwise return the previous bandwidth.

The end-result of this co-design returns optimal values
(t⇤th1,t⇤th2), and optimal network bandwidth which optimizes
Joverall for each application. Figure 6 shows a typical evolution
of the optimal thresholds for an application. In this example,
twc = 14, and the overall control cost is defined by Joverall =
0.5Jc + 0.5Jp. Each element at the row t1 and the column
t2 of the table in the figure gives the overall control cost
corresponding to the thresholds tth1 = t1 and tth2 = t2, where
1  t1  t2  twc. Each highlighted row, from the bottom to
the top, represents the expansion of the set S at each iteration
step. As shown in the figure, the pair of thresholds (tth1,tth2)
is evolved from (14,14) initially, then to (10,10), and finally
to (2,14), which is also the optimal value (corresponding to
the smallest control cost).

Remark 3. Since in Step 2, we ensure that the control design
is feasible and start with zero abort and skip rates, the above
co-design is guaranteed to be stable for any output of the
algorithm, i.e. (t⇤th1,t⇤th2).

VIII. CASE STUDY

This section presents a case study of a network control
system to demonstrate the utility and benefits of our co-design
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Fig. 6: The overall control cost corresponding to different threshold
values.

methods. For our evaluation, we compared the performance of
the overrun co-design method with both abort and skip (based
on two delay thresholds) against the nominal co-design with
no overrun (similar to [21]) and the co-design with abort only
(with a single fixed delay threshold, i.e., tth1 = tth2) (similar
to [4], [26] and [5].
A. Experimental setup

The system consists of n = 6 control applications, each
of which corresponds to lane keeping of a vehicle, with an
underlying computational architecture that consists of two
ECUs connected via a CAN bus. Each application i consists
of two control tasks, T 1

i on ECU1 and T 2
i on ECU2, and a

message mi. Each sensor value that arrives from the sensor
cluster of the application i is first processed by T 1

i , and the
processed sensor value is then sent to T 2

i via the message mi.
Based on the received value, T 2

i computes the control output
to the corresponding actuator.

In our evaluation, the sampling periods hi of the applications
range between 5 ms and 35 ms. Both ECU1 and ECU2 employ
the preemptive fixed-priority scheduling policy, whereas the
CAN bus employs a non-preemptive fixed-priority scheduling
policy, with application i having a higher priority than ap-
plication i+ 1 for all 1  i < n. We assumed a fixed frame
length for every CAN frame in the system. The window size
N under our overrun strategies was set to be 20 samples. We
use the symbolic model checker in the SAL toolset for our
experiments.
Objectives. Our evaluation focuses on three aspects of the two
co-design methods: (1) the minimum speed that the ECUs and
the CAN network can operate to guarantee the control quality
of every application; (2) the feasibility design regions of the
platform; and (3) the impact of the delay thresholds on the
resource savings. Towards this, we performed the following
three sets of experiments:

In the first experiment, we considered different processor
frequencies of the ECUs and for each frequency value, we
determined the minimum network speed such that the con-
trol performance of every application i is satisfied for some
delay thresholds t i

th1 and t i
th2 within its valid range (i.e.,

0 < t i
th1  t i

th2  hi). At the same time, we computed as a
baseline the minimum network speed for which a feasible
design exists under the nominal co-design method, where the
delay threshold tth of each application was set equal to its
sampling period.
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Fig. 7: Platform resource design space exploration under overrun,
nominal, and abort only co-design methods.

In the second experiment, we fixed the network bandwidth
to be 400 Kbits/s and computed the minimum processor
frequency of ECU2 required to find a feasible solution under
different processor frequency values of ECU1. The computa-
tion is done in the same fashion as in the previous experiment.
In addition to the overrun and nominal co-design methods, we
also evaluate the feasible space of the co-design method with
abort only, where we set t i

th1 = t i
th2 =

⌃ hi
2

⌥
for all 1 i n.

For the dynamical system, we consider the dynamic model
of a vehicle for a lane-keeping application [35], the numerical
values of which can be found in [4]. The controllers were
designed using LQR controller presented in §III. Analysis
time. The model checker took t = 0.88 seconds on average
to verify whether a given bound U on the number of aborts or
skips is satisfied (i.e., the LTL formula in (39)) in our exper-
iments. As our algorithm determines the maximum number
of skips (aborts) in any window of length N using binary
search on the value U , with U  N, it takes at most dlog2Ne
verification steps (i.e., at most 5 steps when N = 20). Since the
analysis is performed offline, the running time is reasonable in
our experiments; however, we plan to investigate abstraction
methods to enable more efficient analysis for more complex
scenarios in future work.
B. Evaluation results
Resource savings. Figure 7(a) shows the minimum network
bandwidth required under the overrun and nominal co-design
methods when varying the processor frequency of the ECUs.
(Here, the frequency of ECU1 was always set equal to
the frequency of ECU2.) We observe that the overrun co-
design method consistently outperforms the nominal co-design
method. Specifically, at the processor frequencies for which a
feasible design exists for both methods, the overrun co-design
method reduces the network resource bandwidth required by
at least 2.4⇥ and up to more than 10.7⇥ compared to the
nominal co-design method. We note that the nominal design
is similar to other delay-aware optimal strategies with fixed
delays reported in the literature such as [21].

The results in Figure 7(a) also show that the smaller the pro-
cessor frequency, the higher the resource savings. In fact, when
the processor frequency is between 20 MHz and 100 MHz (the
shaded area), no design solutions exist under the nominal co-
design method even if the network bandwidth is arbitrarily
large; in contrast, the overrun co-design method produces a
feasible design using only a small network bandwidth, which
is even smaller than the bandwidth that can be achieved by the
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nominal co-design method under an arbitrarily large processor
frequency. For instance, under the overrun co-design method, a
network bandwidth of 200 Kbits/s and 90 Kbits/s are sufficient
to guarantee the control quality of all applications when each
ECU operates at 20 MHz and 100 MHz, respectively. On
the contrary, the nominal co-design method cannot find any
feasible solution at the processor frequency within 20–100
MHz, and even when the processor frequency is arbitrary
large, it requires a network bandwidth of at least 215 Kbits/s.

We also observe from Figure 7(a) that increasing the
processor frequency beyond 100 MHz does not help reducing
the network requirement. In other words, the portion of the
overrun co-design curve at the processor frequency 20–100
MHz also forms the Pareto design curve for the overrun
co-design method.

Feasibility design regions. Figure 7(b) illustrates the fea-
sibility design regions for the two ECUs obtained in the
second experiment for the three co-design methods: nominal
co-design, overrun co-design, and co-design with abort only.
The network bandwidth was fixed at 400 Kbits/s. The areas
above the three curves in the figure correspond to the regions
for which a feasible frequency exists for the ECUs under
the corresponding co-design methods. We observe that as the
frequency of ECU1 increases, the feasible region is also widen
for all three methods, enabling smaller processor frequency
for ECU2. These feasible regions can be used to optimize the
platform resource under a given resource constraint.

It can also be observed from Figure 7(b) that the feasible
region of the nominal co-design method falls strictly inside
that of the co-design with abort method, which in turn falls
strictly inside that of the overrun co-design method. For
example, in contrast to the overrun co-design methods, no
solution exists for the nominal co-design method and the
co-design with abort only method when the frequency of
ECU1 falls below 160 MHz and 67 MHz, respectively. Thus,
the overrun co-design not only saves significant resources
but also provides more flexibility for the platform design
compared to both the nominal co-design and co-design with
abort method. The results also show that while abort strategy
does help reduce the resource requirements compared to
the nominal co-design, our combination of abort and skip
strategies further increases resource savings substantially.

In summary, our evaluation demonstrates that not only does
the overrun co-design method save the resource requirement
by an order of magnitude but it also has a much larger feasible
design space compared to the nominal co-design method.

IX. CONCLUDING REMARKS

This paper addresses the problem of implementation of
multiple control applications in a network control system
where resources are limited and shared thereby resulting in
varying delays in transmitted messages. Using a two-parameter
model for these delays, a switching control strategy is pro-
posed that varies between nominal, skip, and abort modes
based on the magnitude of the delay. The underlying dynamic
models in each of these cases are utilized in order to derive

the stability of the switched system. An automata-theoretic
approach is used for modeling the platform and for analyz-
ing the maximum number of skip and abort samples under
the proposed control strategy. Using both the platform and
switched system analyses, a co-design algorithm is proposed
that further optimizes the two-parameter delay thresholds to
result in an efficient platform resource utilization as well as
the desired control performance. A case study with six control
applications implemented on a shared network with one bus
and two ECUs is presented, which is shown to result in an
order of magnitude reduction in the resource requirement and
a much larger feasible design space.

Systematic design of cyber-physical systems is becoming
increasingly important as the need for smart and efficient
engineering applications in energy, transportation, and health-
care grows. An important component of this design is the
implementation of advanced control algorithms using embed-
ded system platforms. Traditionally, control design and hard-
ware/software techniques for implementing these algorithms
are undertaken by disjoint communities - control systems
and embedded systems, respectively. The arbitrated network
control systems based approach proposed in this paper seeks
to disrupt this isolated development, and close the gap between
stability and performance robustness guaranteed in control
theory and actual performance realized during implementation,
leading to reduced integration, testing, and debugging costs.
The specific codesign proposed in this paper employs arbitra-
tion by way of introducing a delay aware component in the
control design and estimating the upper-bound on delays expe-
rienced by control messages in the embedded system platform
design. Together, the codesign and the overall ANCS approach
was demonstrated to lead to a significant improvement in the
design space of the platform while guaranteeing the desired
control performance. While significant challenges remain, in
expanding the scope of the estimation of the worst-case delay,
in the assumptions made regarding the underlying dynamics
of the control applications, and in the sampling period, we
believe that this paper represents an important first step in
developing a building block for CPS design.
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APPENDIX A
PROOF OF THEOREM 1

Proof. Inequalities (23) implies that the following inequalities are
satisfied as well, with the Schur complement:

GT
n PGn � gnP, (41)

similarly, inequalities (24) and (25) imply that

GT
s PGs � gskP, (42)

GT
s PGa � gabP, (43)

Also, we note from (21) that starting at time k1, there are nn nominal
signals, msk skipped signals and mab aborted signals; with 1� gn � 0,
we have:

⇣
Gsp

a G jp
s Gip

n · · ·Gr1
a G j1

s Gi1
n

⌘T
P
⇣

Gsp
a G jp

s Gip
n · · ·Gr1

a G j1
s Gi1

n

⌘

< gnn
n · gmsk

s · gmab
a P a�2P (44)

with a�2 def
= gnn0

n gmsk0
s gmab0

a .
These inequalities imply that a quadratic Lyapunov function in

the form of V = X [k]T PX [k] exists for systems (23), (24), and (25),
and it is decreasing with a decay rate of at least a for any interval
N = 2msk0 +mab0 +nn0, proving Theorem 1.
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