
Mixed-Criticality Scheduling on Multiprocessors using Task Grouping

Jiankang Ren∗ Linh Thi Xuan Phan†

∗School of Software Technology, Dalian University of Technology, China
†Computer and Information Science Department, University of Pennsylvania, U.S.A.

Abstract—Real-time systems are increasingly running a mix
of tasks with different criticality levels: for instance, unmanned
aerial vehicle has multiple software functions with different safety
criticality levels, but runs them on a single, shared computational
platform. In addition, these systems are increasingly deployed
on multiprocessor platforms because this can help to reduce
their cost, space, weight, and power consumption. To assure
the safety of such systems, several mixed-criticality scheduling
algorithms have been developed that can provide mixed-criticality
timing guarantees. However, most existing algorithms have two
important limitations: they do not guarantee strong isolation
among the high-criticality tasks, and they offer poor real-time
performance for the low-criticality tasks.

In this paper, we present a partitioned scheduling scheme for
mixed-criticality tasks on multiprocessor platforms that addresses
both issues. Our scheduling scheme consists of (i) a task-to-
processor packing algorithm that takes into account the demands
of tasks with respect to their criticality levels, and (ii) a mixed-
criticality uniprocessor scheduling strategy that is based on task
grouping. Our strategy associates each high-criticality task with
a subset of the low-criticality tasks and encapsulates them in
a task group, which is scheduled with the other task groups
under the Earliest Deadline First (EDF) policy. Within each task
group, the low-criticality task and the high-criticality tasks are
scheduled using a server-based strategy, so as to enable more of
the former to meet their deadlines without affecting the latter. We
present a schedulability analysis for our scheduling strategy, and
we show how tasks can be grouped using Mixed Integer Nonlinear
Programming. Our evaluation shows that our proposed scheme
significantly outperforms existing partitioned mixed-criticality
scheduling algorithms, in terms of both the fraction of schedulable
task sets and its ability to schedule low-criticality tasks.

I. INTRODUCTION

Due to recent advances in chip technology, multiproces-
sor platforms are increasingly applied in safety-critical do-
mains (such as avionics, automotive, and industrial control)
to accommodate the increasing demand for computationally-
intensive workloads. Many systems in these domains are
mixed-criticality (MC) real-time systems – that is, they in-
tegrate multiple functionalities (tasks) with different safety
criticality levels, such as flight-critical and mission-critical
tasks, on a single, shared hardware platform. This is typically
done to meet stringent requirements on space, weight, and
power consumption. Therefore, it is important to provide
strong isolation and timing guarantees for the mixed-criticality
tasks with respect to their criticalities.

Since MC real-time systems run a mix of tasks with
different degrees of criticality, these systems are more complex
and unpredictable than traditional real-time systems. In order
to certify the correctness of a MC system, it is common to
make certain assumptions about the worst-case behavior of
the system – for instance, some task parameters are allowed
to depend on the criticality levels of the tasks. A typical
approach is to assume more pessimistic worst-case execution
times (WCETs) for higher criticality levels for each task; in

systems with two levels of criticality, a task is assumed to be
in the high-criticality mode if its execution time exceeds the
low-criticality WCET. A major challenge in this approach is to
guarantee mixed-criticality schedulability (i.e., high-criticality
tasks always meet their deadlines and low-criticality tasks meet
their deadlines if the high-criticality tasks are always in the
low-criticality mode) of the tasks while achieving efficient
resource use.

There is a rich literature on scheduling mixed-criticality
real-time systems on both uniprocessor and multiprocessor
platforms (e.g., [1]–[11]); however, most existing solutions
have at least one of the following three key limitations. First,
they assume that, whenever a job of a high-criticality task
exhibits high-criticality behavior – that is, its execution time
exceeds the task’s WCET as estimated at the low-criticality
level – all current and future jobs of every high-criticality task
in the system will also exhibit high-criticality behavior, which
does not always happen in general. Second, existing techniques
cannot fully capture the dynamic behavior of the system: each
task can dynamically transition back and forth between the
high-criticality and the low-criticality mode. Third, existing
solutions do not offer good performance for the low-criticality
tasks: since these are killed as soon as a high-criticality job in
the system enters its high-criticality mode, it is possible that
no low-criticality job can ever meet its deadline – for instance,
when the criticality change happens shortly after the system
begins its execution. This is undesirable because low-criticality
tasks require a certain timing performance as well (although
with weaker guarantees than the high-criticality tasks) [12].

In this paper, we propose a compositional approach to
mixed-criticality task scheduling that can solve these problems.
Our approach, called TG-PEDF, provides strong isolation
among the high-criticality tasks, and it enables more low-
criticality tasks to be scheduled while still ensuring the mixed-
criticality schedulability guarantee of the entire system. TG-
PEDF is based on task grouping and compositional scheduling:
each high-criticality task is encapsulated in a separate task
group (to enable isolation) together with a subset of the low-
criticality tasks (to enable overbooking of resources). Within
each task group, the tasks are scheduled with a server-based
mixed-criticality scheduling strategy, and the different task
groups are scheduled on the platform as conventional tasks
under the EDF scheduling policy. This ensures that the high-
criticality behavior of a high-criticality task cannot affect other
high-criticality tasks, and it also enables more low-criticality
jobs in the system to meet their deadlines. This is because
(i) the interference of a high-criticality task on low-criticality
tasks beyond its local task group is significantly reduced, and
because (ii) low-criticality tasks are not always discarded, but
rather scheduled according to best-effort service when the
high-criticality task in the same task group is in the high-
criticality mode. Furthermore, our scheduling algorithm can
dynamically adapt to the criticality mode of each job (by

enabling tasks to return to the low-criticality mode, depending
on the execution time of their current jobs), and can thus save
resources at runtime.

Contributions. This paper makes the following contributions:

• A partitioned mixed-criticality scheduling approach
based on task grouping for implicit-deadline periodic
MC tasks on multiprocessor platforms. In contrast to
existing solutions, our approach provides strong iso-
lation between high-criticality tasks and better timing
performance for low-criticality tasks;

• A schedulability analysis for a set of mixed-criticality
tasks that have been assigned to a single processor
under our task group based scheduling algorithm;

• A Mixed Integer Nonlinear Programming (MINLP)
formulation for the task grouping, based on the
schedulability constraints, that can improve the
schedulability of the system; and

• A task packing algorithm that can save resources by
taking into account the demand of both low-criticality
tasks and high-criticality tasks during deployment.

Our evaluation on randomly generated task systems shows that
the schedulability of our proposed scheme outperforms the
state-of-the-art MC scheduling algorithms.

The rest of the paper is organized as follows. In Section II,
we summarize the related work. Section III presents the system
model. The detailed description of the task group based MC
scheduling on a uniprocessor is given in Section IV. Section V
presents the task packing algorithm. We discuss our evaluation
in Section VI and conclude the paper in Section VII.

II. RELATED WORK

Since Vestal’s initial work on mixed-criticality systems [1], a
rich literature on mixed-criticality scheduling of real-time sys-
tems has developed; see [13] for a survey. Traditionally, work
in this domain has focused on uniprocessor platforms [2]–[7],
[14]–[21], but recently efforts have shifted towards multipro-
cessor platforms.

Several multiprocessor mixed-criticality scheduling algo-
rithms have already been developed [8]–[11], [22]–[25], in-
cluding both global and partitioned approaches. For instance,
Pathan [22] derived a sufficient schedulability condition of
a global fixed-priority scheduling algorithm on preemptive
multiprocessors based on response time analysis. Baruah et
al. [10] proposed global and partitioned scheduling algorithms
for mixed-criticality implicit-deadline sporadic task systems
by combining fpEDF [23] with EDF-VD, and they showed
that partitioned scheduling gives better system schedulability
than global scheduling. For harmonic task systems, Molli-
son et al. [8] proposed an architecture to use appropriate
scheduling techniques for tasks with different criticalities on
different processors, which provides timing isolation between
these levels through a bandwidth reservation server. Kelly
et al. [9] studied the schedulability of various partitioning
techniques inspired by bin packing, as well as traditional
partitioning heuristics under fixed-priority scheduling for MC
systems. To address the effects of the physical environment
on the system, Niz et al. [11] presented a partitioned multi-
processor scheduling scheme based on a multi-mode extension
of the zero slack rate-monotonic scheduling. Gu et al. [24]

extended the demand-based single-processor mixed-criticality
scheduling [25] (called EY in this paper) to multiprocessor
platforms and proposed two enhancements based on heavy
low-criticality task awareness and balance factor to improve
the system schedulability. However, these existing solutions
assume that, whenever a job of a high-criticality task exhibits
high-criticality behavior, all current and future jobs of every
high-criticality task in the system will exhibit high-criticality
behavior and thus all low-criticality tasks will be dropped.
Our work removes this assumption by considering the specific
mode of each high-criticality tasks in the scheduling.

There has also been work on offering degraded service to
low-criticality tasks when the system is in the high-criticality
mode. For instance, Su et al. [17], [26] studied an elastic
mixed-criticality task model that allows low-criticality task to
have different periods in different system modes. To maximize
the execution rate of low-criticality tasks, Jan et al. [18] intro-
duced stretching factors and proposed an associated online de-
cision algorithm based on the existing elastic task model. Santy
et al. [15] proposed a technique that aims to avoid or delay
the rise in criticality level in order to minimize the number of
tasks that will miss their deadlines. From the implementation
perspective, Burns et al. [19] pointed out the limitations of the
existing standard mixed-criticality models, and they proposed
a more practical model that considers the service adaption of
low-criticality tasks and the system mode swathing problem
from the low-criticality mode to the high-criticality mode.
Huang et al. [20], [27] studied the service reconfiguration and
resetting for low-criticality tasks by quantifying the degraded
service of low-criticality tasks. Gu et al. [21] proposed a
hierarchical execution model that can isolate the impact of
high-criticality tasks from low-criticality tasks, and that can
allow low-criticality executions in the high-criticality behavior
by using component boundaries. Our work differs from these
approaches in that it can reduce the propagation of high-
criticality job behavior for mixed-criticality systems through
the isolation of different task groups. Further, our approach
enables the system to switch back to low-criticality mode from
high-criticality mode once all high-criticality tasks exhibit low-
criticality job behavior. To the best of our knowledge, the
propagation reduction of high-criticality job behavior has not
been investigated in existing MC scheduling solutions.

III. MIXED-CRITICALITY SYSTEM MODEL

The system consists of a set τ of implicit-deadline periodic
mixed-criticality tasks that need to be scheduled on a multi-
processor platform with p identical, unit-capacity processors.
We follow the same task model as in [25]: Each task τi is
characterized by a tuple τi = (ζi, Cτi(LO), Cτi(HI), Tτi), where

• ζi ∈ {LO, HI} denotes the criticality level of τi;
• Cτi(LO) and Cτi(HI) specify the WCET estimates of

τi at the low and high criticality levels, respectively,
where Cτi(HI) = Cτi(LO) if ζi = LO, and Cτi(HI) ≥
Cτi(LO) if ζi = HI (that is, the WCET at the high
criticality level is more pessimistic than the WCET at
the low criticality level); and

• Tτi denotes the period (relative deadline) of τi.

We refer to Cτi(LO) and Cτi(HI) as the LO-WCET and HI-
WCET of τi, respectively. We assume that all tasks are initially
released simultaneously (at time t = 0).

Mixed-criticality schedulability. A task set τ is considered
mixed-criticality schedulable under a scheduling policy if the
following conditions are met:

• Low-criticality guarantee: If all jobs run for at
most their LO-WCETs, all high-criticality and low-
criticality jobs must complete before their deadlines.

• High-criticality guarantee: If all high-criticality jobs
run for at most their HI-WCETs and at least one runs
for more than its LO-WCET, all high-criticality jobs
must complete before their deadlines (whereas low-
criticality jobs may be dropped).

We note that although our system model and algorithms
consider only two levels of criticality, it should be possible to
extend them to more than two criticality levels. One potentially
efficient approach is to perform task grouping in a hierarchical
fashion according to the criticality levels of tasks, which we
plan to explore in future work.

In the next section, we present the algorithm for scheduling
mixed-criticality tasks on a (uni)processor. The algorithm for
assigning tasks to processors is discussed in Section V. Due to
space constraints, we omit the proofs of lemmas and theorems
here; they can be found in our technical report [28].

IV. TASK-GROUP-BASED MIXED-CRITICALITY
SCHEDULING ON UNIPROCESSORS

To provide isolation between high-criticality tasks and to re-
duce their interference with low-criticality tasks, we associate
each high-criticality task with a subset of the low-criticality
tasks and encapsulate both in a separate task group. Tasks
within each task group are scheduled using a server-based
strategy to maximize mixed-criticality schedulability, and the
task groups themselves are scheduled on the processor under
the Earliest Deadline First (EDF) policy. (In a special case
where all tasks assigned to a processor have the same criticality
level, they are scheduled as conventional tasks using EDF.)

A. Task groups
A task group consists of one high-criticality task and several
low-criticality tasks. It is specified as T G j = { τLO

1 , τLO
2 , ...,

τLO
n , τHI

j }, where the τLO
i (1≤ i≤ n) are the n low-criticality

tasks, and τHI
j is the single high-criticality task.

The period of a task group T G j is a common divisor of the
periods of all tasks in the task group, i.e., TT G j = CD

(
T

τLO
1

,
T

τLO
2

, ..., TτLO
n

, T
τHI

j

)
, where T

τLO
i

(1 ≤ i ≤ n) is the period of

the low-criticality task τLO
i and T

τHI
j

is the period of the high-

criticality task τHI
j . (Since it is common for real-time systems

to have harmonic periods in practice, we make this choice
to simplify the analysis; however, extensions to other period
values are possible.)

All task groups are simultaneously activated at time t = 0.
By definition, the number of task group budget replenishments
during a period of a low-criticality task τLO

i is given by l j
i =

T
τLO

i
/TT G j (1 ≤ i ≤ n), and the number of task group budget

replenishments during a period of the high-criticality task τHI
j

is given by h j = T
τHI

j
/TT G j .

We denote by B j the minimum budget (to be computed)
that a task group T G j must receive in each of its periods to en-
sure all of its tasks meet the mixed-criticality schedulability. In

our scheduling strategy, each task group T G j will be scheduled
with other task groups in the system as a conventional periodic
task with period (relative deadline) TT G j and execution time
B j. As usual, we define the utilization of a task group to be
its budget divided by its period. For ease of presentation, we
refer to a period of a task group as a TG-period.

B. Three-phase Scheduling Strategy within Task Groups
Basic ideas. The scheduling within each task group T G j is
done in rounds; each round corresponds to a period of the
high-criticality task τHI

j . Within each round, there can be three
different scheduling behaviors: one is used while the actual
execution time of τHI

j ’s current job has not yet reached its
LO-WCET; another is used when τHI

j ’s job might reach its
LO-WCET during the current period of the task group; and a
third is used when τHI

j ’s job has either finished or exceeded
its LO-WCET, i.e., switched to high-criticality job mode. This
corresponds to three distinct phases, which are illustrated in
Figure 1:

... ...

Phase I Phase II Phase III

Period of task group

Absolute deadline

t + Tj

Release of the high-criticality

t

HI
j

May switch to high-criticality job mode

Fig. 1: A scheduling round of a task group.

Phase I (low-criticality mode): In this phase, the current job
of τHI

j has not yet reached its LO-WCET and is thus in low-
criticality mode. All jobs in the task group are scheduled to
ensure the low-criticality guarantee.
Phase II (switching mode): In this phase, the current job of
τHI

j can potentially exceed its LO-WCET – and thus switch to
high-criticality mode – during the current period of the task
group. All low-criticality tasks in the task group are suspended
to ensure the high-criticality guarantee.
Phase III (low-criticality or high-criticality mode): In this
phase, the current job of τHI

j has either finished or exceeded
its LO-WCET, so it is known whether the task group is in low-
or high-criticality mode. If the job has indeed finished, all the
low-criticality tasks are scheduled; otherwise the group is in
high-criticality mode, and the low-criticality tasks continue to
be suspended.

When the high-criticality job completes (in phase II or
III) and the task group has not yet used up its budget, any
suspended low-criticality jobs will continue to be scheduled;
however, if they do not complete by the end of the round
(i.e., when a new high-criticality job is released) or by their
deadlines, whichever is sooner, they will be dropped.

Scheduling mechanism for each round. Recall that the
budget of the task group T G j in each TG-period is B j and the
number of task group budget replenishments in any period of
τHI

j (i.e., in each scheduling round of T G j) is h j. Without loss
of generality, we suppose that Phase I lasts for k j TG-periods,
i.e., the current job of τHI

j either switches to the high-criticality
mode or has completed its execution in the (k j + 1)th TG-
period, where 0≤ k j ≤ h j−1. In each scheduling round, tasks
are scheduled based on their pre-computed budget values, x j,

b1
i and b2

i (1≤ i≤ n) as follows. (The method for computing
these parameters is presented in Section IV-D.)

Phase I (the first k j TG-periods): To achieve the low-
criticality guarantee, in each of the first k j TG-periods, tasks
are scheduled as follows: if there are some pending low-
criticality jobs, the current job of τHI

j is executed first for a
specific period of time x j ≥ 0 (at most) and then the low-
criticality jobs are executed in ascending order of the task
index, where each low-criticality task τLO

i is allocated a budget
of b1

i ≥ 0. If there are no pending low-criticality jobs, the
current job of τHI

j is executed until it completes or the budget
of the task group is used up.

The budget parameters should satisfy two conditions: First,
the total budget allocated to all tasks in the task group should
not exceed the budget B j of the task group, i.e.,

x j +
n

∑
i=1

b1
i ≤ B j (1)

Second, since the current job of the high-criticality task is
always in the low-criticality mode in this phase, the total
budget received by τHI

j in this phase should not exceed its
LO-WCET, i.e.,

k j× x j ≤C
τHI

j
(LO) (2)

Phase II (the (k j +1)th TG-period): To achieve the high-
criticality guarantee, the current job of τHI

j is executed first
with an allocated budget of x j. If this job completes its
execution, the server will schedule the low-criticality tasks in
the same manner as in the previous phase. Otherwise, the job
will switch from the low-criticality mode to the high-criticality
mode and will continue to be executed until it completes or
the budget of the task group is used up; in the former case,
the server will schedule the low-criticality jobs in the same
manner as before until the budget of the task group is used up
(some low-criticality jobs may be dropped).

As above, inequality (1) should hold to ensure the budget
x j for τHI

j and the budget b1
i for each low-criticality task τLO

i .
Moreover, since the current job of τHI

j will switch to the high-
criticality mode if it cannot complete with the budget x j, the
budget received by τHI

j before the mode switch should be at
least equal to its LO-WCET. Therefore,

(k j +1)× x j ≥C
τHI

j
(LO) (3)

Phase III (the last h j − k j − 1 TG-periods): To achieve
the high-criticality guarantee, the scheduling in each of the
last h j− k j−1 periods of the task group is as follows: if the
current job of τHI

j has not completed in the considering TG-
period, it will be executed until it completes or the budget of
the task group is used up. Otherwise, the low-criticality tasks
are scheduled in ascending order of the task index, where each
task τLO

i is allocated a budget of b2
i ≥ 0.

Because all budget of the task group will be allocated to
the low-criticality tasks in the task group if the task group is in
the low-criticality job mode in this last phase, we can allocate
more budget to each low-criticality task. In other words,

0≤ b1
i ≤ b2

i (4)
Further, the total budget allocated to all the low-criticality tasks
should not exceed the budget of the task group, i.e.,

n

∑
i=1

b2
i ≤ B j (5)

TABLE I: An example task group: task parameters

Task ζi Ci(LO) Ci(HI) Ti Ui(LO) Ui(HI)

τHI
1 HI 0.6 2.4 3 0.2 0.8

τLO
1 LO 0.8 0.8 2 0.4 0.4

τLO
2 LO 0.6 0.6 3 0.2 0.2

0 2 64

0 2 64

0 2 64

1

1

1 3

3

3

5

5

5

0.6

0.25 0.55

0.3 0.3

0.55 0.25

0.6

LO

1

LO

2

HI

1

0.3

0.55

0.3

0.25

Fig. 2: A schedule of the example in the low-criticality mode.

0 2 64

0 2 64

0 2 64

1

1

1 3

3

3

5

5

5

0.85 0.60.85 0.7

LO
1

LO
2

HI
1

0.25 0.55

0.3

0.25

0.3

0.15

Fig. 3: A schedule of the example in the high-criticality mode.

We illustrate the scheduling mechanism using an example.

Example 1. Consider the task group T G1 depicted in Table
I, with period TT G1 = GCD(2,3,3) = 1. Suppose the budget
given to T G1 is B1 = 0.85 and the scheduling parameters are
k1 = 0, x1 = 0.6, b1

1 = 0.25, b2
1 = 0.55, b1

2 = 0 and b2
2 = 0.3.

Figures 2 and 3 each show two scheduling rounds for T G1: one
in which the high-criticality task always exhibits low-criticality
behavior, and one in which it exhibits high-criticality behavior.
Note that each round contains h j = T

τHI
1
/TT G1 = 3 TG-periods

and consists of only Phase II and Phase III (since k1 = 0).
First, consider Figure 2. In the first TG-period (Phase II),

the high-criticality task is first executed for x1 = 0.6 time
units and completes; hence, the low-criticality task τLO

1 is then
executed for b1

1 = 0.25 time units (τLO
2 is not executed since

b1
2 = 0). Since the task group is in low-criticality mode, the

low-criticality tasks τLO
1 and τLO

2 are executed in the second
and third TG-period (Phase III) for b2

1 = 0.55 and b2
2 = 0.3

time units, respectively. The second scheduling round works
similarly, except that in the last TG-period, τLO

1 finishes its
execution before using all of its allocated budget.

Now consider Figure 3. Here, τHI
1 exceeds its LO-WCET in

the first round, so the task group is switched to high-criticality
mode, and both low-criticality tasks are suspended (until τHI

1
completes). In the second round, however, τHI

1 remains in low-
criticality mode, so τLO

1 and τLO
2 are executed as usual, based

on their allocated budgets. (Note that in the first phase of this
round, i.e., time interval [3,4], neither τLO

1 nor τLO
2 is executed.

This is because the current job of τLO
1 has been dropped at time

3 when τHI
1 is released, whereas the budget allocated to τLO

2 is
b1

2 = 0.) We observe that only some jobs of the low-criticality
tasks miss their deadlines: the low-criticality jobs released in
the first round are suspended when τHI

1 is in the high-criticality
mode, but the low-criticality jobs released in the second round
are still schedulable. We can also validate that the task group
is mixed-criticality schedulable in the example schedules.

C. Schedulability Analysis

Consider any task group T G j = { τLO
1 , τLO

2 , ..., τLO
n , τHI

j }. We
first establish the mixed-criticality schedulability conditions for
T G j under the three-phase scheduling strategy with a given
budget B j and given scheduling parameters k j,x j,b1

i ,b
2
i (1 ≤

i≤ n), where x j,b1
i and b2

i are non-negative real numbers and
k j is a non-negative integer. We then derive the schedulability
conditions for a set of task groups on a processor.

Recall that l j
i = T

τLO
i
/TT G j is the number of task group

budget replenishments during each period of τLO
i , and h j =

T
τHI

j
/TT G j is the number of task group budget replenishments

in each period of the high-criticality task τHI
j (i.e., in a schedul-

ing round). Lemma IV.1 gives the scheduling conditions for
each low-criticality task τLO

i :

Lemma IV.1. Each low-criticality task τLO
i (1≤ i≤ n) can be

successfully scheduled if all of the inequalities (1)–(6) hold,
where the inequality (6) is given by

NmaxOL
i ×b1

i +(l j
i −NmaxOL

i)×b2
i ≥C

τLO
i
(LO), (6)

where NmaxOL
i = b l j

i
h j
c× (k j + 1)+min{l j

i mod h j,k j + 1} is
the maximum number of TG-periods in a period of τLO

i that
overlap with phases I and II of a scheduling round.

Example 2. Consider the task group depicted in Table II, with
budget B1 = 0.3, k1 = 1, b1

1 = 0 and b2
1 = 0.3. The maximum

number of TG-periods that overlap with the first k1 + 1 = 2
TG-periods during a period of the high-criticality task is min{3
mod 5,1+1}= 2. As demonstrated in Figure 4, there are two
overlapping TG-periods for the 1st and 4th releases of τLO

1 ,
one for the 2nd and 3rd releases, and zero for the 5th release.
We can validate that all jobs of τLO

1 can finish before their
deadlines.

TABLE II: An example task group: task parameters

Task ζi Ci(LO) Ci(HI) Ti Ui(LO) Ui(HI)

τHI
1 HI 0.6 1.5 5 0.12 0.3

τLO
1 LO 0.3 0.3 3 0.1 0.1

0 2 4 6 8 10 121 3 5 7 9 11 13 14 15

0 2 4 6 8 10 121 3 5 7 9 11 13 14 15

LO

HI
1

N
overlap
1 =2 N

overlap
1 =1 N

overlap
1 =2 N

overlap
1 =0

1

N
overlap
1 =1

Fig. 4: Number of overlapping TG-periods in Example 2.

Lemma IV.2. Every job of the high-criticality task τHI
j re-

ceives a budget of at least C
τHI

j
(LO) when it exhibits low-

criticality behavior and at least C
τHI

j
(HI) when it exhibits high-

criticality behavior by its deadline if the inequalities (1), (3)
and the following inequality hold:

k j× x j +(h j− k j)×B j ≥C
τHI

j
(HI) (7)

The next theorem is derived directly from Lemmas IV.1
and IV.2.

Theorem IV.1. Suppose each task group T G j = { τLO
1 , τLO

2 , ...,
τLO

n , τHI
j } is guaranteed to receive a budget of B j in each of its

period. Then, T G j is mixed-criticality schedulable under the
three-phase scheduling strategy with scheduling parameters

k j,x j,b1
i and b2

i (1 ≤ i ≤ n) if all of the inequalities (1)–(7)
are satisfied.

Remarks. We note that Theorem IV.1 holds regardless of
when exactly the task group is scheduled, because all tasks
are guaranteed to receive their allocated budgets as long as
the task group as a whole receives a budget of B j in each
period. In addition, the high-criticality behavior of a job of τHI

j
only affects some low-criticality jobs that need to be executed
during the period of this τHI

j job but not the ones that are
released after its deadline. Moreover, since each round of a
task group corresponds to a job of its high-criticality task,
each task group can switch from the high-criticality mode to
the low-criticality mode independently of each other, and the
system can switch to the low-criticality mode once all high-
criticality jobs in the system exhibit low-criticality behavior.

Let Sk be the set of task groups scheduled on a processor k.
Recall that each task group T G j ∈ Sk is scheduled with other
task groups in Sk as a conventional implicit-deadline periodic
task with period TT G j and execution time B j under EDF. Based
on the schedulable utilization bound of EDF [29], all task
groups in Sk are schedulable under EDF if their total utilization
is less than or equal to 1, i.e., Uk = ∑T G j∈Sk

B j/TT G j ≤ 1. In
other words, every task group T G j is guaranteed a budget of
B j in each of its period if Uk ≤ 1. The next theorem follows
directly from this observation and Theorem IV.1.

Theorem IV.2. Let Sk be the set of task groups scheduled on
processor πk (according to some task grouping algorithm). If
for all T G j = { τLO

1 , τLO
2 , ..., τLO

n , τHI
j } in Sk, there exist a non-

negative budget value B j ∈ R+ and non-negative scheduling
parameters k j ∈N (k j < h j) and x j,b1

i ,b
2
i ∈R+ for all 1≤ i≤ n

such that Uk = ∑T G j∈Sk
B j/TT G j ≤ 1 and the inequalities (1)–

(7) are satisfied, then all the tasks assigned to processor k are
mixed-criticality schedulable.

We note that, although Theorem IV.2 only gives a sufficient
analysis, our simulation shows that our partitioned scheduling
based on task grouping outperforms an existing partitioned
algorithm based on EDF-VD, and EDF-VD has been shown
to be optimal (if all deadlines are reduced by the same ratio)
on single processors for two-level MC systems from the
perspective of speedup bound [10].

Next, we present an algorithm based on Mixed Integer
Nonlinear Programming (MINLP) for grouping tasks into task
groups, as well as for computing the budget and scheduling
parameters of each task group.

D. Mixed Integer Nonlinear Programming for Task Grouping

Let τ(πk) =
{

τLO
1 , . . . ,τLO

n ,τHI
1 , . . . ,τHI

m
}

be the set of tasks
that are assigned to the processor πk based on some tasks-to-
processors packing algorithm. The goal of the task grouping is
to determine (a) for each high-criticality task τHI

j (1≤ j≤m) a
subset of the low-criticality tasks in τ(πk) that will be grouped
with τHI

j into the task group T G j, and (b) for each obtained
task group T G j, the values of the task group’s budget B j and
the following scheduling parameters: k j, the number of TG-
periods in scheduling Phase I; x j, the scheduling budget of the
high-criticality task τHI

j ; and b1
i and b2

i , the scheduling budgets
for each low-criticality task τi in T G j. Recall that the period
TT G j of T G j is a common divisor of the periods of all tasks

in T G j; to reduce the computation complexity, we fix TT G j to
be the greatest common divisor of all tasks in τ(πk). Thus,
l j
i = T

τLO
i
/TT G j and h j = T

τHI
j
/TT G j also become constants.

To this end, we define a MINLP for task grouping based
on the schedulability conditions of the task groups. Since the
task groups T G j (1 ≤ j ≤ m) are scheduled under EDF as
conventional implicit-deadline periodic tasks with periods TT G j
and budgets B j, the smaller their total utilization ∑

m
j=1 B j/TT G j

is, the better their schedulability will be. Therefore, the
objective of the proposed MINLP is to minimize the total
utilization, ∑

m
j=1 B j/TT G j , of the task groups so as to improve

their schedulability. The constraints of the MINLP are derived
directly from the mixed-criticality schedulability conditions of
the task groups (c.f. Theorem IV.2).

To enable a low-criticality task to use the overbooking of
multiple high-criticality tasks, we allow each low-criticality
task τLO

i to appear in multiple task groups, i.e., each job of
τLO

i can receive budget from more than one task group and
the job is executed whenever it is scheduled in a task group
that it belongs. Since all task groups are executed sequentially
on a single processor, τLO

i is never executed at the same time
by more than one task group. Hence, if the total budget that
τLO

i is guaranteed to receive in each of its periods from all of
its task groups is greater than or equal to its LO-WCET (=
HI-WCET), then τLO

i is schedulable.
Based on the above idea, we use m pairs of non-negative

real variables (b j,1
i ,b j,2

i) for each low-criticality task τLO
i (1≤

i ≤ n,1 ≤ j ≤ m) to represent the budgets that τLO
i receives

from task group T G j in the three scheduling phases of T G j
(instead of using a single pair of variables (b1

i ,b
2
i)). These

variables are also used to indicate whether τLO
i belongs to the

task group T G j: if b j,1
i = b j,2

i = 0, then τLO
i does not belong

to T G j, otherwise it does.
Based on Theorem IV.1, the task set τ(πk) is mixed-

criticality schedulable if all of the inequalities (1)–(7) are
satisfied for every task group T G j. Due to the above encoding
of low-criticality tasks, the constraints for each task group T G j

can be obtained by replacing b1
i with b j,1

i , b2
i with b j,2

i , NmaxOL
i

with NmaxOL
i, j in the inequalities and rewritting the inequality (7)

as ∑
m
j=1

(
b j,1

i × NmaxOL
i, j + b j,2

i × (l j
i − NmaxOL

i, j)
)
≥ C

τLO
i
(LO).

To reduce the computation complexity, instead of using the
inequality (1) (i.e., x j +∑

n
i=1 b j,1

i), we set B j = x j +∑
n
i=1 b j,1

i .
By merging all constraints, we obtain the MINLP formu-

lation shown in Figure 5. Constraints (1)–(7) correspond to
inequalities (1)–(7), and the remaining constraints are condi-
tions on the variables, as was discussed earlier.

Given an MC task set, if the total task group utilization
obtained from solution of the MINLP is more than one,
then this task set is unschedulable by the task group based
scheduling and will be rejected by the scheduler.
Complexity. If n and m are the number of low- and high-
criticality tasks in the task set, respectively, then the MINLP
has 2mn+ 6m constraints, m integer variables and m+ 2mn
real variables. Hence, the number of variables and constraints
is polynomially bounded in the size of the input problem (i.e.,
the task set size), and it can be solved by a fully polynomial-
time approximation scheme. The latter is therefore sufficient
to obtain all the scheduling parameters.

Minimize ∑
m
j=1((∑

n
i=1 b j,1

i + x j)/TT G j)
Subjected to
(1) B j = x j +∑

n
i=1 b j,1

i (j = 1, ...,m)
(2) k j× x j ≤C

τHI
j
(LO) (j = 1, ...,m)

(3) (k j +1)× x j ≥C
τHI

j
(LO) (j = 1, ...,m)

(4) 0≤ b j,1
i ≤ b j,2

i (i = 1, ...,n; j = 1, ...,m)

(5) ∑
n
i=1 b j,2

i ≤ B j (j = 1, ...,m)

(6) ∑
m
j=1

(
b j,1

i ×NmaxOL
i, j +b j,2

i × (l j
i −NmaxOL

i, j)
)
≥C

τLO
i
(LO)

(i = 1, ...,n; j = 1, ...,m)
(7) k j× x j +(h j− k j)×B j ≥C

τHI
j
(HI) (j = 1, ...,m)

(8) 0≤ k j ≤ h j−1 (j = 1, ...,m)
(9) x j ∈ R+ (j = 1, ...,m)

(10) b j,1
i ∈ R+ (i = 1, ...,n; j = 1, ...,m)

(11) b j,2
i ∈ R+ (i = 1, ...,n; j = 1, ...,m)

(12) k j ∈ N (j = 1, ...,m)

Fig. 5: MINLP formulation of the task grouping

Discussions. The MINLP formulation given in Figure 5 can
easily be modified to consider other types of constraints as
well – e.g., constraints on the number of task groups that
each low-criticality task can belong, constraints on the number
of low-criticality tasks in each task group, etc. Due to space
constraints, we omit them here.

E. EDF-based Two-phased Scheduling Strategy

The proposed budget-driven three-phased scheduling algorithm
within a task group (c.f. Section IV-B) may lead to high context
switch overhead when there is a large number of low-criticality
tasks in a task group. To avoid this drawback, we propose
a two-phased variant of the algorithm that schedules low-
criticality tasks based on EDF. (This version of the algorithm
is used in our evaluation.) Given a task group T G j with budget
B j and scheduling parameters k j and x j, the scheduling during
each round (i.e., period of the high-criticality task τHI

j in the
task group) works as follows:

Phase I (the first k j (0≤ k j ≤ h j−1) TG-periods): In each
TG-period, if there are some pending low-criticality jobs in the
task group, the current job of τHI

j is executed first for a specific
period of up to x j ≥ 0, and then the low-criticality jobs in the
task group are executed under the EDF policy. Otherwise, the
current job of τHI

j is executed until it completes or the budget
of the task group expires.

Phase II (the last h j−k j period(s) of task groups): In each
TG-period, the job of τHI

j is executed first until it finishes
and then the pending low-criticality jobs in the task group
are executed under the EDF policy. If the current job of τHI

j
exhibits high-criticality behavior, the low-criticality jobs that
cannot finish when their deadlines are reached or when a new
job of τHI

j is released are dropped.

Note that, unlike in the budget-driven three-phased schedul-
ing strategy, the (k j +1)th TG-period and the last h j−k j TG-
periods are considered as one phase in the EDF-based two-
phased scheduling strategy. The reason for this is that under
the three-phased strategy, different budgets (b1

i and b2
i) may

be used for each low-criticality task τLO
i in the (k j +1)th TG-

period and in the last h j−k j−1 TG-periods, whereas under the
EDF-based scheduling strategy, low-criticality tasks are always
scheduled using the EDF policy.

The schedulability under the EDF-based two-phased
scheduling strategy is given by the next theorem.

Theorem IV.3. If a task group T G j = { τLO
1 , τLO

2 , ..., τLO
n ,

τHI
j } is mixed-criticality schedulable under the three-phased

scheduling strategy with budget B j and scheduling parameters
k j,x j,b1

i ,b
2
i , then T G j is also mixed-criticality schedulable

under the EDF-based two-phased scheduling strategy with
budget B j and scheduling parameters k j and x j.

Example 3. Consider the task group shown in Table III, with
period 1, budget 0.9, k1 = 0 and x1 = 0.6. As illustrated in
Figure 6, all low-criticality tasks can be successfully scheduled
by the three-phased server with budgets b1

1 = 0.25, b2
1 = 0.55,

b1
2 = 0.05 and b2

2 = 0.35. From Figure 7, we can see that
an EDF-based schedule for the low-criticality tasks can be
obtained by interchanging some executions of τLO

1 and τLO
2 ,

resulting in a smaller number of context switches.

TABLE III: An example task group: task parameters

Task ζi Ci(LO) Ci(HI) Ti Ui(LO) Ui(HI)

τHI
1 HI 0.6 2.7 3 0.2 0.9

τLO
1 LO 0.8 0.8 2 0.4 0.4

τLO
2 LO 0.75 0.75 3 0.25 0.25

0 2 64

0 2 64

0 2 64

1

1

1 3

3

3

5

5

5

0.6

0.25 0.55

0.35 0.35

0.55 0.25

0.6

0.55

0.35

0.25

HI

1

LO

2

LO

1

0.05
0.05 0.35

Fig. 6: A budget-driven schedule.

0 2 64

0 2 64

0 2 64

1

1

1 3

3

3

5

5

5

0.6

0.3 0.5

0.4 0.35

0.55 0.25

0.6

0.2

0.7

0.6

HI

1

LO

2

LO

1

0.05

Fig. 7: An EDF-based schedule obtained by transposition.

Due to Theorem IV.3, we can determine the task groups
and their scheduling parameters for the EDF-based two-phased
scheduling algorithm by solving the MINLP formulated in the
previous section. A simple case study that illustrates the end-
to-end behavior and the benefits of our task-grouping-based
scheduling algorithm compared to an existing algorithm based
on virtual deadline [7] is provided in [28].
Remarks. The context switch overhead of EDF-based two-
phased scheduling can further be mitigated by considering the
slicing number of low-criticality tasks as a constraint in the
MINLP formulation and by extending analysis to allow other
values for the task group period and/or to determine the time of
the task group budget replenishment dynamically. In addition,
we can also enable service guarantee for low-criticality tasks
using a constraint on the number of task groups that each low-
criticality task can belong in the MINLP formulation.

V. TASK-GROUP-BASED PARTITIONED MC SCHEDULING

In this section, we present a partitioning algorithm for assign-
ing a set of mixed-criticality tasks τ to processors. We consider
a platform with p identical, unit-capacity processors, denoted
as π = {π1, ..., πp}. Our algorithm aims to balance the loads
across all processors, while selecting high-criticality (low-
criticality) tasks to assign based on decreasing high-criticality

(low-criticality) utilization. Let τHI = {τ1, ...,τn1} be the set
of high-criticality tasks and τLO = {τn1+1, ...,τn} be the set of
low-criticality tasks of the task set τ .

Algorithm 1 is our partitioning algorithm, written in
pseudocode. In this algorithm, the set of tasks allocated to
each processor π j is denoted by τ(π j). The low-criticality
utilization ULO(τi) and the high-criticality utilization UHI(τi)
of a task τi are defined as the task’s LO-WCET and HI-WCET
divided by its period, respectively. For brevity, we simply refer
to the high-criticality utilization of a high-criticality task (and,
similarly, the low-criticality utilization of a low-criticality
task) as that task’s utilization. Further, the cumulative task
group utilization for a set of tasks is the total utilization (i.e.,
budget divided by period) of all task groups of the task set
(determined using the MINLP method in Section IV-D).

Algorithm 1 Task group based MC partitioned algorithm.
1: τ(π j)← /0, for all j = 1, ..., p.
2: Sort high-criticality tasks τHI in decreasing order of high-criticality

utilization and then in decreasing order of low-criticality utilization.
3: Sort low-criticality tasks τLO in decreasing order of low-criticality utiliza-

tion and then in increasing order of period.
4: while τHI 6= /0 and τLO 6= /0 do
5: τselected←NIL
6: if τLO 6= /0 then
7: τselected← The first task in τLO

8: if τHI 6= /0 then
9: τ ′selected← The first task in τHI

10: if τselected =NIL or(
τselected 6=NIL and ULO(τselected)<UHI(τ

′
selected)

)
then

11: τselected← τ ′selected
12: Remove τselected from its set
13: Find a processor π j ∈ π that has a minimal cumulative task group

utilization for the tasks τ(π j)∪{τselected}
14: if the cumulative task group utilization for tasks τ(π j)∪ {τselected}

does not exceed 1 then
15: τ(π j)← τ(π j)∪{τselected}
16: else
17: return FAILURE
18: return SUCCESS

The algorithm starts by initializing τ(π j) to null (Line 1)
and by sorting high-criticality tasks and low-criticality tasks
(Lines 2–3). High-criticality tasks are sorted in decreasing or-
der of high-criticality utilization, and tasks with the same high-
criticality utilization are further ordered by decreasing low-
criticality utilization (Line 2). Low-criticality tasks are sorted
in decreasing order of low-criticality utilization, and tasks
with the same low-criticality utilization are further ordered by
increasing period (Line 3). Our reason for this sorting is as
follows: for high-criticality tasks with the same high-criticality
utilization, a task with a higher low-criticality utilization
typically has less overbooking; and for low-criticality tasks
with the same low-criticality utilization, the task with a smaller
period tends to have a lower utilization rate of overbooking,
since the task group period is chosen as the common divisor
of the periods of the tasks within the task group. However,
the algorithm can easily be extended to other sorting methods
(which we plan to investigate in future work).

The algorithm then selects the task τselected that has the
largest utilization (Lines 5–11), and removes it from its task
set (Line 12). Next, the algorithm selects a processor π j for
this task, such that the cumulative task group utilization for
this task along with the existing tasks on this processor is
minimal (Line 13); this is done to balance the load across

different processors. If the resulting minimum cumulative task
group utilization on the selected processor π j does not exceed
one, τselected is assigned to π j (Lines 14–15). Otherwise, the
algorithm aborts with a failure (Line 17). If every task is
successfully allocated to a processor, the algorithm reports
success (Line 18).

Based on Theorem IV.2, the resulting task allocation ob-
tained by Algorithm 1 always ensures that tasks on each
processor can be successfully scheduled by the task group
based scheduling strategy. It should be noted that the criticality
levels of the tasks on a processor may be the same; in this case,
all tasks on the processor are directly scheduled under EDF.

VI. EVALUATION

In this section, we experimentally compare the performance
of our proposed scheme, TG-PEDF, with the following parti-
tioned mixed-criticality scheduling algorithms:

• DC-RM: a partitioned scheduling algorithm from [9]
that is based on RM priority assignment;

• DC-Audsley: a partitioned scheduling algorithm
from [9] that is based on Audsley’s optimal priority
assignment;

• MC-Partition: a partitioned scheduling algorithm
based on EDF-VD (from [10]);

• EY-FF: a straightforward extension of EY [25] for
partitioned scheduling with the FF packing strategy
from [24];

• MPVD: an extension of EY for partitioned scheduling
with the hybrid packing strategy from [24];

• MPVD-HA: MPVD with the heavy low-criticality task
aware allocation policy from [24]; and

• MPVD-HA-BF: MPVD-HA with the optimized vir-
tual deadline tuning from [24].

Objectives. We have three main goals for our evaluation: (1)
to compare the performance of TG-PEDF in terms of mixed-
criticality schedulability to that of the above algorithms; (2) to
evaluate how well TG-PEDF can protect low-criticality jobs
when a high-criticality task is in high-criticality mode; (3) to
evaluate the deadline miss ratios of low-criticality tasks under
different frequencies of high-criticality tasks being in high-
criticality mode; (4) to evaluate the computational complexity
of TG-PEDF; and (5) to evaluate the effect of overbooking
by allowing a low-criticality task to appear in multiple task
groups in terms of schedulability on a uniprocessor.

For Objective (2), our metric is the impact ratio of low-
criticality tasks with respect to different percentages of high-
criticality tasks being in the high-criticality mode. We define
the impact ratio of low-criticality tasks as the fraction of such
tasks for which at least one job is dropped or misses its
deadline because a high-criticality task is in high-criticality
mode. The deadline miss ratio of low-criticality jobs is defined
as the fraction of low-criticality jobs that miss their deadlines.
Due to space constraints, some additional results are presented
in our technical report [28].

A. Workload

For our experiments, we used randomly generated task sets,
which we created using the algorithm from [7]. We set the
probability pCriticality that a task is a high-criticality task to

0.5. The period (relative deadline) Ti of each task τi was an
integer that was drawn uniformly at random from the interval
[5, 100]. The low-criticality WCET Ci(LO) of task τi was
drawn from [0.02 × Ti, 0.25 × Ti] and, if τi was a high-
criticality task, its high-criticality WCET Ci(HI) was drawn
from [2 × Ci(LO), 4 × Ci(LO)]. We define the normalized
average utilization Uavg(τ) of a task set τ to be:

Uavg(τ) =
ULO(τ)+UHI(τ)

2× p
(8)

where ULO(τ) and UHI(τ) are the cumulative low-criticality
utilization and the cumulative high-criticality utilization of a
task set τ , respectively. p is the number of processors.

Using the above parameters, we generated the tasks one
at a time until the following conditions on system utilization
were satisfied: (i) U∗avg−0.005 ≤Uavg(τ) ≤U∗avg+0.005; (ii)
ULO(τ) ≤ p; and (iii) UHI(τ) ≤ p, where U∗avg ∈ {0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975} and p ∈ {4,8,16}. For
each U∗avg and each p value, we generated 1,000 task sets for
each of the above eight algorithms.

Since the evaluation of the impact ratio of low-criticality
tasks and the deadline miss ratio of low-criticality jobs in-
volves expensive simulations, we used for this purpose 100
task sets randomly chosen from the generated task sets with
U∗avg ∈ {0.6,0.7,0.8,0.9} that can be scheduled by TG-PEDF.
We ran each simulation for 1,000,000 time units. To evaluate
the effect of resource overbooking on the schedulability for
different maximum numbers of high-criticality task groups that
a low-criticality task can belong to, we set pCriticality to 0.8,
and we randomly drew the low-criticality task utilization from
[0.01, 0.2] to generate more high-criticality tasks.

B. Results
Mixed-criticality schedulability. Figures 8a–8c show the frac-
tion of schedulable task sets versus the normalized average uti-
lization of the different algorithms in 4-processor, 8-processor,
and 16-processor systems, respectively.

We begin with a few observations about the existing
algorithms. First, the results for 8- and 16-processor systems
show that the performance of EY-FF decreased as the number
of processors increased. This is because the space for EY to
tune the virtual deadlines is reduced due to the unbalanced
allocation of high-criticality tasks. Second, the results in Figure
8c show that, in 16-processor systems, MPVD, MPVD-HA and
MPVD-HA-BF outperformed EY-FF by balancing the demand
of high-criticality tasks among different processors. MPVD-
HA enhances MPVD by assigning the heavy low-criticality
tasks to processors before the high-criticality ones, but the
performance of the two algorithms is similar when the task
sets contain few low-criticality tasks. MPVD-HA-BF aims to
improve schedulability using a new virtual deadline tuning
algorithm, and its schedulability is indeed better than MPVD
and MPVD-HA in most cases; however, the virtual deadline
tuning algorithm does not take the low-criticality tasks into
account, so it can affect schedulability even if the demand in
low-criticality mode is low. For this reason, MPVD-HA-BF did
not outperform EY-FF on the systems with 4 and 8 processors,
and it performed worse than MPVD and MPVD-HA on 16-
processor systems with higher average utilization.

Our main result is that TG-PEDF consistently outperformed
all existing partitioned MC scheduling algorithms. The perfor-
mance gap tends to widen as the average utilization of the

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized average utilization

Fr
ac

tio
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DC−RM
DC−AUDSLEY
MC−PARTITION
EY−FF
MPVD
MPVD−HA
MPVD−HA−BF
TG−PEDF

(a) 4-processor systems

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized average utilization

Fr
ac

tio
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DC−RM
DC−AUDSLEY
MC−PARTITION
EY−FF
MPVD
MPVD−HA
MPVD−HA−BF
TG−PEDF

(b) 8-processor systems

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized average utilization

Fr
ac

tio
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

DC−RM
DC−AUDSLEY
MC−PARTITION
EY−FF
MPVD
MPVD−HA
MPVD−HA−BF
TG−PEDF

(c) 16-processor systems

Fig. 8: Fraction of mixed-criticality schedulable task sets for different algorithms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of high−criticality tasks with high−criticality behavior

Im
pa

ct
 ra

tio
 o

f l
ow

−c
rit

ic
al

ity
 ta

sk
s

Uavg
* = 0.6

Uavg
* = 0.7

Uavg
* = 0.8

Uavg
* = 0.9

Fig. 11: Impact ratio of low-criticality tasks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

High−criticality job behavior probability

D
ea

dl
in

e
m

is
s

ra
tio

 o
f l

ow
−c

rit
ic

al
ity

 jo
bs

Uavg
* = 0.6

Uavg
* = 0.7

Uavg
* = 0.8

Uavg
* = 0.9

Fig. 12: Deadline miss ratio of low-criticality jobs.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized average utilization

Fr
ac

tio
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

Nsub
max = 1

Nsub
max = 2

Nsub
max = 3

Nsub
max = 10

Fig. 13: Effect of overbooking on schedulability.

task sets increases; the reason is that, as the number of tasks
increases, there are more and more opportunities for TG-PEDF
to find an appropriate task group for each low-criticality task.
Impact of high-criticality behavior on low-criticality tasks.
Figure 11 shows the impact ratio of the low-criticality tasks
for different percentages of high-criticality tasks with high-
criticality behavior on 4-processor systems. The results show
that only a certain fraction of low-criticality tasks are af-
fected, and that this fraction grows with the fraction of high-
criticality tasks that exhibit high-criticality behavior. This is
because, with TG-PEDF, the high-criticality behavior of a
high-criticality task can only affect low-criticality tasks that
are in the same task group with this high-criticality task, but
not low-criticality tasks in other task groups.

We make three additional observations. First, the
relationship is not exactly linear because some low-criticality
tasks are grouped together with more than one high-criticality
task, and can thus be affected by any one of these tasks.
Second, when all high-criticality tasks exhibit high-criticality
behavior (i.e., the ratio of high-criticality tasks with high-
criticality behavior is one), there are still some low-criticality
tasks that are not affected. The reason for this is that there
can be processors with only low-criticality tasks and no
high-criticality tasks, and these cannot be influenced by the
high-criticality behavior on other processors. Finally, the
results are not sensitive to different U∗avg values (the curves
corresponding to different system utilization values cross).
This is expected because the fraction of low-criticality tasks
that are affected depends primarily on the task grouping and
the fraction of high-criticality tasks that exhibit high-criticality
behavior instead of the system utilization.

Real-time performance of low-criticality tasks. Figure 12
shows the effect of high-criticality job behavior on the deadline

miss ratio of low-criticality jobs, using the 4-processor system
as an example. Not surprisingly, there are no deadline misses
when the probability of high-criticality job behavior is zero:
when the system exhibits low-criticality behavior, the task-
group-based scheduling can ensure that the system is schedula-
ble. As the probability of high-criticality job behavior rises, the
deadline miss ratio rises as well, but only gradually; the reason
is, again, that the high-criticality behavior of a job can only
affect low-criticality jobs with which it shares a task group,
but not low-criticality jobs in other task groups. Additionally,
since the isolation between task groups enables the system to
switch back to low-criticality mode once all high-criticality
tasks exhibit low-criticality job behavior (or, at a task group
level, even when only the local high-criticality task exhibits
low-criticality behavior), the deadline miss ratio of the low-
criticality jobs can be kept low even for long-running systems.

We also observe that the deadline miss ratio curves cor-
responding to different averge system utilization values cross
each other, i.e., a task set with a higher average utilization
may have a smaller deadline miss ratio of low-criticality jobs
than that of a task set with a lower average utilization. This
is not surprising, because the deadline miss ratio of low-
criticality jobs can become smaller as the total number of
low-criticality jobs increases, which can be the case when the
average utilization increases.

It is worth noting that the existing mixed-criticality
algorithms drop all of the low-criticality tasks in the system
as soon as a high-criticality job exhibits high-criticality
behavior, so they provide no real-time performance guarantee
for low-criticality tasks in the high-criticality mode.

Effect of resource overbooking on schedulability. Figure 13
illustrates the effect of enabling low-criticality tasks to use the
overbooking of multiple high-criticality tasks on the schedu-

lability of the task set on a uniprocessor. Here, Nmax
sub is the

maximum number of task groups for each low-criticality task.
The results show that the more high-criticality tasks that a low-
criticality task is executed with, the better the schedulability. In
addition, the schedulability gap tends to widen as the average
utilization of the task set increases, which further indicates the
effectiveness of using resource overbooking of high-criticality
tasks. We note that this can also lead to more high-criticality
tasks interfering with a low-criticality task; however, since
the low-criticality schedulability guarantee also reflects the
schedulability of low-criticality tasks, the resulting benefits
outweigh the additional interference.
Computation complexity. We also evaluated the time needed
per task set to group the tasks and to compute the task groups’
scheduling parameters in our experiments, when using the
APMonitor optimization suite [30] for solving the MINLP
problem. The results show that the formulated MINLP problem
can be solved efficiently (by a fully polynomial-time approx-
imation scheme): it took less than 105 ms across all task sets
in our experiments.

VII. CONCLUSION

We have proposed TG-PEDF, a partitioned scheduling tech-
nique for mixed-criticality multiprocessor real-time systems
that is based on task grouping. TG-PEDF works by associating
each high-criticality task with a subset of the low-criticality
tasks and by encapsulating them in separate task groups. Task
groups are scheduled with other task groups using the EDF
policy, while the tasks within each group are scheduled using
a server-based strategy that can ensure the mixed-criticality
guarantees. This strategy not only guarantees isolation among
high-criticality tasks, it also enables more low-criticality tasks
to meet their deadlines. TG-PEDF is also compositional: new
tasks can easily be composed with existing ones via task
groups. We have presented a schedulability analysis for the
system under the proposed scheduling strategy and an MINLP
formulation for the task grouping, as well as a packing algo-
rithm that considers criticality in task deployment to optimize
resource use. Our evaluation shows that TG-PEDF consistently
outperforms existing multiprocessor MC scheduling algorithms
in terms of system schedulability, while enabling better timing
performance for low-criticality tasks. As a future direction, we
plan to implement the proposed technique on a real platform
and study its real-time performance and scheduling overhead,
as well as to extend it to multiple criticality levels.

ACKNOWLEDGMENTS

The authors would like to thank Arvind Easwaran, Nan Guan and
Chuancai Gu for their inputs on the implementation of existing
algorithms, Andreas Haeberlen for his useful feedbacks on the paper,
and Guowei Wu for his support.

This work was supported in part by the NSF grants CNS 1117185,
ECCS 1135630 and CNS 1329984, the ONR grant N00014-13-1-
0802, the National Natural Science Foundation of China under Grant
No. 61173179 and 61202441, and the Fundamental Research Funds
for the Central Universities (No. DUT13JS10).

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007.

[2] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in RTSS, 2009.

[3] H. Li and S. Baruah, “Load-based schedulability analysis of certifiable
mixed-criticality systems,” in Proceedings of the tenth ACM interna-
tional conference on Embedded software, 2010.

[4] S. K. Baruah, V. Bonifaci, G. DAngelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Mixed-criticality scheduling of
sporadic task systems,” in Algorithms–ESA, 2011.

[5] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in
RTSS, 2011.

[6] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
ECRTS, 2012.

[7] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in RTSS, 2013.

[8] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-criticality real-time scheduling for multicore
systems,” in CIT, 2010.

[9] O. R. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of
fixed-priority mixed-criticality task sets,” in TrustCom, 2011.

[10] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, 2014.

[11] D. de Niz and L. T. X. Phan, “Partitioned scheduling of multi-modal
mixed-criticality real-time systems on multiprocessor platforms,” in
RTAS, 2014.

[12] “ISO/DIS 26262 road vehicles - functional safety,” http://www.iso.org.
[13] A. Burns and R. Davis, “Mixed criticality systems: A review,” Depart-

ment of Computer Science, University of York, Tech. Rep, 2013.
[14] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for

mixed criticality systems,” in RTSS, 2011.
[15] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-

criticality scheduling strictness for task sets scheduled with fp,” in
ECRTS, 2012.

[16] H.-M. Huang, C. Gill, and C. Lu, “Implementation and evaluation of
mixed-criticality scheduling approaches for periodic tasks,” in RTAS,
2012.

[17] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in DATE, 2013.

[18] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate of
low criticality tasks in mixed criticality system,” in WMC, 2013.

[19] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in WMC, RTSS, 2013.

[20] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service
adaptions for mixed-criticality systems,” Technical Report 350, ETH
Zurich, Tech. Rep., 2013.

[21] X. Gu, A. Easwaran, K. M. Phan, and I. Shin, “Compositional mixed-
criticality scheduling,” in CRTS, 2014.

[22] R. M. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in ECRTS, 2012.

[23] S. K. Baruah, “Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors,” IEEE Trans-
actions on Computers, 2004.

[24] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in DATE. IEEE, 2014.

[25] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-time systems, 2014.

[26] H. Su, D. Zhu, and D. Mossé, “Scheduling algorithms for elastic mixed-
criticality tasks in multicore systems,” 2013.

[27] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service
adaptions for mixed-criticality systems,” in ASP-DAC, 2014.

[28] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on
multiprocessors using task grouping,” Technical Report, University
of Pennsylvania, Tech. Rep., 2015. [Online]. Available: http:
//www.cis.upenn.edu/∼linhphan/papers/phan-ecrts15-tr.pdf

[29] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, 1973.

[30] J. D. Hedengren. (2014) Apmonitoroptimization suite. [Online].
Available: http://apmonitor.com

