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Abstract—Real-Time Calculus (RTC) is a modular perfor-
mance analysis framework for real-time embedded systems. It
can be used to compute the worst-case and best-case response
times of tasks with general activation patterns and configurations,
such as pipelines of tasks that are connected via finite buffers.
In this paper, we extend the existing RTC framework to analyze
arbitrary graph configurations of tasks and messages, with mixed
periodic and event-based activation models and finite buffers
between any pair of nodes. Our extension also improves upon sev-
eral sources of pessimism in the existing analysis. We present an
application of the extended RTC to the Loosely Time-Triggered
Architecture (LTTA) implementation of synchronous models,
commonly used in the development of embedded automotive,
avionics and control systems. We show how our method can be
used to model scheduling and communication delays in an LTTA
mapping, which gives tighter analysis bounds on the output rate
and the latency compared to existing techniques. The evaluation
on automotive workloads shows that our approach is scalable and
outperforms existing techniques in terms of analysis accuracy.

I. INTRODUCTION

Originated from the Network Calculus [3], [7] in the net-
works domain, the Real-Time Calculus (RTC) [6] has been
proposed to model and analyze timing properties of software
task systems. RTC allows for the modeling of several task
activation patterns, such as sporadic events (with a minimum
and maximum inter-arrival time), periodic models with jitter,
and transactions in which tasks (messages) are activated by
the completion of their predecessors or new message arrivals.
RTC can also be used to analyze the system utilization [17]
and the timing behavior of tasks with dependencies, including
systems with feedback controls [4] and loops [13].

In this paper, we extend the existing RTC framework to
analyze general system configurations that consist of arbitrary
graphs of processes (representing tasks and messages). In such
systems, tasks and messages are scheduled based on their
priorities, and they can be activated in a mixed time- and
event-driven manner. Each root task (at the sensor end of the
system graph) is activated according to a sporadic or periodic
with jitter model, whereas an intermediate message or task is
activated by either a periodic clock or the completion (arrival)
of its predecessor, or in a mixed mode, as specified next. In
addition, any two tasks or messages can be connected via a
finite-length buffer (queue), which stores the activation infor-
mation or tokens. Such system configurations fit the standard
requirements in many complex distributed real-time systems,
e.g., in the automotive domain where electronic control units

(ECUs) and networks often employ priority-based scheduling,
and they are typically not synchronized.

We present an application of our method to the analysis
of Loosely Time-Triggered Architecture (LTTA) [1] imple-
mentations. LTTA is of practical relevance, not only due
to its prominence in many automotive and control systems
but because of the existence of LTTA implementations that
preserve the correctness of synchronous reactive (SR) models.
We provide a method for checking the assumptions required
by previous rate analysis, applied to the mapping of SR models
onto LTTA, such as the schedulability of all tasks within
the deadline or bounded communication delays. In addition,
we present a method for computing end-to-end latencies and
communication and scheduling delays. Unlike the work in [2],
which assumes the existence of an upper bound on commu-
nication delays (without addressing the related analysis) and
enforces a corresponding waiting time in the execution of
tasks, our method provides a way to compute safe bounds on
task and message delays and does not require modifications
to the task execution model.

In summary, the main contributions of this work are:
• We correct a flaw in the existing RTC formula for

computing the lower bounds on performance [6], [12],
which is important as the existing analysis may lead to
buffer overflows and unsafe timing behavior of the system
(Section III).

• We improve the RTC analysis for pipelines of tasks with
feedback controls [4] to enable more efficient analysis
and tighter results. We further propose an extension to
fork-and-merge topologies, thereby enabling the analysis
of general-type task graph configurations (Section IV).

• We present an application of our analysis method to the
analysis of synchronous models implemented in LTTA,
which improves upon the method in [14] in both ef-
ficiency and accuracy as well as modeling flexibility
(Section V).

• We illustrate the benefits of our method via evaluations
using both synthetic and automotive workloads. The
results show that our method outperforms existing RTC
methods in both efficiency and accuracy (Section VI).

II. SYSTEM MODEL

Our system model consists of an arbitrary acyclic graph
of statically allocated processes (representing tasks and mes-
sages). Tasks T = {τ1, τ2, . . . , τn} are scheduled on CPUs
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based on their priorities. Messages M = {µ1, µ2, . . . , µm} are
sent over communication (broadcast) buses and are associated
with a priority. When a bus is idle or at the end of a message
frame, an arbitration protocol ensures that the highest priority
message is transmitted next. Examples of standards supporting
this model are the OSEK/AUTOSAR OS and the controller
area network (CAN). Source tasks (in the graph) are activated
by triggers according to a sporadic or periodic (with jitter)
event model. Each intermediate task or message may be
activated by triggers, or by the completion of a predecessor
task or the arrival of an incoming message (modeled as an
activation token, possibly associated with information content
passed from the predecessor in the graph). If Θi is a reference
period for a task τi (or message µi), and δmi and δMi are
positive relative bounds, with 0 ≤ δmi < 1 and δMi ≥ 0, the
sequence of activation events θi(n) can be modeled as:

Θm
i = Θi(1−δmi ) ≤ θi(n+1)−θi(n) ≤ Θi(1+δMi ) = ΘM

i .
(1)

The trigger events of tasks are modeled by a stream ti(n):

ti(n) ∈ [θi(n), θi(n) + Ji], (2)

where Ji is the jitter. Equation (1) captures the effects of the
drift of a clock, or sporadic activations. Equation (2) captures
the effect of a periodic activation with jitter. In addition, a
pair of tasks, (τi, τj), or a task and a message, (µi, τj) or (τi,
µj), may be connected by a communication link li,j . Each
communication link li,j carries a limited number of activation
and information tokens, and is further characterized by a buffer
size Bi,j .

The general form of a task body is shown in the fol-
lowing code section. Line 2 (optional for intermediate tasks
and messages) represents a possible trigger-based activation.
The wait until condition of Line 3 is the union of an
activation model based on the completion of the predecessor
task or the arrival of a predecessor message (the first condition)
and a condition that ensures that communication buffers do not
overflow (the second condition in the conjunction). When both
Lines 2 and 3 are present, the activation model is mixed: the
task is activated by a trigger and then waits for tokens and
queue space availability.
1 while (true) {
2 wait trigger;
3 wait until (all input queues are non-empty

and all output queues are non-full);
4 read input from input queues;
5 execute body;
6 write output to output queues;
7 }

III. EXISTING ANALYSIS USING RTC

In this section, we present a background on RTC, some
analysis approaches using RTC, and a correction to a flaw in
the existing RTC theory.

A. RTC Background

The RTC [6], [12] uses the min-plus algebra or max-
plus algebra [3], [7] to analyze the timing performance of
computation and communication systems.

Definition 1: Let R+ = [0,∞) and f, g : R+ → R. The
common min-plus operators are:

• Minimum: (f ⊕ g)(t) = min(f(t), g(t)).
• Convolution: (f ⊗ g)(t) = inf0≤s≤t(f(s) + g(t− s)).
• Deconvolution: (f ⊘ g)(t) = supu≥0(f(t+ u)− g(u)).
• Zero element: f(t) = ∞,∀t.
• Unitary element: f0(0) = 0 and f0(t) = ∞,∀t ̸= 0.
• Sub-additive closure:

fn =
n⊗

i=1

f ; f∗ =
⊕
i≥0

f i; f+ =
⊕
i>0

f i.

The max-plus convolution and deconvolution are:
• Convolution: (f⊗g)(t) = sup0≤s≤t(f(s) + g(t− s)).
• Deconvolution: (f⊘g)(t) = infu≥0(f(t+ u)− g(u)).

RTC is based on the concepts of arrival and service functions
and curves. They are formally defined as follows:

Definition 2: An input arrival function R[s, t) is the
amount of load requests that arrive over the time interval [s, t).

Definition 3: An output arrival function R′[s, t) is the
amount of load that leaves the system (tasks completed or
messages transmitted) over the time interval [s, t).

Definition 4: An input service function C[s, t) is the
amount of available service (from a resource) over the time
interval [s, t).

Definition 5: An output service function C ′[s, t) is the
amount of remaining service over the time interval [s, t).
Since we are interested in bounding the worst-case behavior,
we need to extract the worst-case arrival curves from the
arrival functions R[s, t).

Definition 6: The increasing functions αu(t) and αl(t) are
the upper and lower arrival curves of R[s, t), respectively,
if ∀0 ≤ s ≤ t,

αl(0) ≤ 0; αu(0) ≤ 0; αl(t− s) ≤ R[s, t) ≤ αu(t− s).

The output is produced by the system based on the input
request and the availability of processing/transmission time,
represented by the service curves.

Definition 7: The increasing functions βu(t) and βl(t) are
the upper and lower service curves of C[s, t), respectively,
if ∀0 ≤ s ≤ t,

βl(0) ≤ 0; βu(0) ≤ 0; βl(t− s) ≤ C[s, t) ≤ βu(t− s).

Given a system with its (input) arrival curves αu and αl

and (input) service curves βu and βl, the following theorem
is provided in [6] to compute the output arrival curves and
output service curves (or remaining service curves).

Theorem 1: Given a system with αu, αl, βu, and βl, the
upper/lower output arrival/service curves are given by:

α′u = ((αu ⊗ βu)⊘ βl)⊕ βu; (3)
α′l = ((αl ⊘ βu)⊗ βl)⊕ βl; (*) (4)
β′u = max{(βu − αl)⊘ 0, 0}; (5)
β′l = (βl − αu)⊗ 0. (6)

These concepts are illustrated in Figure 1. A process is
triggered by incoming events, and events are processed in a
FIFO order subjected to resource availability. Causality can
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Fig. 1. (a) Causal dependency, (b) priority-based execution, and (c) backlog
and delay.
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Fig. 2. (a) The system has two processes. (b) The feedback control edge
is added to limit the services of the first process. (c) The resulting effective
service curve of the first process guarantees that the second buffer never
overflows.

be easily represented by a chain (Figure 1 (a)), where the
completion of each request by the subsystem P1 triggers a
request to P2. The vertical stacking along the line of the
service curve flow can be used to represent the priority-based
execution of requests on the same resource (Figure 1 (b))
with αH processed at priority higher than αL. Knowledge of
the arrival and service curves for a processing element allows
computing the maximal backlog and maximal delay [6].

Theorem 2: Given a system with αu and βl, the maximal
backlog and the maximal delay are:

bmax(α
u, βl) = sup{αu(t)− βl(t) | t ≥ 0}; (7)

dmax(α
u, βl) = sup

t≥0

(
inf

s≥0,αu(t)≤βl(t+s)
s

)
. (8)

As shown in Figure 1 (c), bmax is the maximal vertical distance
from βl to αu, whereas dmax is the maximal horizontal
distance from αu to βl. Unfortunately, Equation (4) is flawed.
We show why and provide a fix in the following.

B. Analysis by Feedback Control

In this section, we recall the analysis method for finite
buffers using the feedback control technique presented in [4]
with the approximations αl(t) = 0 and βu(t) = ∞ for all
t ≥ 0. Following the same notation as in [4], in this section,
α and β refer to αu and βl, respectively.

Figure 2 (a) illustrates the basic feedback mechanism for
two processes P1 and P2, connected by a finite queue of length
B2. To ensure that the backlog of the second process does not
exceed B2, R2 − R3 ≤ B2 or, R2 ≤ B2 + R3. The first
process P1 must be stalled when the queue is full. This can
be obtained by limiting the incoming processed load to the
minimum between R1 and B2 + R3 and is equivalent to a
feedback control before P1, as shown in Figure 2 (b). The
effective arrival of P1 therefore becomes R′

1 = min(R1, B2+
R3) (the queue is not shown since its effect is modeled by the
feedback). Given that R3 is computed based on β2 and R2,
and the latter is a function of the application of the service
curve β1 to R1, it seems reasonable to model the need for
stalling P1 by replacing the service β1 with a modified or
effective service curve γ1 function of β1, β2 and B2 [4]:

Theorem 3: Given a system with two processes and a
buffer between them, the effective service curve of the first
process is:

γ1 = β1 ⊗ [β1 ⊗ (β2 +B2)]
∗. (9)

The authors proceed to determine an upper bound for the
effective service curve of the first process (and the following)
in a pipeline configuration as a closed-form formula [4]:

Theorem 4: Given a system of a chain with n processes,
the effective service curve of the first process is:

γ1 = β1 ⊗

(
n⊕

i=1

i⊗
j=1

[βj−1 ⊗ (βj +Bj)]
+

)
. (10)

The above analysis only considers the upper bound of an
arrival curve and the lower bound of a service curve, and
it only considers a pipeline of processes. We are interested
in a more general formulation that allows for the treatment
of general graphs. Also, we observe that the analysis can be
simplified and made tighter. Specifically, the closed form of
Equation (10) is obtained by inductive reasoning using Equa-
tion (9) on pairs of communicating processes. When extending
a system from n to n+1 processes, the effective service curve
γ1 is computed by recursively using the effective service curve
γn = βn⊗[βn⊗(βn+1+Bn+1)]

∗ as in Equation (9). However,
instead of considering the effective values γ2, . . . , γn−1 of
the middle processes, only β2, . . . , βn−1 are used in the
equation. Hence, although the closed form solution given by
Equation (10) is sound, it may be pessimistic. In this paper, we
will take into account the effects of γ2, . . . , γn−1 on β1 via an
Effect-Propagation algorithm based on a compact and elegant
closed-form of Equation (9), as detailed in Section IV-B.

C. Analysis by Token Control

Another possible method for the analysis of systems with
buffered communication is provided in [13], where an equiv-
alent model is defined, in which processes are represented as
nodes, edges represent communication flows and tokens on
edges are activation events. Given a marked graph in which
the service curves βu

i and βl
i define the amount of service time

on vertex i and the number of tokens on edge (i, j) is denoted
as mij , the system matrices Su and Sl are defined as follows:

Su,l
ij =

{
βu,l
i +mji, if edge (j, i) exists;

∞, otherwise.
Then, the upper and lower bounds on the arrival function
at each edge are computed as Ru = (Su)∗ ⊗ βu and
Rl = (Sl)∗ ⊗ βl, where matrix S∗ is the min-closure [13] of
matrix S. Correspondingly, the upper and lower bound for the
arrival curve at each edge are computed as αu = Ru⊘Ru and
αl = Rl⊘Rl. The method is more general than the analysis
of task pipelines in [4], but can still be pessimistic, as shown
in Section VI.

D. Fixing the Lower Bound of the Output Arrival Curve

In several research works (including [4]) the lower bound
on the output arrival curve is computed using the formula in
Equation (4), first developed and demonstrated in [15], which
is unfortunately flawed. This is a critical issue because an
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overestimated lower bound is not safe, i.e., the real perfor-
mance may be slower than the computed lower bound and
lead to buffer overflows. We identify the problem with the
demonstration in [15] and fix it by providing a safe lower
bound.

We first recall the following two lemmas. The first is a result
from [15]. The second is trivially true, since the amount of
processing/transmission time that completes (and leaves the
system) over a time interval is no more than the amount of
available service time over the same time interval.

Lemma 1: If the buffer is empty at time p, then [15]
R′[p, t) = C[p, t)− sup

p≤a≤t
{C[p, a)−R[p, a)} .

Lemma 2: R′[s, t) ≤ C[s, t).
Theorem 5 provides a safe bound for the output arrival

function (the fix to [15]).
Theorem 5: A safe lower output arrival curve is:

α′l = (αl ⊗ βl)⊕ βl. (11)
Note that α′l = αl ⊗ βl if αl(0) = 0.

Proof: Assuming the buffer is empty at an arbitrarily
small time p (same as the demonstration in [15]),
R′[s, t) = R′[p, t)−R′[p, s)

= C[p, t)− sup
p≤a≤t

{C[p, a)−R[p, a)}−C[p, s)+ sup
p≤b≤s

{C[p, b)−R[p, b)}

= inf
p≤a≤t

{
sup

p≤b≤s
{R[b, a)− C[b, s) + C[a, t)}

}

= inf
p−s≤µ
µ≤t−s

{
sup

0≤λ≤s−p
{R[s− λ, µ+ s)− C[s− λ, s) + C[µ+ s, t)}

}

=min

 inf
p−s≤µ
µ≤t−s

 sup
0≤λ

λ≤s−p

{R[s−λ, µ+s)−C[s−λ, s)+C[µ+s, t)}

 , C[s, t)

 .

At this point, the proof in [15] incorrectly derives a lower
bound by extending the evaluation of the superior to λ ≥ 0
(as opposed to the original interval 0 ≤ λ ≤ s− p):

min

 inf
p−s≤µ
µ≤t−s

 sup
0≤λ

λ≤s−p

{R[s−λ, µ+s)−C[s−λ, s)+C[µ+s, t)}

 , C[s, t)


≥min

 inf
0≤µ

µ≤t−s

{
sup
λ≥0

{R[s−λ, µ+s)−C[s−λ, s)+C[µ+s, t)}
}

, C[s, t)

 .

This is not correct since the superior could be higher if
evaluated on a larger interval. A correct lower bound can
instead be obtained by restricting the evaluation of the superior
to the case λ = 0:

min

 inf
p−s≤µ
µ≤t−s

 sup
0≤λ

λ≤s−p

{R[s−λ, µ+s)−C[s−λ, s)+C[µ+s, t)}

 , C[s, t)


≥min

 inf
0≤µ

µ≤t−s

{
sup
λ=0

{R[s−λ, µ+s)−C[s−λ, s)+C[µ+s, t)}
}
, C[s, t)


= min

{
inf

0≤µ≤t−s
{R[s, µ+ s) + C[µ+ s, t)} , C[s, t)

}
= (R⊗ C)⊕ C ≥ (αl ⊗ βl)⊕ βl.

IV. RTC ANALYSIS OF GRAPHS WITH FINITE BUFFERS

We now extend the existing RTC analysis to consider
systems with general graph configurations and limited buffer
sizes.

A. Problem Description

A system can be modeled as a graph (V,E). If the in-degree
of a process (task or message) vi ∈ V is 0, then the input
arrival curve of the process is given; otherwise, the effective
input arrival curve of the process can be computed based on
the output arrival curves of its sources.
Problem statement: given a graph (V,E) with corresponding
input service curves, input arrival curves, and buffer sizes Bi,j

between vi and vj , compute the upper bound and the lower
bound of the effective output arrival curve for each vi such
that buffers never overflow.

Definition 8: A solution (set of pair of bounds) is correct
if any process request function outside the defined upper and
lower bounds results in a buffer overflow or underflow.

Finding a correct solution is clearly not enough, given that
∞ as an upper bound and 0 as a lower bound are always
feasible but do not allow any progress of the network. We are
interested in tight bounds, possibly optimal, according to the
definition below.

Definition 9: A correct solution is optimal if any decrease
in its upper bound or increase in its lower bound makes it
incorrect.

B. Effect Propagation

We first focus on a chain topology and improve on the bound
in Equation (10) from [4]. Our Effect-Propagation algorithm
follows the reverse topological order and propagates the effects
from the last process to the first. In each step, it uses the
service curve of the next process to update the service curve
of the current process:

γu
i = (γl

i+1 +Bi,i+1)⊕ βu
i ; (12)

γl
i = (γl

i+1 +Bi,i+1)⊕ βu
i , (13)

where Bi,i+1 is the buffer size between the i-th process and
(i + 1)-th process in the chain. Using (γl

i+1 + Bi,i+1) as a
constraint in the algorithm has several advantages:

• Guarantees that buffers never overflow (see Theorem 6).
• Provides a tighter bound on the effective service curves,

compared with Equations (9) and (10) in [4].
• Requires fewer operations, compared with Equations (9)

and (10) in [4].
• Applies to any acyclic graph, unlike Equation (10) which

can only be applied to a chain topology.
Theorem 6: The Effect-Propagation algorithm guarantees

that buffers never overflow.
Proof: By Equation (12) and the definition of ⊕ (min

operator), γu
i ≤ (γl

i+1+Bi,i+1). Similarly, considering the last
term of Equation (3) is βu

i , replaced by γu
i (effective service),

it is α′u
i ≤ (γl

i+1 +Bi,i+1). Also, α′u
i = αi+1 in the pipeline

configuration. Last, replacing β with γ in Equation (7), the
theorem is proved.

C. Fork and Merge Topologies

Handling fork and merge topologies is necessary for the
analysis of more general graph configurations. A fork topology
is shown in Figure 3 (a). When process P1 finishes its
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Fig. 3. Fork and merge topologies.

computation, it writes the result to both output buffers. The
effective service curve of P1 computed for the first branch is
an upper bound of the service for P1 that prevents overflow
on the corresponding buffer. The same is true for the curve for
the second branch. Therefore, the effective service curve of P1

can be obtained by considering the minimum service resulting
from the constraints on both sides, similar to Equations (12)
and (13):

γu
1 = (γl

2 +B1,2)⊕ (γl
3 +B1,3)⊕ βu

1 ;

γl
1 = (γl

2 +B1,2)⊕ (γl
3 +B1,3)⊕ βu

1 .

A merge topology is shown in Figure 3 (b). The successor
process P3 can only start its computation when both its input
buffers are non-empty. In this case, the problem also comes
from the effects of other input processes. For example, if P2

is slow, P1 needs to wait for P2 to prevent its output buffer
from overflowing. In this case, to guarantee that all buffers
do not overflow, we could use (α′l

1 ⊕ α′l
2 ⊕ γ3 + B1,3) and

(α′l
1 ⊕α′l

2 ⊕γ3+B2,3) to compute the effective service curves
of P1 and P2. Although this is correct, there is an opportunity
for computing tighter upper and lower bounds. As shown in
Figure 3 (b), if any input arrival curve is the minimum of all
arrival curves of P3, i.e., a′l1 = a′l1 ⊕ a′l2 or a′l2 = a′l1 ⊕ a′l2 , we
can use (a′l2 ⊕ γl

3 +B1,3) or (a′l1 ⊕ γl
3 +B2,3) to update β1 or

β2:

γu
2 =

{
(a′l1 ⊕ γl

3 +B2,3)⊕ βu
2 , if a′l2 = a′l1 ⊕ a′l2 ;

(α′l
1 ⊕ α′l

2 ⊕ γl
3 +B2,3)⊕ βu

2 , otherwise;

γl
2 =

{
(a′l1 ⊕ γl

3 +B2,3)⊕ βl
2, if a′l2 = a′l1 ⊕ a′l2 ;

(α′l
1 ⊕ α′l

2 ⊕ γl
3 +B2,3)⊕ βl

2, otherwise;

γu
1 =

{
(a′l2 ⊕ γl

3 +B1,3)⊕ βu
1 , if a′l1 = a′l1 ⊕ a′l2 ;

(α′l
1 ⊕ α′l

2 ⊕ γl
3 +B1,3)⊕ βu

1 , otherwise;

γl
1 =

{
(a′l2 ⊕ γl

3 +B1,3)⊕ βl
1, if a′l1 = a′l1 ⊕ a′l2 ;

(α′l
1 ⊕ α′l

2 ⊕ γl
3 +B1,3)⊕ βl

1, otherwise.

The minimum does not always exist because a′l1 ⊕ a′l2 may
not be the same as either a′l1 or a′l2 . When applicable, this
bound is correct because the process with minimum arrival
curve never waits for itself, while the other processes wait for
it. Theorem 7 will demonstrate that buffers never overflow.

In more general graph configurations, cross-dependencies
between fork and join nodes require the evaluation of the

Algorithm: Fork-Merge-Extension(V,E, αu, αl, βu, βl, B)
01 Sort V by the topological order;
02 while 1
03 for i = 1 to |V |
04 if in-degree(vi) > 0
05 αu

i =
⊕

j∈Si
α′u
j ;

06 αl
i =

⊕
j∈Si

α′l
j ;

07 α′u
i = ((αu

i ⊗ βu
i )⊘ βl

i)⊕ βu
i ;

08 α′l
i = (αl

i ⊗ βl
i)⊕ βl

i;
09 (γu, γl) = (βu, βl);
10 if all buffers are not overflowed
11 return γu and γl;
12 for i = |V | to 1
13 if out-degree(vi) > 0
14 V ′ = {v|v ∈ V, (vi, v) ∈ E};
15 for each v ∈ V ′

16 j = the index of v in V ;
17 if in-degree(vj) > 1 and α′l

i ̸= αl
j

18 γu
i = (αl

j ⊕ γl
j +Bi,j)⊕ γu

i ;

19 γl
i = (αl

j ⊕ γl
j +Bi,j)⊕ γl

i;

20 else if in-degree(vj) > 1 and α′l
i = αl

j

21 α̂l
j =

⊕
k∈Sj\{i} α′l

k;

22 γu
i = (α̂l

j ⊕ γl
j +Bi,j)⊕ γu

i ;

23 γl
i = (α̂l

j ⊕ γl
j +Bi,j)⊕ γl

i;
24 else
25 γu

i = (γl
j +Bi,j)⊕ γu

i ;

26 γl
i = (γl

j +Bi,j)⊕ γl
i;

27 if (βu, βl) = (γu, γl)
28 return (γu, γl);
29 (βu, βl) = (γu, γl);

Fig. 4. The Fork-Merge-Extension algorithm.

propagation of the corresponding conditions on flows across
nodes. Consider, for example, Figure 3 (c). In this case, if
P2 is faster than P3, then P2 will be stalled at some point,
because P5 cannot go faster than P3 and, in turn, in order
not to overflow its output buffer, P2 will need to match the
slower rate of P5. Also, if P1 is faster than P2, then P1 needs
to wait for both P2 and P3, i.e., the effect of our bounded
buffers on processing speeds will propagate from P3 to P1.
The generalized Fork-Merge-Extension algorithm is shown in
Figure 4. Before introducing the algorithm, it is useful to
introduce some definitions on the graph (V,E) with n = |V |
processes and m = |E| edges.

• Si: the index set of the sources of Pi.
• T−

i : the index set of the non-merging targets of Pi.
• T>

i : the index set of the merging targets of Pi.
The Fork-Merge-Extension algorithm is summarized as fol-
lows:

• In Phase 1 (Lines 3–8), scan all processes following the
topological order:

– For any process with in-degree larger than 0, set the
input arrival curve bounds as

(αu
i , α

l
i) =

⊕
j∈Si

α′u
j ,
⊕
j∈Si

α′l
j

 . (14)

– For any process, set the output arrival curve bounds
as

α′u
i = ((αu

i ⊗ βu
i )⊘ βl

i)⊕ βu
i ; (15)

α′l
i = (αl

i ⊗ βl
i)⊕ βl

i. (16)

231



• In Phase 2 (Lines 12–26), scan all processes, following
a reverse topological order:

– For any process with out-degree equal to 0, set the ef-
fective service curve bounds as (γu

i , γ
l
i) = (βu

i , β
l
i).

– For any other process, define
T ∗
i = {j ∈ T>

i |a′l
i = al

j}; (17)

α̂l
j =

⊕
k∈Sj\{i}

α′l
k , (18)

and set the effective service curve bounds as
γu
i =

⊕
j∈T−

i

(
γl
j +Bi,j

)
⊕
⊕
j∈T∗

i

(
α̂l
j ⊕ γl

j +Bi,j

)
⊕

⊕
j∈T>

i \T∗
i

(
αl
j ⊕ γl

j +Bi,j

)
⊕ βu

i ; (19)

γl
i =

⊕
j∈T−

i

(
γl
j +Bi,j

)
⊕
⊕
j∈T∗

i

(
α̂l
j ⊕ γl

j +Bi,j

)
⊕

⊕
j∈T>

i \T∗
i

(
αl
j ⊕ γl

j +Bi,j

)
⊕ βl

i. (20)

• After Phase 2, update all service curves
– For any process, (βu

i , β
l
i) = (γu

i , γ
l
i).

and iterate the two phases until no buffers overflow.
During the computation of the propagation effects, there can
be three cases. An example of the first case (Lines 17–19)
is shown in Figure 3 (c), where the algorithm considers the
input arrival curve of P5 (since P5 may be slowed down by
both P2 and P3) and then propagates the effects to both P2

and P3. An example of the second case (Lines 20–23) is also
shown in Figure 3 (c) if a′l2 = a′l2 ⊕ a′l3 . where the algorithm
does not need to consider the output arrival curve of P2 (since
P2 does not need to wait itself). An example of the third case
(Lines 24–26) is shown in Figure 3 (d), where the algorithm
does not need to consider the input arrival curve of P5 (since
P2 only needs to know the lower service curve of P5), and
the algorithm can directly propagate the effects to P2.

D. Feasibility and Convergence

We have the following three lemmas for the three cases:
Lemma 3: The buffer between Pi and Pj does not overflow

if j ∈ T−
i and

sup
t
(α′u

i (t)− βl
j(t)) ≤ Bi,j . (21)

Proof: Since j ∈ T−
i , Pj is non-merging with only one

input buffer, and αu
j = α′u

i . By Theorem 2, the maximal
backlog is supt(α

u
j (t)−βl

j(t)) = supt(α
′u
i (t)−βl

j(t)). Hence,
the buffer does not overflow if supt(α

′u
i (t) − βl

j(t)) ≤ Bi,j .

Lemma 4: The buffer between Pi and Pj does not overflow
if j ∈ T ∗

i and

sup
t

(
α′u
i (t)− α̂l

j(t)⊕ βl
j(t)
)
≤ Bi,j . (22)

Proof: The process can at least provide α̂l
j ⊕ βl

j service,
and the following is similar to Lemma 3.

Lemma 5: The buffer between Pi and Pj does not overflow
if j ∈ T>

i and

sup
t

(
α′u
i (t)− αl

j(t)⊕ βl
j(t)
)
≤ Bi,j . (23)

Proof: The process can at least provide αl
j ⊕ βl

j service,
and the following is similar to Lemma 3.
Note that αl

j(t)⊕βl
j(t) ≤ α̂l

j⊕βl
j ≤ βl

j(t), hence Equation (23)
is stricter than Equation (22), and Equation (22) is stricter
than Equation (21). This also means that a stricter condition
is required for a merging process than a non-merging process.

We now demonstrate the correctness of the Fork-Merge-
Extension algorithm (always computes a correct solution). We
first introduce a lemma:

Lemma 6: For any process, α′u
i ≤ βu

i .
Proof: α′u

i = ((αu
i ⊗ βu

i )⊘ βl
i)⊕ βu

i =⇒ α′u
i ≤ βu

i .
Theorem 7: The Fork-Merge-Extension algorithm returns a

feasible solution which guarantees the buffers do not overflow.
Proof: If the service curves of all processes are not

changed (Lines 26–27), i.e., ∀i, (βu
i , β

l
i) = (γu

i , γ
l
i), then, ∀i,

βu
i =

⊕
j∈T−

i

(
βl
j +Bi,j

)
⊕
⊕
j∈T∗

i

(
α̂l
j ⊕ βl

j +Bi,j

)
⊕

⊕
j∈T>

i \T∗
i

(
αl
j ⊕ βl

j +Bi,j

)
⊕ βu

i ,

which implies βu
i ≤ (βl

j +Bi,j), ∀j ∈ T−
i ;

βu
i ≤ (α̂l

j ⊕ βl
j +Bi,j), ∀j ∈ T ∗

i ;
βu
i ≤ (αl

j ⊕ βl
j +Bi,j), ∀j ∈ T>

i ,
(24)

and

sup(α′u
i − βl

j) ≤ sup(βu
i − βl

j)
≤ sup(βl

j +Bi,j − βl
j) = Bi,j , ∀j ∈ T−

i ;
sup(α′u

i − α̂l
j ⊕ βl

j) ≤ sup(βu
i − α̂l

j ⊕ βl
j)

≤ sup(α̂l
j ⊕ βl

j +Bi,j − α̂l
j ⊕ βl

j) = Bi,j , ∀j ∈ T ∗
i ;

sup(α′u
i − αl

j ⊕ βl
j) ≤ sup(βu

i − αl
j ⊕ βl

j)
≤ sup(αl

j ⊕ βl
j +Bi,j − αl

j ⊕ βl
j) = Bi,j , ∀j ∈ T>

i .
The first “≤” for each case is implied by Lemma 6, and the
second “≤” for each case is implied by Equation (24). Then,
by Lemmas 3, 4, and 5, all buffers do not overflow. This is
a sufficient but not necessary condition for the algorithm to
terminate, since we have another terminating check (Lines 13–
14), and it also guarantees that the buffers do not overflow.

Theorem 8: If all curves can be defined by finite number
of segments and periods, the Fork-Merge-Extension algorithm
converges (terminates) in a finite number of iterations, and all
buffers do not overflow or underflow.

Proof: Due to space limit, the detailed proof of conver-
gence in a finite number of iterations is not provided here. By
Theorem 7, the algorithm keeps updating service curves until
it computes a feasible solution. Service curves are decreasing
functions lower bounded by zero. At each update step a new
service curve is produced, which differs from the previous
by at least one value at one time point that is lower than
the previous one by a non-infinitesimal amount. Hence, the
number of possible updates is upper bound and the algorithm
converges (terminates) in a finite number of iterations.

V. RTC ANALYSIS OF LTTA
This section describes the application of our analysis

method to the mapping of synchronous models into LTTA. We
first summarize LTTA and their existing performance analysis
methods [14].
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finite FIFO queue

1 if triggered {
2 if (all input queues are non-empty

and all output queues are non-full) {
3 read input from input queues;
4 execute body;
5 write output to output queues;
6 } else
7 do nothing (skip this round);
8 }

Fig. 5. From a synchronous network to an FFP and FFP process behavior.
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Fig. 6. (a) The example system where all buffer sizes are 1 and (b) its
corresponding reachability graph.

A. Implementing SR on LTTA

In [14], it is demonstrated how a generic network of com-
municating synchronous state machines can be implemented
by a network of processes communicating through bounded
FIFO queues with assumptions on the activation times of the
processes. The target model of the mapping is called FFP
(Finite FIFO Platform) and consists of a network of processes
implementing the state machines and using blocking read and
write access to the queues (Figure 5). The implementation is
correct with respect to the preservation of the communication
flows (the signal values). LTTA processes are triggered by
their clock, but only executed if all their input buffers are
non-empty, and their output buffers are non-full; otherwise,
they skip (in our model they are stalled, which is functionally
equivalent). In the LTTA network model of [14], activation
clocks are required to have a lower bound for the time interval
between any two ticks.

B. Performance Analysis of LTTA

We discuss the performance analysis in [14] and compare
it with a more recent work about LTTA [2].

• First, a logical clock is defined such that there is at least
one activation event for any FFP process between any
two logical clock ticks (it provides a lower bound on the
rate of progression of each process).

• Then, a reachability graph is computed, indicating the
state of the buffer queues after the firing of the processes.

• Finally, the computation of the worst-case triggering
order of the FFP processes is determined.

Figure 6 (a) shows an example system, and Figure 6 (b) is
its reachability graph. If the three buffers are initially empty,
and the triggering order is < P1, P2, P3 > in one clock cycle,

the system can complete all of the three steps in Figure 6 (a).
On the contrary, if the triggering order is < P3, P2, P1 > in
one clock cycle, P3 and P2 will be skipped due to their empty
input buffers, and the system can only complete one step. The
analysis in [14] has two sources of pessimism.

The first is the use of a logical clock lower bounding the
rates of execution of the clocks of all processes. The second
pessimism is in the slow triggering policy which assumes that,
at each logical-clock tick, the triggering order of processes
is the worst-case (resulting in the slowest progression of the
network computations). In the example, for the first tick, the
triggering order is < P2, P3, P1 > or < P3, P2, P1 >, so that
only P1 can be executed; at the second tick, the triggering
order is < P1, P3, P2 > or < P3, P1, P2 >, and only P2

can be executed; in the third tick, the triggering order is <
P1, P2, P3 > or < P2, P1, P3 >, and only P3 can be executed.
As a result, it takes three logical clock ticks to complete the
network flow (the worst-case logical-time throughput is 1

3 ).
In general (and especially when the processes are activated
according to a periodic model with jitter), the triggering order
cannot be assumed as arbitrary at each tick, i.e., there are
dependencies between activations, but these dependencies are
ignored by the slow triggering policy.

Besides the problem of pessimism, another problem is
that the computation of the reachability graph and the slow
triggering policy may require the evaluation of an exponential
numbers of vertices in the graph and possible orders. In [2] two
variants of LTTA, token-based (or back-pressure) LTTA and
time-based LTTA, are introduced. The time-based LTTA is not
discussed here because it assumes preliminary knowledge of
task and message response times, causing a chicken-and-egg
problem. For a token-based LTTA, the worst-case throughput
is 4Tmax + 2τmax, where Tmax is the upper bound for the
time interval between any two successive ticks, and τmax is
the upper bound of communication delays. In the analysis,
a maximum interarrival Tmax is used to bound the distance
between any two clock ticks and the throughput is computed
by assuming that every time a token reaches a place it just
misses the tick of the destination process (both assumptions are
sources of pessimism). As a result, the long-term throughput
is underestimated.

C. LTTA Model

Compared with the clock model in [14], we assume a
more realistic and less pessimistic activation model of periodic
clocks with drift and jitter, but the RTC analysis can deal
with a general activation pattern. A periodic request with
clock period Θ can be modeled by the upper and lower stair
functions in Figure 7 (a). A clock drift bounded in the range
δm, δM can be represented by the upper and lower curves in
Figure 7 (b), and a jitter J can be modeled by the upper and
lower curves in Figure 7 (c). By the definition of the RTC,
an arrival event is like a token, i.e., if it is not served, then it
will stay in a queue; on the contrary, an unused service will be
lost. Therefore, the periodic activation of a process is modeled
as an arrival curve curve in Figure 7 (d) along with other
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bounded by δm, δM and (c) jitter J . (d) The model for a process and one of
its output edge (if communication is considered).

arrival curves. The service curve used to model the resource
availability is the linear function in Figure 7 (d) where the
slope represents the execution rate of the processor. Another
change for an LTTA process is the need of ceiling and the floor
functions to reshape the upper and lower bounds of the output
arrival curve from α′

i to ζ ′i, i.e., ζ ′ui = ⌈α′u
i ⌉ to ζ ′li = ⌊α′l

i ⌋,
because an LTTA process writes to its output buffers only after
it finishes computing the new state and output values.

If communication delay is considered, for each edge be-
tween processes Pi and Pj , we add another network process
Pi,j to represent the execution of the communication. The
model is shown in Figure 7 (d), and the service curve of Pi,j is
also a linear function whose slope represents the transmission
rate.

D. Improved Performance Analysis of LTTA

To apply the analysis in Section IV to LTTA systems, further
developments are required:

• As shown in Figure 7 (d), the arrival curve representing
the periodic activation of Pi is α∗

i . To match the prob-
lem statement in Section IV, for each process Pi (not
including communication processes Pi,j), we add another
process P ∗

i , with input arrival curve α∗
i , and service curve

f0 (the unitary element). We then remove α∗
i from Pi

and add a connection from P ∗
i to Pi with buffer size

∞. As a result, there is always an arrival curve α∗
i from

Pn+i, which is not changed by any effect propagation (of
course, Pi always becomes a merge case).

• As shown in Figure 7 (d), the effective output of a process
is ζ ′i. Therefore, we first replace Equations (15) and (16)
(Lines 7–8 in Figure 4) by

ζ ′ui = ⌈((αu
i ⊗ βu

i )⊘ βl
i)⊕ βu

i ⌉; (25)
ζ ′li = ⌊(αl

i ⊗ βl
i)⊕ βl

i⌋, (26)

and then replace α′u
i and α′l

i by ζ ′ui and ζ ′li , respectively,
in Equation (14) (Lines 5–6 in Figure 4), Equation (17)
(Lines 17 and 20 in Figure 4), and Equation (18) (Line 21
in Figure 4). Besides, when we check if a buffer over-
flowed by Lemmas 3, Lemmas 4 and 5, we also replace
α′u
i by ζ ′ui .

The only thing we need to take care of is Theorem 7, because
Lemma 6 only makes sure α′u

i ≤ βu
i , not ζ ′ui ≤ βu

i (αu
j = ζ ′ui
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Fig. 8. An example with remaining service curves.

in Equation (7) now). However, in the following lemma, we
fix this problem by proving that supt(α

′u
i (t)− βl

j(t)) ≤ Bi,j

can still guarantee that the buffer between Pi and Pj does not
overflow. The lemma applies to the first case in Theorem 7,
but the other two cases can be proved similarly.

Lemma 7: The condition supt(α
′u
i (t)− βl

j(t)) ≤ Bi,j still
guarantees that the buffer between Pi and Pj does not overflow
when output arrival curves are modified by applying the ceiling
function to the upper bound and the floor to the lower bound.

Proof:

supt(α
′u
i (t)− βl

j(t)) ≤ Bi,j

⇒ ∀t, α′u
i (t)− βl

j(t) ≤ Bi,j

⇒ ∀t, ⌈α′u
i (t)⌉ − ⌈βl

j(t)⌉ ≤ Bi,j (Bi,j is an integer)
⇒ supt(⌈α′u

i (t)⌉ − ⌈βl
j(t))⌉ ≤ Bi,j

⇒ supt(ζ
′u
i (t)− ⌈βl

j(t))⌉ ≤ Bi,j .

When Pj follows the execution body of an LTTA process and
starts its computation, the corresponding token (the message)
has left the buffer, so, from the view of the buffer, the lower
bound of the service provided by Pj is ⌈βl

j(t))⌉. Since ζ ′ui is
the arrival curve of the buffer, by Equation (7), the lemma is
proved.

E. Remaining Service Curve

Given a system with its (input) arrival curves αu and αl

and (input) service curves βu and βl, the remaining service
curves can be computed by Equations (5) and (6) [6]. As an
example in Figure 8 (the integer operation and communication
delay are neglected), if P1 and P3 are slowed down due to the
effect from P5, it is possible that P2 and P4 execute more often
because the remaining service curves of P1 and P3 are larger.
Therefore, a service curve may now increase, and convergence
cannot be guaranteed. To deal with this problem, we observe
that, in an LTTA case, the output arrival curve is usually
dominated by its arrival curves (probably the activation one)
or the bounds provided by feedback control edges. Therefore,
if an input service curve increases, its output arrival curve
usually does not increase. Based on the observation, in Phase
1 of the first iteration, we compute the remaining service
curves, assign them as the input service curves of the following
processes, and remove the corresponding edges. After that,
we follow the Fork-Merge-Extension algorithm (Figure 4)
without considering the remaining service curves. Although
the approach is pessimistic (we do not increase a service
curve which could be larger), it guarantees convergence as
the service curve never becomes larger.
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Fig. 9. (a) Case A1, (b) Case A2, (c) Case A3, (d) Case B1, (e) Case B2,
(f) Case B3, (g) Case B4, (h) Case B5, (i) Case B6, (j) Case B7, and (k) the
curve can be represented as “2,4 {1}” or “2,4,5 {1}”.

VI. EXPERIMENTAL RESULTS

We use several simple graph configurations to compare the
different methods as shown in Figure 9. For each case, one
process (marked with a double line) is selected as representa-
tive to demonstrate the differences in performance among the
analysis methods (all processes show similar characteristics).
Θ represents the period of a process, and B represents the
buffer size. The service curves of a process are stair functions
(βu(t), βl(t)) = (⌈ t

Θ⌉, ⌊ t
Θ⌋), and the input arrival curves of

an initial process are (αu(t), αl(t)) = (∞,∞), which means
that the output arrival curves of the root process are equal to its
service curve. This choice of functions allows to better match
the model with execution skips in [14]. We used the RTC
Toolbox [16] and implemented our algorithm for computing
the effective arrival and service curves in MATLAB. We
also implemented the analysis methods in [6], [13], and [4]
for comparison. In the following paragraphs, a sequence of
numbers which is almost linear periodic (in the definitions of
min-plus algebra) represents the output arrival curve of a target
processes. The first part of the sequence, outside of the braces,
represents the arrival times of initial events; the number inside
braces represents the steady-state period of the events (or linear
period in min-plus algebra). For example, the function shown
in Figure 9 (k) can be represented as “2,4 {1}” or “2,4,5 {1}”.
If the function is the lower bound of an output arrival curve,
the first number represents the longest delay, and the number
in the braces represents the long-term processing period.

A. RTC Analysis with Reduced Pessimism

The results of our fixes and improvements to the existing
RTC analysis are listed below. For Case A2, the lower bound
of [6] is larger than the optimal lower bound, meaning that
the analysis is infeasible and not safe. The other approaches

are feasible, but [14] is very pessimistic, and so is [13] in the
A3 case.

Test Upper Bound
Cases [6] [14] [13] [4] Ours/Optimal

A1 0,2,4 {2} — 0,2,4 {2} — 0,2,4 {2}
A2 0,3,6 {3} — 0,3,6 {3} — 0,3,6 {3}
A3 0,2,4 {3} — 0,3,6 {3} — 0,2,4 {3}
Test Lower Bound

Cases [6] [14] [13], [4], Ours, Optimal
A1 4,6,8 {2} 4,6,8 {2} 4,6,8 {2}
A2 3,6,9 {3} 6,9,12 {3} 5,8,11 {3}
A3 5,8,11 {3} 6,9,12 {3} 5,8,11 {3}

B. Effect Propagation

The results of the effect propagation are shown in the below
table, where [6] is not considered because its analysis may
be infeasible. Our approach computes exactly the optimal
best/worst performance. All other approaches, especially [14],
are pessimistic in at least some of the cases, including the
evaluation of the long-term processing rate.

Test Upper Bound
Cases [14] [13] [4] Ours/Optimal

B1 — 0,1,2 {1} — 0,1,2 {1}
B2 — 0,2,4 {2} — 0,1,3 {2}
B3 — 0,2,4 {2} — 0,2,4 {2}
Test Lower Bound

Cases [14] [13] [4] Ours/Optimal
B1 2,4,6 {2} 2,4,6 {2} 3,4,5 {1} 2,3,4 {1}
B2 4,8,12 {4} 3,6,9 {3} 5,7,9 {2} 3,5,7 {2}
B3 4,8,12 {4} 3,6,9 {3} 4,6,8 {2} 3,5,7 {2}

C. Fork and Merge Topologies

The results of the analysis of fork and merge topologies are
listed below. [4] is not considered because it is not applicable
to fork and merge topologies (the method in [4] was the only
one to compute the steady-state period as accurately as ours).
In all the cases we tried, our approach performed better than
the other competing analysis methods even if it did not always
compute the optimal performance bounds.

By comparison, we also tried a linear service curve
(βu

i (t), β
l
i(t)) = (it, it) and stair arrival curve. In this case, the

methods (in [13] and [6]) that support the analysis compute the
same results as our method in terms of processing rates, but
longer delays (slope of the output arrival and service curves).

Test Upper Bound
Cases [14] [13] Ours Optimal

B4 — 0,3,6 {3} 0,3,6 {3} 0,3,6 {3}
B5 — 0,3,6 {3} 0,3,6 {3} 0,3,6 {3}
B6 — 0,3,6 {3} 0,2,4,7 {3} 0,2,4,8,10,14,. . .
B7 — 0,3,6 {3} 0,2,4,7 {3} 0,2,4,8,10,14,. . .
Test Lower Bound

Cases [14] [13] Ours Optimal
B4 6,12,18 {6} 4,8,12 {4} 4,7,10 {3} 4,7,10 {3}
B5 6,12,18 {6} 5,10,15 {5} 5,8,11 {3} 5,8,11 {3}
B6 6,12,18 {6} 5,10,15 {5} 5,8,11 {3} 5,8,11 {3}
B7 9,18,27 {9} 6,12,18 {6} 6,9,12 {3} 6,9,12 {3}

D. Analysis of an Automotive System

We used a subset of the functions of a comprehensive safety
vehicle as a case study. The architecture consists of 29 ECUs
(Electronic Control Units) connected with 4 CAN (Controller
Area Network) buses, with speeds ranging from 25kb/s to
500kb/s. The vehicle supports advanced distributed functions
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Fig. 10. Case study: (a) without buffer limitation and (b) with buffer
limitation, where a dash-dotted (red) line represents the input arrival; a solid
(blue) line represents the activation; a dotted (black) line represents the
service; a dashed (magenta) line represents the output arrival.

collecting data from 360-degree sensors to the actuators,
consisting of the throttle, brake and steering subsystems and
of Human-Machine Interface (HMI) devices. A total of 92
tasks are executed on the ECU nodes, and 196 messages are
exchanged over the four buses. Worst-case execution time
estimates have been obtained for all tasks. Message length
and bus speed is used to calculate the maximum transmission
times. Each ECU executes between 1 and 22 tasks and each
CAN bus transmits between 14 and 105 messages. The system
graph contains a total of 604 links.

The experiments are done with two different settings: (1)
with unbounded buffers and (2) with buffer constraints. Both
of them use the LTTA model (stair arrival curves for activa-
tions and linear service curves) and consider integer operations
and communication delay mentioned in Section V. Figure 10
shows one of the links in the example, with typical results
(dash-dotted red line, the input arrival; solid blue line, the acti-
vation; dotted black line, the service; dashed magenta line, the
output arrival). After considering the buffer limitation, since
processes are slowed down to guarantee that buffers never
overflow, we can see that the input arrival in Figure 10 (b) is
smaller than that in Figure 10 (a). The long-term processing
period of the lower (worst-case) output arrival curve of a
process always matches that of the slowest process which has
a path to the process. There is also a delay for the lower
(worst-case) output arrival curve, which is generated by the
processing delay (integer operations) and the communication
delay. In the example in Figure 10, the long-term processing
period is 1,500 msec, and the delay is 125 msec. The runtimes
on these two settings are 12 and 121 seconds, respectively,
on an Xeon E5630 2.4G machine. The algorithm converges
in 1 iteration for the first setting because there is no buffer
limitation. On the other hand, it converges in 4 iterations for
the second setting. We observe that it takes less time in the
first iteration and more time in the following iterations, which
is because the updates make the aperiodic parts of service
curves having more line segments in the data structure of
the RTC Toolbox [16]. These results show that our algorithm
converges in a reasonable number of iterations in practice,
with the approximations discussed in the previous section that
may introduce pessimism in the output service curves.

VII. CONCLUSION AND FUTURE WORK

We extended the Real-Time Calculus (RTC) as a general
model for the analysis of task graphs and the mapping of syn-
chronous models on the Loosely Time Triggered Architectures
(LTTA). Several fixes were also required to the original RTC
theory. Experimental results have shown that our approach
can indeed provide a performance analysis that is safe and
more accurate than existing methods. Possible future directions
are to consider cyclic topologies and to find an algorithm
for updating service curves that can guarantee convergence
without conservative assumptions.
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