Cache-aware Interfaces for Compositional Real-Time Systems

Linh Thi Xuan Phan

Meng Xu Insup Lee

Department of Computer and Information Science, University of Pennsylvania
Email: {linhphan, mengxu, lee} @cis.upenn.edu

Abstract—Interface-based compositional analysis is by now a
fairly established area of research in real-time systems. How-
ever, current research has not yet fully considered practical
aspects, such as the effects of cache interferences on multicore
platforms. This position paper discusses the analysis challenges
and motivates the need for cache scheduling in this setting,
and it highlights several research questions towards cache-aware
interfaces for compositional systems on multicore platforms.

I. INTRODUCTION

Modern real-time systems are highly complex; for instance,
a car nowadays contains more than 100 microprocessors that
run thousands of software functions. As new functionalities
are being added and new technologies — such as multicore
processors — are being adopted, this complexity is only going
to increase. To meet this trend, the real-time systems commu-
nity has developed scalable timing analysis techniques based
on compositional reasoning [8]. The idea is to break a com-
plex system into individual components, which are scheduled
hierarchically on the platform. These components are analyzed
individually at first; then, an inferface is generated for each
component that captures the component’s timing and resource
requirements. By choosing the interfaces carefully, it is then
possible to combine them into larger interfaces that cover
bigger and bigger subsystems, so that it eventually becomes
possible to derive the properties of the system as a whole.

Despite several promising results on compositional analy-
sis, most existing research assumed an idealized platform in
which all overheads are negligible. In practice, however, there
are many sources of nontrivial overheads — such as cache
effects, preemptions, context switches, and interrupts — that
can substantially interfere with the execution of tasks. Ignoring
these overheads when analyzing the system can lead to wrong
results: at run time, the system can miss deadlines, even when
the analysis may suggest otherwise [6].

To address this problem, recent work has begun to consider
overhead-aware compositional analysis (see e.g., [3, 5, 6, 9]).
The idea is to account for the overheads that tasks of a
component experience and incorporate them into the compo-
nent’s resource demands, which are then used to derive the
component’s interface. This approach works well for unipro-
cessor platforms, and it has also been extended to multicore
platforms with private caches [9]. However, the cache-aware
compositional analysis on multicore platforms with shared
caches remains an open problem.

In the following sections, we discuss the challenges in
analyzing the overheads in the presence of shared caches and

Comp. C, Comp. C, Comp. C,
Components TT,T, Ty Ts T T; Tg
- \1 Tasks execute on
Virtual processors [y | e e | gl virtual processors
(implement interfaces) VP, VP, (VP3| | VP, (VP51
o o T ssnsssse? Nosmssnan N\ Virtual processors
_//1 execute on cores
Private caches
L L L L

Shared cache L, (LLC)

Fig. 1: A compositional system on a multicore platform. Here,
the resource demands of tasks in a component are abstracted
as an interface. This interface is further transformed into a set
of virtual processors, which supply resources to the tasks of
the component. The virtual processors of all components are
globally scheduled (e.g., as servers) on the cores. Each core
has a private cache, and all cores share a shared cache.

motivate the need for cache scheduling in this setting. We
then outline several research directions towards cache-aware
interfaces and their realization on modern multicore platforms.

II. CACHE-AWARE ANALYSIS CHALLENGES

To illustrate the challenges, we use a two-level compositional
system that is scheduled on a multicore platform with a
last-level shared cache (LLC), as shown in Fig. 1.

Challenge #1: Concurrent cache accesses. On a multicore
platform, tasks running simultaneously on different cores may
concurrently access the memory regions that are mapped to
the same cache sets of the LLC. When this happens, they may
evict each other’s content from the cache, thus resulting in
cache misses. Precisely accounting for the overheads due to
these concurrent cache accesses is highly challenging: in the
worst case, these accesses may interleave with one another,
and thus the tasks keep polluting each other’s cache content.
Without fine-grained information about the layouts of the
tasks in the LLC and their access patterns, which are typically
not captured in the tasks’ specifications, it seems necessary
to assume that every access to the LLC is a cache miss. With
this assumption, one can perform the cache-aware analysis
using the same method for private caches [9]. However, since
this approach effectively considers the overhead of an LLC
access to be the overhead of accessing the memory, it can
result in unacceptable analysis pessimism.

Challenge #2: Cyclic dependency between components’
interfaces and tasks’ overheads. In a compositional setting,
an additional source of cache overheads comes from the
interactions between the components’ tasks and their interfaces
(implemented as virtual processors). To illustrate this, consider
the following scenario in Fig. 1. Suppose 7; (higher-priority)
and 7 (lower-priority) are running on VP; and VP,, which
are mapped to cores 1 and 2, respectively. Suppose further
that VP is now preempted by another virtual processor of
another component, say VP4. Then, the higher priority task
71 will migrate to VP, and preempt the lower-priority task
7. This leads to both cache-related migration and preemption
overheads: (i) since VP, is mapped to core 2, 7| has to reload
its useful cache content to the private cache of core 2 when it
executes on VP;; and (ii) when 7, resumes later, it will need
to reload the useful cache blocks that have been evicted from
the private cache and the LLC by 7. In other words, when
a virtual processor of a component is preempted by another
virtual processor, tasks running within the component may
experience cache overheads. Likewise, we can show that tasks
can also experience overheads when a virtual processor of their
component has exhausted its budget and stops its execution.
The key challenge in the analysis of the above type of
overheads is the cyclic dependency between the interface
computation and the overhead a task experiences. For instance,
to derive the overhead-aware interface for C;, we need to com-
pute the overheads that its tasks experience. To compute such
overheads, we need to know (among others) how often each
of its virtual processors is preempted by virtual processors of
other components and how often it exhausts its budget. The
former is not possible in a truly open environment, where
information about other components is completely hidden
from the analysis of C;. The latter requires certain information
about the interface of Cj, which is unknown (to be computed).
In our prior work for private caches, we resolved this cyclic
dependency by assuming that the period of a component’s
interface is given a priori and that it is available to all
other components [9]. However, efficiently deriving optimal
cache-aware interfaces in the general setting, especially in
the presence of the LLC, remains an open research problem.
One potential approach is to use parametric interfaces, but
this would typically result in a much more complex analysis.

Challenge #3: Dynamic concurrent resource supply
patterns. The analysis of cache overheads in a compositional
setting is further complicated by the dynamic resource supply
patterns of the interfaces. In the traditional non-hierarchical
setting, the platform always provides fully available resources
with a fixed degree of concurrency m (equal to the number
of cores), and thus it is possible to determine the resource
demand of a task in its busy window based on its worst-case
execution time (WCET) and m. In a hierarchical setting,
however, the virtual processors of a component are not
always available to the component, and their supply patterns
can in fact vary significantly depending on their parameters
as well as how they are scheduled at the next level. These
variations and dynamic changes in the supply patterns of
the interface make the resource demand analysis highly

challenging, especially when considering their impacts on the
overheads that a task experiences. Careful considerations and
new abstractions of the resource supply patterns are therefore
necessary to derive resource-efficient cache-aware interfaces.

Challenge #4: Interactions between the LLC and private
caches. For platforms with multi-level caches, the interactions
between different cache levels can create intricate effects on
the overheads. For example, a task can only pollute another
task’s cache content in the LLC if it has already experienced
a cache miss in the private cache of its core, which in turn
could have been caused by itself (i.e., intrinsic cache miss), by
a higher-priority task, or by a virtual processor of a compo-
nent. Similarly, different cache policies also lead to different
overhead scenarios. For instance, with strictly inclusive caches,
whenever a useful cache block of a preempted task is evicted
from the LLC, the corresponding block in the private cache
is also evicted; later, when the task resumes, it will need to
reload the cache block to both the private cache and the LLC,
thus experiencing overheads at both levels. On the contrary,
for exclusive caches, a task may experience a cache miss in
the private cache but not in the LLC. Due to these intricate
effects, simple extensions of existing results for a single cache
level may lead to overly pessimistic or incorrect results.

III. CACHE SCHEDULING FOR COMPOSITIONAL SYSTEMS

An essential characteristic — and important benefit — of com-
positional systems is the ability to provide resource isolation
among components. To a large extent, this isolation has been
achieved for CPU resources through careful CPU scheduling
and interface analysis. However, on a multicore platform,
components can still interfere with each other in a complex
manner via caches. As was discussed in Challenge #1, tightly
accounting for such overheads in the interface computation
is extremely challenging, and even if new analysis methods
could be established that reasonably account for the cache
overheads, the components themselves would still not be “free
from interferences.” While this may not be an issue from
the schedulability point of view, it can create undesirable
consequences, such as potential security attacks via caches.

Recent advances in hardware- and software-based cache
partitioning have brought a new solution within reach: instead
of simply analyzing the cache as is, we can treat cache as
another schedulable dimension. By breaking the cache into
smaller pieces, e.g., using cache partitioning mechanisms,
we can assign them to different tasks (or virtual processors,
or components, or cores) at run time, and we can do so
dynamically depending on how much cache space a task would
need at a given point. This way, tasks running concurrently
on different cores never access one another’s cache space,
thus completely eliminating the cache interference due to
concurrent cache accesses. To realize this approach, the CPU
and cache schedulers would need to be aware of each other
to guarantee isolation while still being resource efficient.

In the following, we discuss two important research
problems and potential directions towards this approach.

Hierarchical cache partitioning: On today’s hardware,
one-level cache partitioning can easily be done using either
software or hardware techniques, such as page coloring [2]
or way-partitioning [4]. For example, using the page coloring
mechanism, the cache can be divided into several disjoint
partitions that each consist of a number of cache sets, which
are mapped to different regions of the memory; by controlling
the mapping of virtual addresses to machine addresses, the
operating system can control which cache partition(s) a task
can use. This approach can potentially be extended to enable
hierarchical partitioning by adding intermediate layers of ad-
dress translations. For instance, a two-level partitioning can be
achieved by controlling the mapping from virtual addresses
to the physical addresses and the mapping from physical
addresses to machine addresses.! However, this has two direct
implications: (i) the cache scheduler in each component would
need to be aware of the mapping used by the next-level
scheduler, i.e., complete isolation between different scheduling
levels is no longer achievable; and (ii) the cache allocation and
reallocation become a lot more expensive.

In contrast, hardware techniques, such as way partitioning
or Intel’s Cache Allocation Technology [1], can provide very
efficient cache allocation, but the total number of cache parti-
tions is more limited than that of software-based techniques. It
seems interesting to explore hybrid approaches that combine
software and hardware mechanisms for different levels of the
hierarchy, so as to achieve a larger number of partitions, while
still maintaining low overhead and a certain degree of isolation
between layers of the scheduling hierarchy.

Static vs. dynamic allocation: A simple approach to
achieving cache isolation in compositional systems is to
perform static allocation across all levels of the hierarchy:
the cache is statically partitioned to components, and each
component’s cache space is further partitioned to its sub-
components (tasks). Since each task has its own cache space
throughout its lifetime, it will never interfere with another task
via cache and the interface analysis can thus be done using
existing techniques. However, this approach cannot always be
feasibly applied in practice, e.g., when the tasks do not fit
in the whole cache at the same time. When this occurs, the
tasks have to receive fewer partitions (or even none) than they
would require, which in turn result in much higher worst-
case execution times (due to intrinsic cache misses, which
they create on themselves). In addition, static cache allocation
can severely under-utilize cache resources, because the cache
partitions allocated to a task are wasted when the task is not
executing or does not need all the partitions.

An alternative static approach is to only statically partition
the shared cache among cores and apply the cache-aware
compositional analysis for multicore systems with private
caches [9]. However, this can still lead to high cache pre-
emption and migration overhead when the virtual processors
are scheduled globally on the cores.

The above issues can be solved by dynamically allocating
cache resources to each task at run time. Dynamic cache allo-
cation is beneficial, as it provides better flexibility and higher

!'This approach may not work for systems with huge memory pages.

utilization of cache resources. However, it also presents several
new challenges from both theory and systems perspectives.
When preemption is allowed, tasks may still experience cache
overhead — e.g., upon resuming from a preemption, a task
may need to reload its cache content in the cache partitions
that were used by its higher-priority tasks; as a result, the
overhead analysis would need to consider the specific cache
allocation strategy used at each layer of the hierarchy. Further,
efficiently implementing dynamic cache reallocation is much
more complex than static allocation, and software techniques
such as page coloring typically have very high overheads in
this case.

A promising direction is to integrate static and dynamic
allocations using software techniques and hardware tech-
niques, respectively. One potential solution is to perform static
allocation at the component level and dynamic allocation
at the task level. Not only can such an approach provide
complete isolation among components (which is more critical
than isolation among tasks of the same component), it can
also be applied to systems with very high number of tasks.
An interesting question for systems with more than two levels
of hierarchy is to find the right combination of static and
dynamic allocations that provides a good tradeoff between
resource utilization and run-time efficiency.

IV. CACHE-AWARE INTERFACES WITH CACHE
SCHEDULING

In this section, we discuss the necessary extensions towards
cache-aware analysis for compositional systems on multicores
with cache scheduling.

Component specifications. Since a task’s WCET depends
on the cache space it is allocated, to enable optimized cache
allocation, each task should specify not only a single WCET
for a specific number of cache partitions but potentially a
set of WCETs with respect to different numbers of allocated
partitions. To derive tight analysis of the cache overheads
a task may experience, it would be useful to additionally
specify other fine-grained cache-related information such as
the memory access patterns and the working set size, as they
can greatly influence the overheads. Since this extended spec-
ification will also make the analysis much more complex, it is
interesting to explore different trade-offs and quantifications
of the cache-related information of a task to achieve accurate
analysis without being intractable.

Component-level schedulers. To fully utilize resources,
the CPU and cache scheduling should be integrated, since
a task or a virtual processor can only be executed when
it has both types of resources. It seems intuitive at first to
synchronize the CPU and cache allocations, i.e., whenever a
task (or virtual processor) receives CPU resources to execute,
it will also receive the required cache resources. However,
this is not always possible: because the amounts of cache
and CPU resources that are available may be different, it
is possible that there are sufficient cores to schedule the
ready tasks but not sufficient cache partitions, and vice versa.
In addition, unlike CPU scheduling, fully dynamic cache

scheduling (at every scheduling level) is difficult to achieve
without incurring high run-time overheads. It is therefore
necessary to develop new scheduling solutions specifically
for compositional systems that can efficiently and effectively
integrate the CPU and cache allocations.

Cache-aware interfaces. To enable cache scheduling at
the component level(s), it is necessary to expose not only
the CPU requirements but also the cache requirements on
the components’ interfaces. One approach is to use similar
concepts to CPU resource models such as the multiprocessor
periodic resource model [7], which specifies the total resource
budget ® that must be provided in each period IT with
a maximum degree of concurrency of m. One challenge
with this approach is that, because the interface itself does
not impose constraints on the exact level of concurrency,
the number of cache partitions a component receives at
run time can vary between 0 and m. This is problematic
for the scheduling within the component, because not all
allocated cache resources can be used effectively, e.g., if each
task requires more than the provided number of partitions.
Alternatively, if we allow a task to execute even if there are
fewer partitions than it requires and the partitions it receive
can vary dynamically, the worst-case execution time of the
task in this scenario becomes difficult to predict. Therefore,
it seems necessary to impose additional constraints on the
concurrency level of the cache resources that an interface
provides. In cases where static cache allocation is performed
at the component level(s), the cache information exposed on
an interface can potentially be reduced to the total number
of cache partitions the component requires (as the number of
cache partitions a component receives is fixed).

Interface analysis. With cache scheduling, the overhead
due to concurrent cache accesses is eliminated, which signif-
icantly reduces the analysis complexity. However, since static
allocation across all levels may not be possible, tasks and
virtual processors may share and access the same partition(s)
over disjoint periods of time. As a result, the analysis also
faces all the remaining challenges described in Section II. In
addition, the interface analysis must also consider the cache
supply patterns of the interface and its impact on the cache
overhead, e.g., caused by the (extra) preemptions via cache.
We also note that the cache-aware interface computation (a
synthesis problem) is significantly more challenging than the
cache-aware schedulability analysis, as it requires computation
of the cache-aware resource demand functions of tasks under
a specific interface model, as well as a way to generate the
interface parameters that satisfy the component’s demands.

V. CONCLUSION

Compositional analysis is an effective approach to scheduling
and analysis of complex real-time systems. However, its bene-
fits have not been fully realized on modern multicore platforms
due to the lack of a theory that can accurately consider the
effects of caches. In this position paper, we have discussed key
challenges in this setting, and we outlined several research

questions and potential directions towards a realistic cache-
aware compositional analysis theory for multicore platforms.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants CNS
1117185, ECCS 1135630 and CNS 1329984, and the ONR
grant N00014-13-1- 0802.

REFERENCES

[1] x86: intel cache allocation technology support. http://lwn.
net/Articles/622893/. Accessed: 2015-01-09.

[2] R. E. Kessler and M. D. Hill. Page placement algorithms
for large real-indexed caches. ACM TOCS, 10(4):338-359,
Nov. 1992.

[3] W. Lunniss, S. Altmeyer, G. Lipari, and R. 1. Davis. Ac-
counting for cache related pre-emption delays in hierarchi-
cal scheduling. In Proceedings of the 22nd International
Conference on Real-Time Networks and Systems, page
183. ACM, 2014.

[4] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo,
and R. Pellizzoni. Real-time cache management frame-
work for multi-core architectures. In RTAS, 2013.

[5] R. M. Pathan, P. Stenstrom, L.-G. Green, T. Hult, and
P. Sandin. Overhead-aware temporal partitioning on mul-
ticore processors. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014 IEEE 20th,
pages 251-262. IEEE, 2014.

[6] L. T. X. Phan, M. Xu, J. Lee, 1. Lee, and O. Sokolsky.
Overhead-aware compositional analysis of real-time sys-
tems. In RTAS, 2013.

[7] L. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In
ECRTS, 2008.

[8] I. Shin and I. Lee. Periodic resource model for com-
positional real-time guarantees. In Proceedings of the
24th IEEE International Real-Time Systems Symposium,
RTSS °03, pages 2-13, Washington, DC, USA, 2003.
IEEE Computer Society.

[9] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu,
and C. Gill. Cache-aware compositional analysis of real-
time multicore virtualization platforms. In RTSS, 2013.

