
Improving Schedulability of Fixed-Priority
Real-Time Systems using Shapers∗†

Linh T.X. Phan Insup Lee
Department of Computer and Information Sciences, University of Pennsylvania

Email: {linhphan, lee}@cis.upenn.edu

Abstract—In this paper, we introduce a technique for improv-
ing the schedulability of real-time embedded systems with fixed-
priority scheduling. Our technique uses shapers to reduce the
resource interference between higher-priority and lower-priority
tasks, and thus enables more lower-priority tasks to be sched-
uled. We present a closed-form solution for the optimal greedy
shaper for periodic tasks with jitter, as well as a schedulability
condition for tasks in the presence of shapers. We also discuss
two applications of greedy shapers: In compositional scheduling
frameworks, shapers can help optimize the resource interfaces of
real-time components, and in mixed-criticality systems, they can
reduce deadline misses of low-criticality tasks while preserving
schedulability of high-criticality tasks, even with lower priorities.
We demonstrate the utility of our technique through an evalua-
tion based on randomly generated workloads.

I. INTRODUCTION

For the past several decades, fixed-priority (FP) scheduling has
been one of the most commonly used scheduling algorithms
in safety-critical real-time embedded systems, partly due to its
flexibility, its simple run-time mechanism, and its small over-
head [11]. However, in a fixed-priority system, low-priority
tasks often experience resource interference from higher-
priority tasks, which leads to long response times (compared to
systems that use dynamic schedulers, such as Earliest Deadline
First) and requires more resources to guarantee that the system
is schedulable. Hence, reducing interference from high-priority
tasks is critical to improving the schedulability and optimizing
the resource requirements of the system. In fully preemptive
FP, minimizing the interference due to preemption also helps
reduce cache-related overheads and energy consumption [7].

Several techniques for improving resource interference in
FP systems have been proposed (see e.g., [5]–[7], [13], [23],
[24]); however, most of these techniques assume a strictly
periodic task model. This assumption is overly conservative
for many reactive embedded systems, where tasks often exhibit
jitter, i.e., deviations from true periodicity. This jitter typically
comes from the release-delay overheads induced by tick-driven
scheduling [18], execution of interrupt service routines [4], or
I/O overheads. Other sources of jitter include delays caused by
scheduling, data dependencies, and communication, especially
in a distributed setting. For example, in ARINC avionics sys-
tems [2], tasks in different scheduling partitions are connected
over a switched Ethernet; due to network delay, tasks in a
∗This research was supported in part by the ARO grant W911NF-11-1-0403,

NSF grants CNS-1117185 and CPS-1135630, and MKE (The Ministry of
Knowledge Economy), Korea, under the Global Collaborative R&D program
supervised by the KIAT (M002300089).

†This is the author’s version, which fixes an error in Example 2 in the
official IEEE version.

partition are not always released strictly periodically, but with
a certain jitter. Automotive networks are another example:
here, sensor data are sampled at a constant rate, but the results
often pass through a series of electronic control units (ECUs)
and the bus before arriving at a given ECU. Since the resource
of each component is often shared among multiple tasks,
scheduling and task execution within a component can delay
the input data for a variable amount of time, which results
in jittery output. If this output is then used to activate the
successor task in the next component, this task will itself be
released in a jittery manner or (when the jitter exceeds the
length of a period) even in bursts.

One simple approach to dealing with jitter is to transform
each task with a jittery release pattern into a new peri-
odic/sporadic task with a shorter period [4]. Existing interfer-
ence reduction techniques for periodic tasks (e.g., [5]–[7], [13],
[23], [24]) can then be applied to the transformed task sets.
While this method is safe, the transformation can lead to overly
pessimistic schedulability analysis results. In addition, the
resulting smaller periods (of higher-priority tasks) exacerbate
the resource interference with lower-priority tasks, which can
diminish or even cancel out the benefits of the interference
reduction techniques. Further, these techniques modify the
behavior of FP to reduce the preemption overheads, which
often requires fine-grained information about the tasks’ code
structure or complex computation of preemption attributes
(e.g., [6], [23], [24]). A technique that does not change the FP
behavior or tasks’ attributes was proposed in [17]; however, it
requires the use of CPU frequency scaling, which may not be
available in all systems.

In this paper, we propose a technique based on shaping [3]
to improve the schedulability of FP systems that contain
periodic tasks with jitter. Our key observation is that, in
settings where tasks exhibit jitter, the resource interference
of higher-priority tasks on the lower-priority ones is much
higher than in a strictly periodic setting. Typically, the larger
the jitter of a higher-priority task, the higher the resource
interference it imposes on lower-priority tasks. By using
shapers to reduce the maximum jitter/burst, we can reduce
the interference, and thus enable more lower-priority tasks to
be scheduled. In this paper, we focus on the use of greedy
shapers, since they have a simple representation (as arrival
curves [3]), and they preserve the worst-case output arrival
patterns and can therefore be combined with component-based
analysis frameworks for distributed architectures (e.g., [22]).
Our technique based on greedy shaping also preserves both the
fixed-priority scheduler and the tasks’ parameters, so it can be

integrated into many existing fixed-priority systems (e.g., with
Deadline Monotonic and (D−J)-monotonic [25] schedulers).

Greedy shapers were first introduced in the context of
communication networks [3]. They are commonly used to
ensure that packets are sent at regular intervals rather than in
bursts, which results in lower queueing delays. In this setting,
schedulability or interference with lower-priority flows are
not primary concerns, so the choice of shaping functions is
straight-forward: a greedy shaper can use any function that is
at least equal to the arrival function of the source flow [3].
In safety-critical real-time embedded systems, however,
schedulability is crucial, so better shaping functions are
needed to meet the system’s timing and resource constraints.

Contributions. This paper makes the following contributions:

• We propose the use of shaping to reduce resource inter-
ference between tasks with jittery release patterns, which
improves schedulability and minimizes the total resource
demands of the system (Section III).

• We introduce a method for computing the optimal shaper
for the periodic-with-jitter task model (which minimizes a
task’s resource interference on lower-priority tasks with-
out affecting its schedulability), and we integrate shaping
into the schedulability condition (Sections IV and V).

• We discuss two applications of shapers. First, we
show how shapers can be integrated with compositional
scheduling frameworks, and we analyze their effect on the
components’ interfaces (Section VI). Second, we show
that in mixed-criticality systems, shapers can preserve
schedulability of high-criticality tasks while minimizing
deadline misses of low-criticality tasks (Section VII).

• We validate our technique with an evaluation using a
variety of real-time workloads. The results show that our
proposed technique can reduce the system’s deadline miss
ratio by up to 35%, and it reduces components’ interface
bandwidth by up to 33% compared to a reference system
without shapers (Section VIII).

Related work. To the best of our knowledge, this work is
the first to use shaping to reduce resource interference in FP
systems. Shaping was originally proposed for traffic shaping
in communication networks [3]. Wandeler et al. [19], [20]
extended it to the real-time domain but analyzes the end-to-
end delay and buffer requirements of existing shapers, rather
than designing new ones. Other work has designed shapers
for optimizing specific metrics; for instance, Kumar et al. [9]
showed how to compute a shaper that optimizes on-chip peak
temperature. However, Kumar’s approach to shaper design is
specific to the EDF scheduling, and is not applicable in an FP
setting for two reasons. First, optimality is proven assuming
that the processor is fully available to the output jobs of the
shaper; this is not the case in FP systems, where lower-priority
tasks do not receive the full capacity of the processor. Second,
Kumar uses the shaper to shape the combined demand of all
tasks in the system, but there is currently no technique for
computing the total demand of tasks with different deadlines
and WCETs that are scheduled under FP.

There is other work that has some similarities to shaping.
Sun and Liu [16] introduced the release guard protocol to
release subtasks of an end-to-end task periodically, which is
a special form of greedy shaper. Richter et al. [14] proposed
an event adaptation function (EAF), which transforms an event
stream into another that conforms to a given model. If an EAF
is given a periodic model, it effectively acts as a shaper; the
key challenge we solve in this paper is to design the model
such that it improves schedulability.

At a high level, shapers are also similar to servers, which
are commonly used to schedule aperiodic tasks together with
periodic tasks [12]. Servers do not guarantee any properties by
themselves, other than a limit on how much of the resource is
used by the tasks they encapsulate; in particular, they do not
consider the schedulability of the tasks they contain. Servers
are a general concept, and in theory one could design a server
that provides the same properties as a shaper, but then the
server would effectively become a shaper, and its design would
require an analysis similar to the one we propose here.

II. BACKGROUND

Task model. The system consists of N independent periodic
tasks with jitter (see e.g., [1], [18]), which are scheduled under
preemptive FP on a uniprocessor. Each task Ti is characterized
by (Pi,Ji,Ei,Di), with 0 < Ei ≤ min(Pi,Di), where Pi,Ji,Ei
and Di are non-negative real numbers that represent the task’s
period, jitter, worst-case execution time (WCET) and relative
deadline. The jitter Ji is the maximum delay between the
virtual ideal periodic release time of a job (of Ti) and its
actual release time. All tasks have hard deadlines; the absolute
deadline of a job of Ti is its actual release time plus Di.

(jitter window)

 an ideal periodic release point

Pi

time
0 113 2719 35 43

JiPi − Ji

first release

Fig. 1: A sample release pattern of Ti with Pi = 8, Ji = 6.

Figure 1 illustrates a sample release pattern of a task. We
assume that the scheduler maintains a ready queue for each
task, which contains all jobs of the task that are ready for
scheduling, and we write HP(Ti) (resp. LP(Ti)) to denote the
set of all tasks with a higher (resp. lower) priority than Ti.
Modeling resource demands. The release patterns of a task
can be modeled as an arrival function, which specifies the
maximum number of jobs that are released over any (left-open
or right-open) time interval of length t, for all t ≥ 0. Let R+

be the set of non-negative real numbers. The arrival function
of a task Ti with period Pi and jitter Ji is αi : R+→N, where

αi(0) = 0, and αi(t) =
⌈ t + Ji

Pi

⌉
, ∀ t > 0. (1)

The number of execution units requested by a task over any
time interval of a given length can then be modeled by its
request bound function (RBF). The RBF of a task Ti with
arrival function αi(t) and WCET Ei is given by:

rbf i(t) = Ei ·αi(t), ∀ t ≥ 0. (2)

Similarly, the minimum execution units that must be given to a
task to ensure its schedulability is modeled by a demand bound
function (DBF), which specifies, for each t ≥ 0, the maximum
number of execution units required by all jobs that are released
and that have deadlines within an interval of length t. The DBF
of a task Ti with relative deadline Di and RBF rbf i(t) is:

dbf i(t) = max
{

0, rbf i(t−Di)
}
, ∀ t ≥ 0.

We note that arrival functions and RBFs of periodic-with-
jitter tasks are good functions, i.e., they are sub-additive
and equal to zero at t = 0. Recall that f is sub-additive iff
f (t)≤ f (t− s)+ f (s) for all 0≤ s < t.
Modeling resource availability. The resource supplied by
a processor can be modeled by a supply bound function
(SBF), denoted by sbf (t), which gives the minimum number of
execution units available over any time interval of length t, for
all t ≥ 0. SBFs are also known as service functions (possibly,
after scaling to a task’s WCET) [3].

Consider a task T that is processed by a processor with SBF
f . Suppose g is the RBF of T , then the SBF of the minimum
remaining resource after processing T is given by [3]:

Remain(f ,g)(t) def
= sup

{
f (x)−g(x) | 0≤ x≤ t

}
. (3)

Further, if f ′ is the SBF of the remaining resource, then the
maximum value for the RBF of T is given by [21]:

RTInverse(f ′, f)(t) def
= f (t +δt)− f ′(t +δt) (4)

where δt = sup{ε | f ′(t + ε) = f ′(t)}.
Finally, let F be the set of increasing functions f : R+→

R+. We define the (min,+) convolution, deconvolution and
sub-additive closure of any f ,g ∈ F as follows. For all t ≥ 0:(

f ⊗g
)
(t) def

= inf
{

f (s)+g(t− s) | 0≤ s≤ t
}

; (5)(
f �g

)
(t) def

= sup
{

f (t +u)−g(u) | u≥ 0
}

; (6)
closure(f) = min{ f , f ⊗ f , f ⊗ f ⊗ f , . . .}. (7)

It follows that closure(f) is the maximum good function upper
bounded by f ; (f � f) is a good function; and f � f ≥ f .
Finally, we say f is larger (resp. smaller) than or equal to g
iff f (t)≥ g(t) (resp. f (t)≤ g(t)) for all t ∈ R+.

III. OVERVIEW OF OUR SHAPING APPROACH

Basic idea: Recall our assumption (from Section II) that the
scheduler maintains a separate ready queue for each task.
The idea is to optimize the resource usage of the system by
controlling these queues in such a way that (i) the interference
between jobs from different queues is minimized, and (ii) the
total resource requirements of all jobs within the system is
reduced without violating the jobs’ schedulability.

To achieve this, we insert a greedy shaper in front of
each ready queue to shape the arrival pattern of jobs that
are ready to be scheduled. The shaper can delay an already
released job for a certain amount of time so as to bound
the resource demands (requests) of the corresponding task
to a desired level. Effectively, each shaper reduces its task’s
resource interference with the lower-priority tasks. At the
same time, by postponing the execution of a higher priority

job just long enough so that it can still meet its deadline,
a shaper indirectly enables the scheduler to give resources
to the lower-priority jobs, which improves their schedulability.
System architecture: Figure 2 illustrates the architecture of a
system that implements the shaping technique. Each shaper
σi has an input buffer Bi, which is used to hold newly
released jobs before putting them into the ready queue Qi.
The scheduler does not need to be aware of the shapers – it
can schedule the jobs in the ready queues exactly as if there
were no shapers. We say that a shaper is feasible if it preserves
schedulability of all tasks in the system.

shaper

scheduler
…

released jobs

of task T1
σ1

shaper

buffer

ready
queue

shaperreleased jobs

of task T2
σ2

shaper

buffer

ready
queue

Q1

Q2

B
1

B
2

…

output data

output data

FP

Fig. 2: System architecture for a system with shapers.

Greedy shapers. Informally, a greedy shaper [3] forces its
output jobs to conform to a specific arrival function, the
shaping function, and it outputs the jobs as soon as the shaping
function allows it. In Figure 2, σi is the arrival function
used by Ti’s greedy shaper. For convenience, we also use σi
to indicate the greedy shaper itself, and we use the terms
“shaping function” and “shaper” interchangeably. Thus, the
shaper σi delays each released job in the buffer Bi whenever
placing the job to Qi would violate the shaping function σi.

Formally, suppose the shaper σi receives job k of Ti at time
tk (i.e., tk is the release time of job k), where 0≤ tk ≤ tk+1 for
all k ≥ 1. Then, it will output job k to Qi at time t ′k = tk +dk,
where dk = 0 if k = 1, and otherwise

dk = min{∆ | ∀1≤ j < k : k− j+1≤ σi(tk +∆− t ′j + ε)}

for an infinitely small positive value of ε . Intuitively, dk is the
minimum time that the shaper must delay job k to prevent its
ready time from violating σk; this is obtained by ensuring that
the number of ready jobs in every interval [t ′j, t

′
k] is no more

than σi(t ′k− t ′j + ε) for all j < k.
Example 1: Consider a task T1 with period P1 = 4 and jitter

J1 = 3, and suppose σ1 is a periodic arrival function with the
same period as the task, i.e., σ1(t) = dt/4e, for all t ≥ 0. Then
the shaper will output at most dt/4e jobs to the ready queue
over any interval of length t, or at most one ready job every
four time units. Figure 3 shows a release pattern of T1 and the
corresponding ready pattern after shaping.

0 4 8 12 16 20 24 26

0 4 8 12 16 20 24 26

(a) Original pattern
 of released jobs

(b) Shaped pattern
 of ready jobs

time

time

1st 2nd 3rd 4th 6th 7th 8th5th

Fig. 3: Effect of the shaper σ1(t) = dt/4e on T1 = (4,3,1,4).

In this pattern, due to jitter, jobs 3, 5 and 6 are released less
than 4 time units after their predecessors. Since the shaper
cannot allow more than one job to become ready within
a 4-unit interval, it delays these jobs; in the figure, this is
indicated by the dashed lines connecting release instants and

the corresponding (delayed) ready instants. Note also that the
ready pattern is less bursty and closer to a periodic pattern
than the original release pattern, and that the delay imposed
by the shaper is bounded.

In this paper, we assume that the shaper buffer is empty at
time 0, and it is is large enough to prevent job loss. In our
setting, this always holds because tasks are not released before
time 0, and the number of active jobs per task at any instant is
finite (otherwise, the task cannot be schedulable). In the rest
of the paper, the term “shaper” refers to “greedy shaper”.

IV. OPTIMAL SHAPER COMPUTATION

Our next goal is to compute an optimal greedy shaper for
each task Ti in the system, i.e., one that minimizes the
maximum response times of the lower-priority tasks. We begin
by introducing some basic properties of greedy shapers.

Theorem 4.1: Let Ei, αi and σi be the WCET, arrival
function and shaper of Ti, where σi is a good function. Then,

1) the jobs output by the shapers (i.e., the ready jobs of
Qi) are bounded by the arrival function α

gs
i = αi⊗σi;

2) the greedy shaper serves as a virtual resource that offers
a supply-bound function equal to Eiσi; and

3) if sbf i(t) is the SBF of the resource available to Ti in the
absence of shaping, then the effective resource available
to Ti in the presence of a shaper σi for Ti is bounded by
an SBF sbf gs

i = (Eiσi)⊗ sbf i.

The proof is straightforward (based on results in [3] (Section
1.5.2)) and has been omitted due to space limitations.

Definitions. Next, we formally define the concepts of feasi-
bility and optimality for greedy shapers. Let C be the original
system without shaping, and let Cσi be the same system with
the shaper σi applied to Ti for all 1≤ i≤N (recall that N is the
number of tasks in the system). Further, let R(Tj,C) denote
the maximum response time of task Tj in C for all 1≤ j≤ N.

Definition 1: A function σi is a feasible shaping function
for Ti if (i) it is a good function1, and (ii) Ti is schedulable in
Cσi if Ti is schedulable in C.

Thus, a feasible shaper always preserves the schedulability
of its task. Any shaping function larger than or equal to the
arrival function of a task is trivially feasible but has no effect
on the task’s ready pattern (i.e., as if there were no shaper),
so it is not useful for our purposes.

Definition 2: σi is an optimal shaper of Ti iff (i) it is a
feasible shaper of Ti, and (ii) for any feasible shaping function
σ̂i of Ti, R(Tj,Cσi)≤R(Tj,Cσ̂i

) for every Tj ∈ LP(Ti).
It implies that if a lower priority task of Ti is schedulable

under a feasible shaper σ̂i, then it is also schedulable under an
optimal shaper σi. Thus, an optimal shaper of a task not only
maximizes the number of schedulable tasks but also minimizes
the maximum response times of its lower priority tasks.

When using a feasible shaper, the effective RBF of the ready
jobs (output from the shaper) can be computed as follows:

1Since any function can be refined into a good function (e.g, by taking the
sub-additive closure), we require this condition for ease of presentation.

Lemma 4.2: The effective RBF of (the ready jobs of) Ti
with arrival function αi and feasible shaper σ

gs
i is given by

rbf gs
i = Ei(αi⊗σ

gs
i).

Proof: By substituting the shaping function into Theo-
rem 4.1(1), we obtain the arrival function of the output jobs
from the shaper σ

gs
i (i.e., input jobs to the ready queue Qi),

which is given by α
gs
i = αi⊗σ

gs
i . Hence, the effective RBF

of the ready jobs of Ti is rbf gs
i = Ei ·αgs

i = Ei(αi⊗σ
gs
i).

The next lemma states the monotonicity between shapers
and their resulting maximum response times of tasks:

Lemma 4.3: Suppose σi and σ̂i are two feasible shapers for
Ti. Then, the following holds:

1) If σi ≤ σ̂i, then R(Tj,Cσi) ≤ R(Tj,Cσ̂i
) for all Tj with

lower priority than Ti.
2) σi is optimal iff σi ≤ σ̂i for all possible values of σ̂i.
Proof: Let rbf gs

i and r̂bf
gs
i be the effective RBFs of the

ready jobs of Ti when using σi and σ̂i, respectively. Due to
Lemma 4.2, rbf gs

i = Ei(αi⊗σ
gs
i)≤ Ei(αi⊗ σ̂

gs
i) = r̂bf

gs
i . As a

result, the maximum resource interference that Ti imposes on
its lower-priority tasks when using σi is always less than or
equal to that when using σ̂i. Since the resource interference
that Ti’s higher-priority tasks impose on Ti’s lower-priority
tasks does not depend on the shaper that is used for Ti, we can
conclude that R(Tj,Cσi) ≤R(Tj,Cσ̂i

) for all Tj with a lower
priority than Ti, which implies (1). Part (2) follows directly
from part (1) and the definition of optimal shaper.

Since the arrival functions of the tasks are also feasible
shapers, it follows from Lemma 4.3 that a system in which
high-priority tasks implement feasible shaping functions that
are smaller than their respective arrival functions not only
preserves the schedulability of the system but also reduces
the maximum response times, and hence the schedulability,
of lower-priority tasks. Thus, from a schedulability and
resource-demand perspective, a system with feasible shapers
is always as good as, if not better than, one without shapers.
Computing the optimal shaper. Let f be an arrival function
and g be the service function of a task, i.e., g(t) gives the
minimum number of jobs that can be completed over any
interval of length t. Then, from [3], the maximum response
time (delay) of the task is the maximum horizontal distance
between f and g, denoted by dist(f ,g), where dist(f ,g) =
supt≥0{infd≥0{d | f (t) ≤ g(t + d)}}. The next theorem gives
the necessary and sufficient condition for feasible shapers.

Theorem 4.4: Let αi(t) and Di be the arrival function and
relative deadline of Ti, respectively, and let

γi(t) = max{0,αi(t−Di)}, ∀ t ≥ 0.

Then σi ∈ F is a feasible shaping function for Ti iff it is a
good function and σi ≥ γi.

Proof: (⇒) Let sbf i(t) be the SBF that bounds the resource
available to a task Ti in C and let βi = bsbf i/Eic. Then, βi(t)
is the service function of Ti in C. Since the set of tasks with
higher priority than Ti in C and Cσi are the same, βi(t) is also
the service function of Ti in Cσi .

Suppose Ti is schedulable in C. Then, sbf i(t) ≥ dbf i(t) =
Eiγi(t), which implies βi(t)≥ γi(t), for all t ≥ 0 (since γi(t) ∈

N). Let a(t) be a release pattern of Ti, i.e., a(t) denotes the
number of jobs that are released over (0, t] for all t ≥ 0.

If none of the jobs in the release pattern a(t) is delayed by
the shaper σi, then all jobs of Ti also meet their deadlines in
Cσi . Otherwise, there exists a job Jk of Ti that is delayed by the
shaper σi. Let tk and ts

k be the release time and the ready time
of Jk, respectively. Figure 4 illustrates the release and ready
patterns with respect to αi, σi and γi.

tk

time interval length Di

t

∆1 ∆2

σi

a(t)

jobs

γi

tk
s

αi

βi

0

Fig. 4: Job delay under shaping.

Since σi is a good func-
tion and the shaper outputs
Jk as soon as the resulting
output pattern does not vio-
late the arrival constraint of
the shaping function, the de-
lay of Jk at the shaper is the
minimum time interval d1
such that a(tk)≤σi(ts

k), with
ts
k = tk + d1. Since a(tk) ≤

αi(tk), we imply d1 ≤ ∆1,
where ∆1 is the horizontal
distance between the arrival

function αi and the point σi(ts
k) (see Figure 4). Further,

the maximum delay Jk experiences at the processor is the
minimum interval ∆2≥ 0 such that the number of jobs that can
be completed by the processor over an interval of length ts

k+∆2
is at least σi(ts

k), i.e., it is the minimum time interval ∆2 such
that βi(ts

k +∆2)≥ σi(ts
k). This time interval ∆2 is indicated by

the horizontal distance between σi(ts
k) and the service function

βi in Figure 4.
From the above, the maximum response time of Jk is d1 +

∆2 ≤ ∆1 +∆2
def
= ∆. There are two cases:

If βi(ts
k + ∆2) ≥ σi(ts

k): Then, ∆2 = 0 and ∆ ≤ ∆1 ≤
dist(αi,σi). Since σi ≥ γi, we imply ∆≤ dist(αi,γi).

Otherwise: Then, ∆ is no more than the horizontal distance
between the arrival function αi and βi(ts

k + ∆2). Thus, ∆ ≤
dist(αi,βi)≤ dist(αi,γi).

Hence, ∆≤ dist(αi,γi). Recall that γi(t)=max{0,α(t−Di)}
for all t ≥ 0. This implies dist(αi,γi) = Di. In other words, the
response time of Jk is no more than Di. Hence, Ti is also
schedulable in Cσi . Because σi is a good function, we then
imply that it is a feasible shaping function for Ti.
(⇐) Reversely, suppose σi(tk) < γi(tk) for some tk ≥ 0.

Since γi(t) = 0 for all t ≤ Di and σi(t) ≥ 0 for all t ≥ 0, we
have tk > Di. Let a(t) be the release pattern that coincides
the arrival function, i.e., a(t) = αi(t) for all t ≥ 0, where
a(t) is the number of jobs that are released over (0, t]. Then,
a(tk−Di)=αi(tk−Di)= γi(tk)>σi(tk). This implies that there
exists t ′k < tk−Di such that a(t ′k) = σi(tk), and subsequently,
there is a job in a(t) that is released at time t ′k and ready at
time tk. This job has a delay of at least tk− t ′k, which is larger
than Di and thus, it misses its deadline. In other words, σi is
not a feasible shaping function for Ti.

The next two corollaries follow directly from the above
theorem and Lemma 4.3(2) (see also Section II for the property
of the self-deconvolution).

Corollary 4.5: Let f ∈F be such that f (t) = dBi · t/Die for
all 0 ≤ t ≤ Di and f (t) = αi(t −Di) otherwise, where Bi =
αi(0+ ε) for an infinitely small positive value of ε . Then,
f � f is a feasible shaping function for Ti.

Corollary 4.6: The smallest good function σi that is larger
than or equal to γi is an optimal shaping function for Ti, where
γi is defined in Theorem 4.4.

Theorem 4.7: Let Bi = dJi/Pie and ∆i = min(Ji,Di). Define
σ

gs
i : R+→ N as follows:

∀ t ∈ R+, σ
gs
i (t) =

{⌈Bi
∆i

t
⌉
, if 0≤ t ≤ ∆i⌈ t+Ji−∆i

Pi

⌉
, otherwise.

Then, σ
gs
i is an optimal shaping function for the periodic-with-

jitter task Ti = (Pi,Ji,Ei,Di).
Proof: Recall that the arrival function of Ti = (Pi,Ji,Ei,Di)

is given by αi ∈ F where αi(0) = 0 and αi(t) =
⌈
(t + Ji)/Pi

⌉
for all t > 0. Let γi(t) = max{0, αi(t −Di)}, ∀ t ≥ 0. Then,
γi(t) = 0 if 0≤ t ≤ Di, and γi(t) =

⌈ t+Ji−Di
Pi

⌉
otherwise.

The proof can be established by showing that σ
gs
i is the

smallest good function that is larger than or equal to γi.
Intuitively, the second part of σ

gs
i has the same long-term

average slope as that of γi, whereas the slope of the first
part must be no less than both Bi/Ji and Bi/Di to ensure that
the function is sub-additive. We also require that the function
values are integers. Due to space constraints, we omit the
details here. The claim then follows via Corollary 4.6.
Figure 5 shows an example that applies the above theorem.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

arrival function

of released jobs

optimal shaping function

(arrival function of ready jobs)

Time interval length (time units)

N
u

m
b

e
r

o
f

jo
b

s

Fig. 5: Optimal shaper for a
task T = (5,16,1.4,5), com-
puted by Theorem 4.7. Note
the reduction in the maximum
bursts: in a unit time interval,
there can be up 4 new jobs
that are released but only one
new job that will be ready for
execution.

V. SCHEDULABILITY ANALYSIS WITH OPTIMAL SHAPING

Consider again the same task and its optimal shaper shown
in Figure 5. As a result of shaping, the corresponding arrival
function of the ready jobs after shaping is smaller than the
original arrival function of the released jobs before shaping.
This implies that the effective RBF of the ready jobs is smaller
than the RBF of the released jobs. Lower RBF values mean
that the task causes less interference to lower-priority tasks,
which we now exploit.

We denote by C∗ the system with N tasks Ti = (Pi,Ji,Ei,Di),
where each Ti uses a feasible shaper σ

gs
i (e.g., the optimal

shaper defined in Theorem 4.7). Recall that rbf i(t) is the
original RBF of Ti and rbf gs

i is the effective RBF of the ready
jobs of Ti in the presence of shaping (c.f. Lemma 4.2).

Theorem 5.1: Suppose Di ≤ Pi for all 1≤ i≤ N, and let

rbf i,C∗ = rbf i +
∑

Tj∈HP(Ti)

rbf gs
j .

Then, C∗ is schedulable iff for every Ti, there exists ti ∈ [0,Di]
such that rbf i,C∗(ti) ≤ sbf (ti) where sbf (t) is the SBF of the
processor’s resource available to C∗.

Proof: One can easily prove that a critical release pattern of
Ti (i.e., a release pattern that generates the maximum demand
from all its higher-priority tasks) in C∗ happens when each
higher-priority task of Ti is ready simultaneously with Ti,
and all future jobs of these higher-priority tasks are ready as
soon as possible. Since only the ready jobs of higher-priority
tasks of Ti can interfere with the execution of Ti, for any
interval of length t, the maximum resource interference of
a higher priority task Tj on Ti in the system C∗ is rbf gs

j (t).
Further, rbf i(t) is the maximum number of execution units
requested by Ti (note that σi does not change the requests
of Ti that must be completed to meet its deadline). Hence,
rbf i,C∗(t) = rbf i(t)+

∑
Tj∈HP(Ti)

rbf gs
j (t) is the worst-case cu-

mulative resource request of Ti over any interval of length
t. Therefore, the worst-case response time of Ti in C∗ is the
smallest time interval length ti such that rbf i,C∗(ti) ≤ sbf (ti).
Hence, Ti meets its deadline iff ti ≤ Di.

It can be observed from the above schedulability condition
that when using a shaping function larger than or equal to
the arrival function of the task, the schedulability analysis
of the system with shaping is reduced to the schedulability
analysis of the original system. The next example illustrates
the schedulability improvement when using optimal shapers.

51

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Time interval length (time units)

N
u

m
b

er
 o

f e
xe

cu
ti

on
 u

n
it

s

rbf1, C

rbf2, C

rbf3, C

sbf

d1 d2 d3

di : response time of Ti without shaping

rbf1,C"

rbf2,C"

rbf3,C"

D1# D2# D3#

✖"

✖"

No shaping

(a) T2 and T3 miss their deadlines!

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Time interval length (time units)

N
u

m
b

er
 o

f e
xe

cu
ti

on
 u

n
it

s

rbf1, C

rbf2, C

rbf3, C

sbf

d1 d2 d3

di : response time of Ti without shaping

sbf(t)"

rbf1,C*"

rbf2,C*"

rbf3,C*"

D1# D2# D3#

With shaping

 (b) All tasks are schedulable!

✓#
sbf(t)"

✗#

Fig. 6: Schedulability of the system in Example 2.
Example 2: Consider a system C with three tasks T1 =

(6,5,2,6), T2 = (8,7,2,8) and T3 = (10,0,2,10), which are
scheduled on a fully available unit-speed processor. T1 has the
highest priority and T3 has the lowest priority. The cumulative
RBF of Ti in C is denoted by rbf i,C(t), and the SBF of the
processor is denoted by sbf (t). These functions are given in
Figure 6(a). In this figure, the smallest time interval t at which
sbf (t) ≥ rbf i,C(t) is the maximum response time of Ti when
there is no shaping. From the figure, one can observe that both
rbf 2,C(t) and rbf 3,C(t) meet sbf (t) after the deadlines of T2 and
T3, respectively. Therefore, T2 and T3 miss their deadlines.

On the other hand, when each task Ti implements its optimal
shaping function (computed by Theorem 4.7), all tasks meet
their deadlines. This is illustrated by Figure 6(b). As before,
rbf i,C∗(t) is the cumulative RBF of Ti in the shaping system
C∗. From the figure, the response times of T1, T2 and T3 are
4, 6 and 6, respectively. Thus, all tasks are schedulable when
using shaping.

VI. INTEGRATING SHAPING INTO COMPOSITIONAL
SCHEDULING FRAMEWORKS

In this section, we demonstrate how shapers can be integrated
into a compositional scheduling framework (e.g., [8], [15]). In
this setting, the system is partitioned into a tree of components
that are scheduled hierarchically as illustrated in Figure 7(a).
There are two types of components: a composite component
consists of a set of child components or tasks (e.g., component
C), and an elementary component consists of a finite set
of tasks (e.g., C1, C2). Each component has its own local
scheduler for its child components/tasks.

The schedulability analysis of the system is done by means
of resource interfaces. An interface of a component captures
the resource supply required to feasibly schedule its child tasks
or child components. The interface is computed based on the
resource demands of the child tasks, and/or the interfaces
of any subcomponents. The interface of a component is
implemented as a task, which is scheduled by the parent com-
ponent’s scheduler (e.g., TC1). A component is schedulable
if its interface is schedulable by the parent’s scheduler. An
interface of a component is optimal (resp. bandwidth-optimal)
if its SBF (resp. its bandwidth) is smaller than, or equal to,
that of any other feasible interface of the component.

We illustrate our method using the explicit deadline periodic
(EDP) interface [8], since it is efficient and can easily be
transformed into a task. An EDP interface is characterized
by a period Π, an execution time Θ, and a deadline ∆. It
represents a resource that supplies Θ execution time units
during each period of length Π, within the first ∆ time units
after the start of each period. It has a bandwidth of Θ/Π, and it
can be transformed into a periodic task with period Π, WCET
Θ and deadline ∆. The SBF of an EDP interface is given in [8].

σ1

T1

C1*

DM

TC1*

σ2

T2

DM

σC2*σC1*

root component C*

σ3

T3

C2*

RM

σ4

T4

TC2*

T1

 DM

T2

DM

T3

 RM

T4

C1

root component C

C2

TC1 TC2

(a) No shaping (b) With shaping

DM: Deadline Monotonic, RM: Rate Monotonic

Fig. 7: A two-level compositional scheduling system.

Integration of shapers: We apply shaping to every component
that uses a FP local scheduler (e.g., RM, DM in the above ex-
ample). Each task Ti within any such component C implements
its own shaper (i.e., its released jobs will first pass through the
shaper before they are scheduled by C’s scheduler). Figure 7(b)
shows the system with shaping that corresponds to the original
one in Figure 7(a). We refer to C’s counterpart (with feasible
shaping added) as C∗. If Ti is a periodic task with jitter, its
shaping function is computed by Theorem 4.7. The shaping
function of any other general task model is computed based
on the task’s arrival function by using Corollary 4.5.

In Section V, we have shown that, if a system is
schedulable under FP, then the same system with feasible

shapers is also schedulable. Since this claim was proven for
any general resource characterized by an SBF, the same result
holds for a component within the compositional scheduling
framework. That is, if C is schedulable under FP, then C∗
is also schedulable under FP. Hence, the compositional
schedulability analysis in presence of shaping can be done
in the same manner as the conventional setting, except
that the interface of a component with shaper is computed
based on the schedulability condition stated in Theorem 5.1.
Next, we elaborate this interface computation for any given C∗.
Interface computation for a component with shaping: Let
σ

gs
i be the shaper of Ti as described above, for all Ti in C∗. As

usual, Di denotes the deadline of Ti, rbf i(t) denotes the RBF
of Ti (c.f. Equation (2)), and rbf gs

i denotes the effective RBF of
the ready jobs of Ti in presence of shaping (c.f. Lemma 4.2).

Theorem 6.1: An interface I can feasibly schedule C∗ iff
∀ Ti ∈ C∗, ∃ ti ∈ [0,Di] : rbf i,C∗(ti)≤ sbf I(ti)

where rbf i,C∗ = rbf i +
∑

Tj∈HP(Ti)
rbf gs

j is the cumulative RBF
of Ti in C∗ (which accounts for interference of its higher
priority tasks), and sbf I(t) is the SBF of I.

Proof: The theorem holds due to the schedulability condi-
tion of components with shaping given in Theorem 5.1.

Corollary 6.2: An interface Iopt is optimal (bandwidth-
optimal) for C iff it has the minimum SBF (minimum band-
width) among that of all interfaces I that satisfy the schedu-
lability condition given by Theorem 6.1.

Based on Corollary 6.2, we can compute the optimal
(bandwidth-optimal) interface for any shaping component C∗

by following the same procedure that was used for the
component C without shaping; the only difference is that we
use the updated cumulative RBFs rbf i,C∗ instead of rbf i,C .
The computation of interfaces of components that do not use
shapers (i.e., non FP components), and the transformation from
interfaces to tasks, can be done exactly as in the conventional
case (see [8] for EDP interfaces).

Since rbf i,C∗ ≤ rbf i,C for all FP components, the resource
needed to schedule the components when using shapers is
always smaller than or equal to the resource required in the
conventional setting. We end this section with an example to
illustrate the effect of shaping on its interface.

Example 3: Consider an elementary FP component C
that consists of three tasks Ti = (Pi,Ji,Ei,Di), where T1 =
(10,29,1,10), T2 = (15,28,1,15), T3 = (16,0,1,16), and the
priority order is T1 > T2 > T3. Our goal is to compute the
minimum-bandwidth EDP interface for this component, where
the maximum interface period is chosen to be Πmax = 32.

We first compute the shaper for each task using Theo-
rem 4.7, and derive the corresponding cumulative RBF rbf i,C∗
for each task Ti (c.f. the step functions in Figure 8(a)). We
then vary the interface period Π from 1 to Πmax, and for each
value Π, we find the corresponding Θ and ∆ that result in a
minimum bandwidth interface (Π,Θ,∆) whose SBF satisfies
Theorem 6.1. The minimum-bandwidth interface among the
interfaces for all values of Π is given by (Π = 3,Θ = 1.4,∆ =
1.4), which has a bandwidth of 0.4667(= 1.4/3). One can

0

2

4

6

8

Π+∆−2Θ =1.6

Θ =1.4

4.6 = 2Π+∆−2Θ

3

rbf1, C*

rbf2, C*

rbf3, C*

N
u

m
b

e
r

o
f

e
x

e
cu

ti
o

n
 u

n
it

s

4 8 12 16 20

Time interval length (time units)

d1 = 8.9
gs

d2 = d3 =15
gs gs

sbfEDP

10

(a) Shaping: BW = 0.4667,
(Π,Θ,∆) = (3,1.4,1.4).

4 8 12 16 200

2

4

6

8

10

12

d1 = 7.6

d2 = 14.6

d3 = 16

Θ = 0.57

1.44 = 2Π+∆−2Θ

1

sbfEDP

rbf1, C

rbf2, C

rbf3, C

N
u

m
b

e
r

o
f

e
x

e
cu

ti
o

n
 u

n
it

s

Time interval length (time units)

Π+∆−2Θ = 0.44

(b) No shaping: BW = 0.56,
(Π,Θ,∆) = (1,0.56,0.56).

Fig. 8: Minimum-bandwidth EDP interface for Example 3.

validate based on Figure 8(a) that this interface is sufficient
to schedule the task set because the maximum response time
dgs

i of Ti is always no more than Di.
In contrast, as illustrated in Figure 8(b), the minimum

interface of the component in the absence of shaping is
(Π = 1,Θ = 0.56,∆ = 0.56), which has a bandwidth equal
to 0.56. Hence, shaping reduces the interface bandwidth by
more than 16.6% in this single component alone.
Remarks: Since a feasible shaper for a task can be computed
based solely on its arrival function (Corollary 4.5), our tech-
nique is applicable to any task model that can be characterized
by an arrival function (e.g., a sporadic task). Further, it can
be plugged into any compositional scheduling framework that
uses supply/demand analysis for interface computation.

VII. SHAPERS IN MIXED-CRITICALITY SYSTEMS

In this section, we present an application of shapers to mixed-
criticality systems. In such systems, each task has – in addition
to its conventional timing parameters – a criticality level. There
are two scheduling objectives: (1) to guarantee that all high-
criticality (HC) tasks meet their deadlines; and (2) if objective
(1) is feasible, to minimize the deadline miss ratios of low-
criticality (LC) tasks, in decreasing order of priority. Note that
(2) is only one possible objective, which we follow so as to
confirm to the FP scheduler as much as is possible. In general,
the criticality of a task can change at runtime, depending on
the operating mode of the system. As a first step, we present
the technique for a single-mode scenario and for two levels of
criticality. Our goal is to illustrate that shaping is a promising
way to achieve the mixed-criticality scheduling objectives.

In the setting we consider, a shaper is feasible for a task
Ti iff it preserves the schedulability of Ti’s lower-priority
HC tasks. A shaper is optimal for Ti iff it is the smallest
feasible shaper for Ti that preserves the schedulability of Ti.
We require shapers are good functions.
Basic idea: We will use a combination of shaping and
interface techniques. By appropriately shaping LC tasks, we
can ensure that HC tasks meet their deadlines – even when they
have low priorities – while reducing the deadline miss ratios of
the LC tasks. Intuitively, since shapers can control the number
of tasks that are ready, we can reduce the resource contention
on HC tasks by designing shapers with sufficiently small

shaping functions for LC tasks.2 At the same time, by choosing
these functions as large as possible while still ensuring schedu-
lability of HC tasks, we can increase the resource utilization
and minimize the LC tasks’ deadline miss ratios. Towards this,
we compute for each task Ti an interface, called the critical
interface, that captures the minimum resource supply needed
to feasibly schedule all HC tasks with a priority smaller than
or equal to Ti’s. We then choose a shaping function for each
LC task such that the remaining resource after processing the
task satisfies its critical interface.

From the scheduling perspective, this approach offers two
main benefits: (1) it does not modify the scheduler, and thus
enables the conventional FP algorithm to be used in mixed-
criticality systems without violating the timing guarantees of
HC tasks; and (2) since the reduction in resource contention
is achieved entirely through shaping (and not by modifying
the scheduler), this approach can potentially be combined
with other mixed-critically scheduling algorithms to further
improve schedulability.

Computing shapers for mixed-criticality tasks: Since the
goal of the shaper for an HC task is the same as in systems
without mixed criticality (i.e., to ensure the task’s schedulabil-
ity and to minimize the resource interference on lower priority
tasks), the optimal shaper for HC tasks can be computed using
Theorem 4.7. The same theorem can be used for LC tasks with
a priority below that of all HC tasks, since such tasks cannot
interfere with any HC tasks. Let τLCHP be the set of remaining
tasks, i.e., LC tasks whose priority exceeds that of at least
one HC task. Let Ti be a task in τLCHP. Then Ti’s optimal
shaper can be derived from its critical interface and the SBF
of the resource available to it. The critical interface of a task
is defined by Lemma 7.1, which holds due to Corollary 6.2:

Lemma 7.1: Let Ci be a virtual component that consists of
all HC tasks that have a priority lower than or equal to Ti’s,
such that each task in Ci implements its own optimal shaper
as described above. Then the critical interface Ii of Ti is the
minimum SBF that satisfies the schedulability condition of Ci,
which is given by Theorem 6.1 (Section VI).

From Lemma 7.1, σi is a feasible shaper for Ti iff the SBF
of the remaining resource after processing the output jobs of
σi is at least Ii. Let βi be the SBF of the minimum resource
available to Ti. The effective RBF of the output jobs of σi is
rbf gs

i = Ei(αi⊗σi), where αi and Ei are the arrival function
and WCET of Ti (see Lemma 4.2). Combine with the results in
Section II, σi is feasible for Ti iff Remain(βi,rbf gs

i)≥ Ii (c.f.
Equation (3)). Since αi and σi are good function, the maximum
solution for αi⊗σi is σ crt

i
def
= closure

(
bRTInverse(Ii,βi)

Ei
c
)

where
closure(f) is the sub-additive closure of f (c.f. Equation 4).

Further, let σ
gs
i be the shaper computed using Theorem 4.7.

Recall that σ
gs
i is the smallest shaping function that ensures

that Ti meets its deadline. Also, σ
gs
i ≤ αi. As a result, the

optimal shaping function for Ti is min{σ crt
i ,σgs

i }.
Based on the above results, we can compute the optimal

2A smaller shaping function allows fewer jobs to arrive at the ready queue
over any time interval of a given length.

shapers for the tasks in a mixed-criticality system in decreasing
order of priority based on Theorem 7.2. In this theorem, βi(t)
denotes the SBF of the resource available to Ti, and β0(t) is
the SBF of the total resource given by the processor.

Theorem 7.2: Suppose that, for all 1 ≤ i, j ≤ N, where
N is the number of tasks in the system, Ti has higher
priority than Tj if i < j. Let αi and Ei be the arrival
function and the WCET of Ti, respectively. Then the op-
timal shaper for Ti is σi = σ

gs
i if Ti /∈ τLCHP; otherwise,

σi = min
{

σ
gs
i ,closure

(
bRTInverse(Ii,βi)

Ei
c
)}

,where β1 = β0 and
βi = Remain(βi−1,rbf gs

i−1) for all 2≤ i≤ N.
It can be derived that all the HC tasks are schedulable iff

β0 ≥I1, and an LC task is schedulable iff its shaping function
satisfies the feasibility condition in Theorem 4.4 (Section IV).
Since the system behaves as in the setting without mixed-
criticality after the shapers are fixed, the maximum response
time of a task can be computed as was done in Section V.

VIII. EVALUATION

In this section, we evaluate the proposed technique on ran-
domly generated fixed-priority task systems, in both stan-
dard FP scheduling and compositional scheduling settings.
In the fomer, we quantify (i) the degree to which shaping
can improve the schedulability of low-priority tasks under
high system load situations, and (ii) the relationship between
the tasks’ jitter values and the schedulability improvement
achieved by shaping. In the later, we quantify the amount
of resource interface bandwidth that can be saved by using
shapers in the FP components.
Experimental setup: We implemented the analysis techniques
from Sections V and VI in Matlab by extending the RTC
Toolbox [22]. For each scheduling setting, we randomly gen-
erated a collection of periodic-with-jitter task sets of size N
(specified below); and each task’s deadline was equal to its
period. The following parameters were chosen uniformly at
random: the task periods (as integers from [100,1000]), the
task set’s total utilization (from [Umin,Umax]), the utilization
values of the individual tasks (from (0,1), scaled by the
generated utilization of the task set) and each task’s jitter-to-
period ratio (from (0,2)). The tasks’ priorities were assigned
according to the Deadline Monotonic algorithm; ties were
broken based on the task indices.

A. Schedulability evaluation

For this experiment, we generated 1000 task sets with N = 200
tasks per set. Since we were interested in the schedulability of
the system, which is critical under high system load situations
for FP, we chose the utilization of each task set between Umin =
0.7 and Umax = 0.9. For each generated task set, we computed
the number of tasks that missed their deadlines, based on their
maximum response times.

Figure 9 shows the number of unschedulable tasks (i.e.,
deadline misses) for each task set with and without shaping.
The task sets are sorted by increasing utilization; the filled
and empty circles correspond to the results for individual
task sets with and without shaping, respectively. The results

0

20

40

60

80

100

120

0.75 0.80 0.85 0.90 0.95

Utilization

N
u

m
b

e
r

o
f

ta
sk

s
m

is
si

n
g

 d
e

a
d

li
n

e
s

 (
o

u
t

o
f

2
0

0
 t

a
sk

s
p

e
r

se
t)

0.70

No shaping

With shaping

Fig. 9: Total number of deadline misses for each task set.

show that the number of deadline misses without shaping was
strictly above the number of deadline misses with shaping,
consistently across all utilization values. For example, at a
utilization of 0.8, approximately 90 (out of 200) tasks miss
their deadlines without shaping, but only 40 tasks miss their
deadlines with shaping. In other words, shaping reduced the
number of deadline misses by 2.25 times. Note also that the
average reduction for the other utilization values is similar.

0.7 0.74 0.78 0.82 0.86 0.90
0

10

20

30

40

50

Utilization

D
e

a
d

li
n

e
 m

is
s

ra
ti

o

Im
p

ro
v

e
m

e
n

t
(%

)

Improvement value = MR - MRgs

MR (MRgs): Deadline miss ratio without (with) shaping

Fig. 10: Effect of shaping on reducing deadline miss ratio.
Figure 10 further illustrates the improvements when using

shaping with respect to deadline miss ratio (i.e., the ratio of
the number of unschedulable tasks to the total number of
tasks). Each improvement value is defined as MR−MRgs,
where MRgs (MR) is the deadline miss ratio with (without)
shaping. The results show that shaping can effectively reduce
the deadline miss ratio of the system by 20% to 35%.

Under high load situations, we also observe that, as the
utilization increases, the reduction achieved by shaping tends
to decrease slightly. This is expected: intuitively, if we keep the
same number of tasks, an increase in the task set’s utilization
implies an increase in the tasks’ WCETs (or a reduction in the
tasks’ periods). Hence, the tasks that used to be schedulable in
presence of shaping but unschedulable without shaping now
also become unschedulable under shaping, due to their higher
WCETs (or reduced periods).

Since shaping is only effective when tasks experience jitter,
we next investigated the relationship between jitter and the
performance of shaping. We varied the jitter-to-period ratio
from 0 to 2, in increments of 0.01. For each ratio, we generated
50 task sets, with N = 100 tasks per set and a utilization of
0.9. The other parameters were chosen as before.

Figure 11 shows the average improvement for each jitter-to-
period ratio. Here, the improvement starts at 0 and increases as
the jitter-to-period ratio increases. This trend continues until
the improvement reaches a peak (when the jitter is approxi-

mately equal to the period), and it slowly decreases again after
that. This near-bell-shape behavior is expected because when
there is no jitter, the system with shaping behaves exactly
as the one without shaping, so there is no improvement.

0 0.4 0.8 1.2 1.6 2.0
0

5

10

15

20

25

30

35

Jitter/Period ratio

D
e

a
d

li
n

e
 m

is
s

im
p

ro
v

e
m

e
n

t
(%

)

Improvement value = MR - MRgs

Fig. 11: Correlation between dead-
line miss ratio reduction and jitter.

As the jitter values increase,
more and more tasks be-
come unschedulable with-
out shaping but remain
schedulable under shaping,
so the improvement in-
creases. As was discussed in
the introduction, such large
jitters happen in many real-
time systems, such as dis-

tributed automotive networks. Observe also that, as is ex-
pected, when the jitter is too large, the task set becomes heav-
ily overloaded, so more and more tasks become unschedulable
even with shaping.
B. Interface computation evaluation

To illustrate the effect of shaping on component interfaces,
we considered the interface computation of a FP elementary
component that was part of a compositional scheduling frame-
work. For our experiment, we used the EDP resource model
as the interface representation, and we applied the technique
from Section VI to compute the optimal interface.

We generated 800 component workloads, with utilization
values drawn uniformly at random from [0.2,0.9]. Each com-
ponent workload had 20 periodic tasks with jitter; the other pa-
rameters were chosen as described under experimental setup,
except that the jitter-to-period ration was chosen from (0,1).
For each generated component workload, we computed the
optimal EDP interfaces for the component with and without
shaping. The maximum interface period was set to 1000.

Figure 12 shows the optimal bandwidths of the EDP inter-
faces corresponding to the generated component workloads,
sorted by increasing workload utilization. The correspond-
ing cumulative distribution functions (CDFs) of the interface
bandwidth are shown in Figure 13. As expected, when the
workload utilization increases, the interface bandwidth also
tends to increase.3 In both figures, the interface bandwidth
with shaping is always smaller than the interface bandwidth
without shaping, across all component’s workload utilization
values. Furthermore, the number of component workloads that
require an interface bandwidth larger than 1 (highlighted by
the shaded area in Figure 13) without shaping is at least 20%
larger than with shaping. Such component workloads are not
schedulable on a unit-one processor, even it is fully available.

In general, the above results show that shapers not only
reduce the interface bandwidth values but also minimize
the percentage of component workloads that require larger
interface bandwidths. This is illustrated more explicitly by
Figure 14, which shows the improvement of interface band-
width with shaping, compared to the conventional component

3Note that, the interface bandwidth in the presence of jitter is not strictly
an increasing function of the workload utilization because it depends on not
only the workload utilization but also on the jitter values of the tasks.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

With shaping

No shaping

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
0.20

Utilization of component’s workload

B
a

n
d

w
id

th
 o

f
co

m
p

o
n

e
n

t’
s

in
te

rf
a

ce

Fig. 12: Interface bandwidth with and
without shaping.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

x (interface bandwidth)

 F(x): the percentage of component

 workloads with interface bandwidth ≤ x

F
(x

)

No shaping

With shaping

unschedulable region

> 20%

Fig. 13: CDF of the interface bandwidth
with and without shaping.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.650.20

Utilization of component’s workload

35

30

25

20

15

10

5

0

In
te

rf
a

ce
 b

a
n

d
w

id
th

 i
m

p
ro

v
e

m
e

n
t

(%
)

Fig. 14: Interface bandwidth improvement
achieved using shaping.

without shaping. (The improvement percentage is defined by
100 ∗ (1− bwgs/bw), where bwgs and bw are the interface
bandwidths with and without shaping, respectively.) The figure
shows that, by shaping the tasks within the component, we can
reduce the component’s interface bandwidth by up to 33%,
or 17.5% on average. Moreover, the bandwidth reduction is
observed across all workload utilizations. Therefore, we can
conclude that shaping can minimize the resource needs (in
terms of bandwidth) not only when the component is heavily
loaded but also when it has a very light load. In other words,
for components with periodic tasks with jitter, it is always
advantageous to implement shapers.

In this evaluation, we have focused on the bandwidth reduc-
tion within a single component. Since the interface bandwidth
of the system increases proportionally with the number of
components, the total bandwidth that can be saved by using
shaping is also accumulated as the number of components
increases. This is also confirmed by our evaluation results;
due to space constraints, we omit the details here.

IX. CONCLUSION

We have presented a shaping-based technique that reduces
resource interference and improves schedulability of fixed-
priority systems. We have developed a closed-form solution
for computing the optimal shaper for periodic tasks with jitter
and for tasks that are characterized by an arrival function.
Also, we have presented a new schedulability analysis for
systems with shaping. We have also shown how shapers can be
integrated with compositional scheduling frameworks, and we
have described an application of shapers in mixed-criticality
systems. Our evaluation on random task sets shows that
shaping is highly beneficial: it can help reduce the system’s
deadline miss ratio by up to 35%, and it can reduce the
interface bandwidth up to 33%.

Shaping appears to be a promising technique to explore
in the context of real-time systems, and this paper is only a
first step. For instance, observe that shapers can be computed
independent of the underlying resource, so it seems feasible
to apply them to multiprocessor scheduling and distributed
systems. This could be an interesting direction for future
work. Extensive evaluation of the mixed-criticality shaping
technique presented in Section VII and its extensions to multi-
mode scenarios and more than two criticality levels is another
promising future direction for mixed-criticality systems. We
also plan to investigate the use of shaping in conjunction with

more complex methods for improving resource interference,
such as [24] and [17]. Finally, we plan to implement our
technique in the RT-Xen virtualization platform [10] to bring
its benefits to end-users.

REFERENCES

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority preemptive
scheduling. Journal of Real-Time Systems, 8(5):284Ð–292, 1993.

[2] Avionics Electronic Engineering Commitee(ARINC). ARINC Specifica-
tion 653-2: Avionics Application Software Standard Interface: Part 1 -
required services. Aeronautical Radio INC, Maryland, USA, 2005.

[3] J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume LNCS 2050.
Springer, 2001.

[4] B. B. Brandenburg, H. Leontyev, and J. H. Anderson. An overview of
interrupt accounting techniques for multiprocessor real-time systems. J.
Syst. Archit., 57(6):638–654, June 2011.

[5] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption. Real-Time Systems, 42:63–119, 2009.

[6] A. Burns. Preemptive priority-based scheduling: an appropriate engi-
neering approach. In Advances in real-time systems, pages 225–248.
Prentice-Hall, Inc., 1995.

[7] R. Dobrin and G. Fohler. Reducing the number of preemptions in fixed
priority scheduling. In ECRTS, 2004.

[8] A. Easwaran, M. Anand, and I. Lee. Compositional Analysis Framework
Using EDP Resource Models. In RTSS, 2007.

[9] P. Kumar and L. Thiele. Cool shapers: shaping real-time tasks for
improved thermal guarantees. In DAC, 2011.

[10] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky. Realizing compositional scheduling through virtualization.
In RTAS, 2012.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan 1973.

[12] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc, 2001.
[13] J. Regehr. Scheduling tasks with mixed preemption relations for

robustness to timing faults. In RTSS, 2002.
[14] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc

performance verification. Computer, 36(4):60–67, Apr. 2003.
[15] I. Shin and I. Lee. Compositional Real-time Scheduling Framework with

Periodic Model. ACM Transactions on Embedded Computing Systems
(TECS), 7(3):1–39, 2008.

[16] J. Sun and J. Liu. Synchronization protocols in distributed real-time
systems. In Distributed Computing Systems, 1996., Proceedings of the
16th International Conference on, pages 38–45. IEEE, 1996.

[17] A. Thekkilakattil, A. S. Pillai, R. Dobrin, and S. Punnekkat. Reducing
the number of preemptions in real-time systems scheduling by cpu
frequency scaling. In RTNS, 2010.

[18] K. W. Tindell. An extendible approach for analysing fixed priority hard
real-time tasks. J. Real-Time Systems, 6, 1994.

[19] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance analysis of
greedy shapers in real-time systems. In DATE, 2006.

[20] E. Wandeler, A. Maxiaguine, and L. Thiele. On the use of greedy
shapers in real-time embedded systems. ACM Trans. Embed. Comput.
Syst., 11(1):1:1–1:22, Apr. 2012.

[21] E. Wandeler and L. Thiele. Interface-based design of real-time systems
with hierarchical scheduling. In RTAS, 2006.

[22] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[23] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In RTCSA, 1999.

[24] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length
of non-preemptive regions under fixed priority scheduling. In RTCSA,
2009.

[25] A. Zuhily and A. Burns. Optimal (d-j)-monotonic priority assignment.
Information Processing Letter, 103(6):247–250, 2007.

