
Flexible Framework for Statistical Schedulability
Analysis of Probabilistic Sporadic Tasks

Abdeldjalil Boudjadar

Queen’s University, Canada

jalil@cs.queensu.ca

Jin Hyun Kim

INRIA/IRISA Rennes, France

jin-hyun.kim@inria.fr

Alexandre David, Kim G. Larsen
Marius Mikučionis, Ulrik Nyman, Arne Skou

Aalborg University, Denmark

{adavid,kgl,marius,ulrik,ask}@cs.aau.dk

Insup Lee, Linh Thi Xuan Phan

University of Pennsylvania, USA

{lee,linhphan}@cis.upenn.edu

Abstract—The analysis of probabilistic schedulability explores
all possible combinations of the probabilities of task attributes,
which can easily lead to exponential computation time [24].
In this paper, we present a flexible schedulability analysis
framework for periodic and sporadic tasks having probabilistic
attributes where the computation time scales linearly in the size
of analyzed systems. The framework is given in terms of a
set of Parameterized Stopwatch Automata (PSA) models, which
leads to a large degree of flexibility. Probability distributions
for response time are generated using statistical model checking
(UPPAAL SMC) while the overall schedulability can be checked
using symbolic model checking (UPPAAL). We also define PoMD
(percentage of missed deadlines) as a measure of the probabilistic
schedulability of systems. To evaluate our approach, we compare
the time used for computing response times and the analysis
results using similar task models to that of a related analytical
approach.

I. INTRODUCTION

Limited resources are a strong factor in the system setting

in many embedded software application fields. Engineers are

interested, not only, in whether or not the system always meets

its requirements, but also how it behaves with insufficient

resources. Supplying a system with less resources than it

requires may lead to a degradation of the quality of service.

A certain level of degradation may be acceptable in a given

setting and we thus consider it important to answer questions

regarding schedulability with estimates of the quality instead

of just providing a yes/no answer. Another argument for using

probability based methods is that the classical safe analysis

methods are very pessimistic.

In many areas such as real-time communication protocols,

randomized distributed algorithms and dynamic power man-

agement, the timing attributes can vary greatly. Thus, it is

advantageous to describe not only the worst case scenarios

but also the probability of all potential scenarios. In this way,

the timing attributes of tasks follow probability distributions.

Different analytical approaches to schedulability under prob-

abilistic conditions have been defined [24], [13], [14]. We

pursue the analysis of probabilistic tasks in a setting of a

The research presented in this paper has been partially supported by EU
Artemis Projects CRAFTERS and MBAT.

model-based schedulability analysis framework for single core

systems.

In [24], the authors introduce discrete probabilities for

periods, execution times and deadlines of tasks. However, the

framework in [24] can only handle fixed priority scheduling

mechanisms. In this paper, we provide a model based frame-

work to include any dynamic priority scheduling policy. In

fact, we initiated the current work in [5] where we considered

continuous probability distributions, but only for inter-arrival

times, together with fixed and dynamic scheduling policies.

Contributions: In this paper, we present a flexible and

scalable schedulability analysis framework for periodic and

sporadic tasks having probabilistic attributes. Our framework

can analyze both schedulability and response time as well as

a new metric called Percentage of Missed Deadlines (PoMD)

[5].

The framework is given in terms of a set of Parameterized

Stopwatch Automata (PSA) models [8], which leads to a

large degree of flexibility. This flexibility is obtained because

each of the templates used in the framework can be changed

independently. This means, for instance, that we can handle

any scheduling algorithm simply by changing the scheduling

template [4]. Probability distributions for response times are

generated using statistical model checking (UPPAAL SMC)

while the overall schedulability can be checked using symbolic

model checking (UPPAAL). The analysis time of the statistical

method presented in this paper scales linearly in all aspects of

the analyzed systems: number of tasks, simulation time given

as a number of triggerings, and the number of samples in the

probability distributions.

Compared to the approach in [24], we provide a much more

flexible and scalable framework. Thus, we can analyze the

same types of models, but with any type of scheduling mech-

anism. We also show that we can estimate other properties

of scheduling systems such as PoMD (percentage of missed
deadlines). We also believe that model based approaches are

easier than formula based methods to understand and update

for engineers working with embedded real-time systems. Some

of the advantages come from the ability to provide concrete

system traces. Like the approach in [24], we do not consider

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORC.2015.21

74

the problem of obtaining samples, but assume that they are

provided as input to our framework. Such samples will never

be 100% exact, but it is reasonable to use statistical input to a

flexible and scalable statistical method like the one presented

in this paper.

Organization of this paper: Section II cites most relevant

related work. Section III introduces the background of our

work, for a statistical analysis method of probabilistic schedul-

ing systems. In Section IV, we present our framework for

the statistical schedulability analysis and introduce a metric

that shows the schedulability in a probability perspective.

Section V shows the analysis results of the response time

distributions relying on the probabilistic task attributes, as

well as comparisons of our work with the work in [24]. In

Section VII, we conclude this paper.

II. RELATED WORK

This work contributes to the analysis of probabilistic real-

time systems using a model based framework.

In [14], Edgar and Burns argued for the use of probabilistic

methods instead of only using WCET when analyzing the

schedulability of an embedded system. In [1] Atlas and

Bestavros provide and implement a rate monotonic scheduling

approach where the task execution time is given by a proba-

bility density function. They analyze the system schedulability

over superperiods. The superperiod of a task is given by the

period of the next lower priority task. In [13], Diaz et al
provide an analysis method for both fixed and dynamic priority

scheduling policies where the execution times are given as

probability distributions.

In [28], the authors propose a method to control the pre-

emptive behavior of real-time sporadic task systems by the use

of CPU frequency scaling. They introduced a new sporadic

task model in which the task arrival may deviate, according

to a discrete time probability distribution, from the minimum

inter-arrival time. A similar approach is presented in [11].

The work of [24] extends the work in [13] by making all the

task attributes probabilistic. The authors developed a piece of

Matlab software that randomly generates a scheduling system

given a number of samples for the probability distributions and

a number of tasks, while the analysis can systematically be

performed using the Matlab implementation of the underlying

theory. However the aforementioned methodology does not

handle dynamic scheduling policies. In [27], Santinelli et al
define a framework for schedulability analysis of hierarchical

scheduling systems on single core platforms. Two task pa-

rameters are characterized by discrete probabilistic functions;

execution time and period. Their paper provides a theoretical

framework, but not a practical implementation. Moreover, the

complexity of the analysis presented in the paper is unknown.

Compared to our work, [27] models similar types of systems

but does not provide an implementation of the analysis.

In [7], Carnevali et al introduces a framework for dead-

line miss analysis in the context of flat fixed priority non-

preemptive scheduling systems. The execution time is the

only probabilistic parameter. The probability distribution is

obtained using extreme value theory. If a job is not completed

on time it will be immediately discarded. A simulation model

for the framework has been implemented using stochastic

time Petri nets. Compared to our work, the framework only

considers the probability of missing a deadline, but not the

response time nor the time by which a deadline is missed.

Other statistical modeling tools, such as PRISM [17] and

PARAM [16], have also been applied to model the domain of

probabilistic scheduling systems. In [25] the authors compare

three different approaches for re-sampling discrete probability

distributions characterizing task execution times. Re-sampling

is used to combat the complexity when performing exact

schedulability analysis on probability distributions.

The current work relies on [5] where we introduced a model

based framework for the schedulability analysis of real-time

systems having probabilistic execution times. Contrary to the

current work, the probability distributions used in [5] are

continuous. We follow the approach of [24] in the aspect of

making all task attributes probabilistic.

III. BACKGROUND

Classical analytical methods have aimed at giving 100%

guarantees about the schedulability of a system. However,

when the system inputs are statistical then either certainty

cannot be obtained or the pessimism of the analysis will be

extreme as only the worst cases are used. The framework we

present can be used to obtain the desired confidence level,

given by the number of simulated traces and the length of

each trace. This paper introduces a framework for analyzing a

soft real-time system and providing realistic response time dis-

tributions for each of the probabilistic tasks in the system. For

scheduling systems, probabilities can be used to describe the

timing attributes (period, execution time, ...) of tasks. So that

each task attribute may have different exclusive values, each

of which is associated with a probability stating how probable

it is for the task attribute to be assigned this particular value.

The method presented in this paper can be used to analyze

a soft real-time component being part of a larger hierarchical

scheduling system, following the method described in [4].

A. Probabilistic Tasks and Analysis

Analytical approaches for the response time and schedu-

lability analysis of tasks having a probabilistic execution

time have been defined in [1], [13] among many others. An

extension has been proposed in [24] by making multiple task

attributes probabilistic. In this setting, the response time is

generated in terms of a probability distribution that can be

compared to the tasks deadline.

A random variable X is given by:

X =
(x1, ..., xn

p1, ..., pn

)
(1)

where {x1, .., xn} are outcomes (samples), P (xi) = pi is the

probability of each sample xi to be selected and
∑n

i=1 pi = 1.

The probability of any variable x is given by P (x) if x ∈
{x1, .., xn}, otherwise P (x) = 0.

75

We adopt the same scheduling system definitions as in [24].

A scheduling system is given by a set of n synchronous

tasks {T1, .., Tn} to be scheduled on one CPU according to

a scheduling policy. Each task Ti = (Ii, Ei, Di) is given by

three timing attributes: Ii is the minimum inter-arrival time,

Ei is the execution time and Di represents the task deadline.

Each of the timing attributes is a random discrete variable

that has different values (samples) according to a probability

distribution. In the original version, for the sake of simplicity

the authors consider that Ii and Di are always the same.

The computation of the response time of a task relies on

the response time of its triggerings (jobs). However, while

the task periods are not regular (different values according to

the probability distribution), the number of triggerings is not

constant and could be infinite. The notion of hyperperiods, for

which the task arrival patterns are repeated for all hyperperiods

has been considered in [13]. This implies that the analysis

can be restricted to a single hyperperiod. The concept of

hyperperiod is only applicable to settings where tasks have

fixed length periods.

The computation of a response time R in [24] consists of ex-

ploring all possible combinations of the values of inter-arrival

time and execution time of each task. Such a computation is

iteratively performed up to a pseudo-hyperperiod (simulation

time) given as a parameter for the analysis. The simulation

time is specified by a multiple of the longest possible inter-

arrival time of the lowest priority task. Similarly, we use the

concept of simulation time as a pseudo-hyperperiod. Once the

response time probability distribution is computed, the au-

thors use the concept of Deadline Miss Probability
(DMP) to determine whether or not the system is schedulable.

A necessary, but not sufficient, condition for schedulability

is that all potential values of the response time distribution R
are smaller than the possible values of the deadline distribution

D. If this is not the case, a single triggering can occur where

the deadline cannot possibly be met because the deadline is

shorter than the response time.

Formally, the response time distribution R of the jth

triggering (job) of task Ti that is released at time λi,j is

given by Ri,j = Bi(λi,j) ⊗ Ci ⊗ Ii(λi,j), where ⊗ is

the convolution operator [24] which computes the combined

probability distribution of two independent random variables.

Bi(λi,j) is the accumulated backlog of higher priority tasks

released before λi,j and still running at time λi,j , Ii(λi,j) is

the sum of execution times of tasks having priority over task

Ti and triggered after λi,j . The execution of the jth job of Ti

can be preempted for Ii(λi,j) time units. Each of the variables

of the aforementioned equation is a probability distribution.

In this paper we propose a model-based framework for

the modeling, schedulability and response time analysis of

probabilistic scheduling systems. Our framework enables to

model the concrete behavior of tasks in terms of UPPAAL

parameterized stopwatch automata [8], while it can check

the system schedulability under any scheduling policy and

estimate the response time using UPPAAL SMC tool. Methods

based on statistical model checking (SMC) scale logarithmi-

cally in the size of the analyzed models; moreover they are

trivially parallelizable and still scale sub-linearly [20], thus

easily scaling to industrial size systems.

Our models are flexible in the way that can be easily updated

to fit different systems and configurations. Moreover, they also

provide other insurance measures for any engineering setting

like the percentage of missed deadlines (PoMD).

B. Statistical Model Checking

Statistical Model Checking (SMC) is a simulation-based

analysis approach used to give a probabilistic estimate of a

certain property being satisfied by a given model. SMC [6] is

a widely accepted analysis technique in many research areas

such as industrial applications in software engineering [2], [23]

and systems biology [9].

In order to estimate the probability of a property, SMC

generates a number of stochastic runs and checks the property

on each of the runs. The property is checked up to a certain

confidence level (using confidence coefficient δ) and with a

certain maximum error limit (ε distance from the center). Since

many natural properties are monotone, the truth at length k of

a run implies truth on the entire run [19], therefore we only

check runs up to a certain bound of a run. In UPPAAL SMC the

length of runs can be specified either as a number of discrete

transitions or as a simulation time or cost bound. In our work

we use a constant time bound timeBound. The confidence

level, error limit and run length are all user parameters in our

framework.

In theory, the maximum number of runs n required to

achieve the needed confidence level δ and precision ε can

be derived from Hoeffding’s inequality Pr(|p̄ − p| > ε) ≤
2e−2nε2 [18], which says that the probability of the wrong

result (when the estimated p̄ probability differs from the real

probability p by more than ε) is no greater than 2e−2nε2 .

The probability of the wrong result is called the level of
significance α = 1 − δ, and hence n ≥ −ln(α/2)/(2ε2) runs

is enough. Hoeffding’s inequality implies that the number of

runs is sub-linear in terms of confidence and quadratic in

terms of precision. Moreover, the complexity does not depend

on the structure of the model, but merely on the simulation

performance. Therefore, it is not prohibitively expensive to get

a very high degree of confidence even on the models which are

prohibitively difficult to solve analytically. In practice, we can

exploit the fact that our samples follow binomial distribution

and hence the probability estimation is even more efficient

by using sequential methods [15], which adapt to the actual

probability value and the confidence interval is computed by

more precise methods [10].

Besides the statistical check of property satisfaction, UP-

PAAL SMC can evaluate the modeled process performance by

estimating the mean value of an expression over the model

variables. In this case we cannot assume any distribution,

hence the value estimation is based on the Central Limit The-

orem which says that the distribution of means of sufficiently

large samples follows Normal distribution, while the small

sample means follow Student’s t-distribution [26]. Therefore

76

the confidence interval with level δ and significance α = 1−δ
is estimated using mean and t-distribution with standard error:

Σn
i xi

n
± tα/2,n−1

√
Σn

i x
2
i − (Σn

i xi)2/n

n(n− 1)

where xi are the measured samples and tα/2,n−1 is the α/2-
quantile of t-distribution with (n− 1) degrees of freedom.

In order to estimate the mean of maximum (minimum) value

over the run of an expression V , the following syntax is used:

E[time<=TimeBound; RunCount] (max: V)
The size of the estimated interval depends on the variance

of the measured samples, therefore there is no generic way to

limit the error and hence the user has to specify the number

of runs in the query (RunCount) while α is still the level of

significance and confidence level is δ = 1−α. The confidence

interval can be made arbitrary tight by increasing the number

of runs. All experiments shown in this paper are performed as

SMC estimation queries with 1,000 traces (RunCount) and a

simulation time (TimeBound) of 100,000 time units. In order

to have valid results we performed experiments where we

analyze the same system with a varying amount of traces and

simulation time. When reaching more than 1,000 traces and a

simulation time of more than 100,000 time units we see that

the estimated values are stable.

IV. FLEXIBLE FRAMEWORK FOR PROBABILISTIC

SCHEDULING SYSTEMS

In this section, we present a statistical method to ana-

lyze the schedulability of sporadic tasks where the timing

attributes are probabilistic. Following probability distributions,

the schedulability may not be qualitative but also be quanti-

tative. So that the probabilistic schedulability is said to be a

probabilistic guarantee for the system schedulability. We study

the probabilistic schedulability in terms of two metrics: 1)

the response time probability distributions; 2) percentage of

missed deadlines PoMD.

A. Probabilistic Schedulability

In contrast to the classical techniques of schedulability

analysis, we do not only consider if a system is schedulable

or not but we provide the Percentage of Missed Deadlines
(PoMD) as a way to measure how schedulable a system

is. PoMD can be computed for either a task or a complete

embedded system. It must be measured or simulated over a

sufficiently large time bounded run and a sufficiently large

number of runs in order to obtain usable values. A run π of

a system is an infinite sequence:

π = s0(t0, e0)s1(t1, e1) . . . sn(tn, en) . . .

where si is a global state giving information about the state

of each task (e.g. idle, ready, running, blocked) and resource

(e.g. idle, occupied) at stage i; s0 is the initial state; ei indicate

events (triggering, completing or preempting tasks) taking

place with ti time-units separating ei−1 and ei resulting in

a transition from state si to si+1. We denote by Runs the set

of runs of a system. For a run π and a time-bound t ∈ R≥0

we may define (in an obvious manner) the functions:

• Misst(Ti, π) ∈ N is the total number of missed deadlines

for task Ti up to time t;
• Trigt(Ti, π) ∈ N is the total number of triggerings of task

Ti up to time t.

Definition 1 (Percentage of Missed Deadlines (PoMD)):
The PoMD of an entity X for a run π is given by:

PoMDX(π) = (lim sup
t→∞

Misst(X,π)

Trigt(X,π)
)× 100%

The entity X could be a task or a system. Now, the proba-

bilistic arrival patterns of a set of tasks S give rise to a unique

probability measure PS over (Runs, B)1 as such PoMDT is

a random variable. In order to estimate the expected value of

PoMDX , ePoMDX , we generate a set Π of random (according

to the stochastic semantics of S) and independent runs and

calculate the mean using the following formula:

ePoMDX(Π) =

∑
π∈Π PoMDX(π)

|Π|
In fact, we estimate the ePoMD at the system level by

simulating the complete system and summing up all triggering

events and deadline misses. Our concept of PoMD is similar

to the concept Deadline Miss Ratio (DMR) from [22].

B. Modeling of Scheduling Systems

The PSA models of our framework are; a sporadic task

model, a task’s attributes generator model depending on the

attributes distributions, scheduling policy models and a CPU

resource model. Moreover, two analyzer models are added for

the analysis of response time and PoMD.

Fig. 1. Overview of PSA models composition

Fig. 1 gives and overview of the composition and com-

munication between our PSA models. The execution of task

process, STask, follows the probabilistic execution attributes

prob info. The execution attributes of a task are instantly fed

by Probability Distribution, a probabilistic attribute genera-

tor, at each arrival point; and the beginning of a task execution

is captured by an event startSTask. As soon as a task process

starts an execution (job), it requests a CPU assignment to a

resource manager process, CPU Resource, then the resource

manager executes a scheduling function Scheduling Policy
based on a specific scheduling policy. During this process,

the two analyzers, PoMD Analyzer and RT Analyzer, track

1Here B is the standard Σ-algebra over Runs generated from a standard
cylinder construction. For more see e.g. [12].

77

Fig. 2. PSA model of sporadic tasks

timing information of each running task to compute PoMD
and response time (RT).

In our PSA model, a clock can be used as a stopwatch that

stops and resumes according to some conditions. Also, a clock

can be used to store a double-typed value. When a clock is

used as a double-typed variable, the progress rate of the clock

is set to 0, and thus the clock behaves as a regular variable.

Fig. 2 shows the PSA task model as a UPPAAL template.

Locations are represented by mauve colored circles, and the

initial location has a double circle. The location names are

written in red and locations can also have invariants . Edges are

black arrows from source locations to destination locations. On

an edge we have guards, synchronization events and updates.

Exponential rates are used to give an exponential probability

distribution for the waiting time in this location. Intuition;

a high number indicates that there is a high probability of

leaving very fast. The figure also contains tags that are not part

of the model, but are used solely to make easier the description

of the models elements.

The behavior of the task model, Fig. 2, is as follows:

• Init (location): A task process at this location waits for

event startSTask[tid] fired by a probability attribute gener-

ator. Then, it sets the default execution attributes to actual

task’s execution attributes in tstat[tid] using user-defined

function, set default mode() and moves to PDone.

• PDone (location): A task process leaves this location

when it receives the startSTask and starts a new job.

During transition to location WaitOffset, it resets all

clocks and add one to cnt exe[tid] for future PoMD
computation.

• WaitOffset (location): A task process delays for the offset

time. When moving to location Executing, it requires a

CPU allocation from the resource manager pid through

Fig. 3. PSA model for the assignment of probabilistic task attributes

the event r req[pid].
• Executing (location): A task process in this location

performs the actual execution using a CPU. The execution

may stop if the CPU is not available to the task. Two

stopwatches, curTime[tid] and exeTime[tid], are running

at this location. curTime[tid] measures the actual running

time of a task while exeTime[tid] measures the running

time of a task when the task can use a CPU. The function

isTaskSched() checks the availability of CPU. Thus exe-
Time[tid] runs only if the function returns 1, otherwise

it stops. But curTime[tid] keeps running, regardless of

function isTaskSched(). When the current time reaches

the deadline, the transition tr-2-06 must be taken to make

the log of the error situation at a shared global variable er-
ror and increases the missed deadline counter cnt md[tid]
for PoMD computation. If the required execution time

is fulfilled, the transition tr-2-04 outgoing from location

Executing is taken with updating the clock rt[tid] with the

running time curTime[tid] of a task for response time (RT)

computation.

Fig. 3 shows the PSA model of a probabilistic attribute

generator, which assigns probabilistic execution attributes to

actual task attributes. The PSA process behaves as follows:

• Init (location): The process leaves this location imme-

diately and instantiates a task tid by sending the event

startSTask[tid] on transition tr-3-01.

• tr-3-02, tr-3-03, tr-3-04 (transition): The process

assigns probabilistic execution attributes, e.g.

ta[tid].[EXECUTION][i].val, to the associated

task execution attributes, e.g tstat[tid].wcet,
according to discrete probability distributions, e.g.

ta[tid].[EXECUTION][i].prob.

• tr-3-05 (transitions): The process initiates a task’s new job

by triggering the event startTTask[tid].
• WaitJobEnd (location): The process at this location waits

for the job end, i.e. x>=tstat[tid].next arrival, then it joins

78

the location FinalizeTaskExecution.

• FinalizeTaskExecution (location): In the case where a task

misses the deadline and also the next arrival, the start of

a new job must be delayed. Thus the process residing

at this location checks whether the task completes the

execution. If the task is still running, i.e !tstat[tid].status,

the process postpones the release of a new job until the

end of the current job.

Fig. 4. PSA model of the response time analyzer

Fig. 4 and Fig. 5 show two PSA templates used for the

analysis of RT and PoMD, respectively. The RT analyzer in

Fig. 4 uses the following variables:

• gclock (clock): A global clock.

• prt[tid] (clock): A stopwatch to store the response time

rt[tid] at the end of a single run of a task. It is used to

generate the RT distribution.

• pn (int): The random periods of a task to be performed

for stochastic task execution.

• prd end[tid] (channel): The RT analyzer is reported via

this channel about the end of each period of a task.

The RT analyzer in Fig. 4 behaves as follows:

• tr-7-01 (transition): The process initializes rt[tid] with the

execution time of task tid according to the probability

distribution.

• tr-7-02 (transition): The process stochastically selects the

number of periods but less than the maximum number of

periods for a task to execute for the statical analysis of

the response time.

• Wait (location): The process waits the end of an execu-

tion period reported via the channel prd end[tid]. If the

number of periods is fulfilled, it finalizes a single run of a

task by assigning the final response time rt[tid] to prt[tid].

The PoMD analyzer in Fig. 5 calculates a PoMD at the end

of a single run of a task. It behaves as follows:

• tr-8-01 (transition): If the process reaches the end of a run,

it moves to location CalPoMD and starts the calculation of

PoMD for each task using the equation on the transition

tr-8-04 (transition).

Fig. 5. PSA model of PoMD analyzer

PoMD analyzer takes one loop over the committed location,

in the right hand side, for each of the tasks (i <= tid n) in the

system. The transition tr-8-04 calculates the PoMD for one

task at a time. Transition tr-8-03 is only used if no deadline

was missed by the current task, in order to avoid division by

zero. When all PoMDs have been calculated (i > tid n) the

transition tr-8-05 is triggered moving to the End location.

V. PROBABILISTIC ANALYSIS AND COMPARISON

In this section, we present our analysis method and compare

our results, given in terms of response time distributions and

the time used to compute the response time distributions, to

the results obtained using the method from [24].

In the different graphs and tables presented in this section

results are named after the tools used to obtain them, thus

UPPAAL for the method of this paper and Matlab for the

method presented in [24]. Each instance that we analyze is

identified by two numbers. The first number indicates the

number of tasks that are in the task set, the second number

indicates how many multiples of the maximal inter-arrival time

(abbreviated maxATime) for the tasks that are analyzed.

For all the experiments we present, in the first part we have

fixed the number of samples in the probability distributions

for the execution time, inter-arrival time and deadline to four.

Three different task sets were randomly generated using the

random task set generator provided by the Matlab implemen-

tation. The exact same task sets were then analyzed with the

two different methods.

A. Our Analysis Method

Based on the models presented in the previous section, we

explore the potential executions of the system using Statistical

Model Checking (UPPAAL SMC). We also use Symbolic

Model Checking (UPPAAL) to check the schedulability of the

systems. The computation times for these results are presented

at the end of this section.

UPPAAL SMC allows different types of queries for analyz-

ing statistical properties of a system. In the current analysis

we use the following estimation query:

E[<= runT ime; runCnt](max : prt[tid]) (2)

runT ime is the time bound of each single run (trace), runCnt
is the number of runs generated in order to perform the

statistical analysis, and prt[tid] is the clock variable tracking

the response time of the task tid for each triggering (job). Each

generated trace has the same maximum number of triggerings.

79

UPPAAL SMC stochastically selects one of the prt values gen-

erated over the same task trace, and then performs a statistical

analysis over the selected prt values of all (runCnt) traces.

So that the query computes the response time distribution

of the given task tid over the set of traces runCnt. In our

setting, max does not have any real impact, since the prt[tid]
is assigned only one value during the individual trace. But it

is still needed to respect the UPPAAL SMC query syntax. We

use a simple auxiliary PSA process to compute the PoMD.

All the models and analysis results are available at http://

people.cs.aau.dk/∼ulrik/submissions/340472/ISORC2015.zip.

B. Comparison of the Response Time Analysis

In the following, we first compare the computation times

of the two methods. In the next subsection we present and

compare the probability distributions that the methods produce

for the response time distributions. All the graphs and the raw

data obtained from the experiments are also included in the

above mentioned zip-file.

Fig. 6. Probability distributions of response time for a set of 2 tasks.

As shown in Fig. 6, the two methods do not produce the

same response time distributions for a set of 2 tasks analyzed

for 35 maxATime. Again, we recall that in all of our figures

the legend includes numbers such as “Uppaal-2-35”, the first

number “2” refers to the number of tasks and the second

number “35” refers to the number of job triggerings. That

legend is also the name of the specific data file used for

the plot, which can be found in the referenced zip file. The

first obvious difference in Fig. 6 is that the UPPAAL method

produces response times below 7 while this is not the case for

the Matlab method on this specific set of tasks. This can easily

be explained as the Matlab method only analyzes the cases

where the task under analysis has always been preempted by

a higher priority task. In this task set, the shortest possible

response time for the lower priority task is exactly 7. This

number is in fact the sum of the shortest execution time (1) of

the lower priority task and the longest execution time (6) of the

task having higher priority. In contrast, our analysis technique

considers also the cases where the task under analysis is not

preempted by any other task. So that the shortest possible

response time of a task is the same as its shortest execution

time (1).

The analysis method presented in [24] only considers cases

where the lowest priority task has always been preempted

by a higher priority task, i.e. it is a kind of probability

distribution of the response time in almost worst cases. For

the computation of response time, the authors consider only

the case where all tasks are running simultaneously, so that

the lowest priority task is assumed never to be triggered

alone (best scenario). Our analysis method, on the other hand,

produces the probability distribution of the response time for

all possible scenarios where the lowest priority task has just

been triggered.

When analyzing a task set for different multiples of

maxATime with the same method we can see that the

analysis results keep changing. The authors of [24] do not even

consider analyzing more than one job ahead and do not treat

this in their discussion. However their Matlab implementation

facilitates calculation for more than one triggering, which

we have used. Our experiments show that their calculated

distributions remain quite stable after three triggerings, as can

also be graphically seen from Fig. 7. From this we conclude

that for a lot of cases it could be sufficient to compute the

response time distributions only for a few triggerings using

the Matlab implementation.

Fig. 7. Probability distributions of response time for 2 tasks analyzed with
2 different multiples of maxATime using Matlab.

When analyzing the same task set with two different multi-

ples of maxATime using the UPPAAL method, the response

time probabilities vary more as can be seen in Fig. 8. On the

other hand, we would not normally have chosen to use such

a low multiple of maxATime for the analysis. This is only

done to better compare with the Matlab based method.

C. Comparison of the Computation Time

In this section, we present and compare the time used for

computing the response time distributions. In fact, using the

Matlab implementation we randomly generate three different

task sets of 2 tasks, 3 tasks and 4 tasks respectively. All

task execution attributes follow probability distributions of

4 samples. The three different task sets have been analyzed

using the two methods for a varying number of triggerings.

All computation times in MATLAB are performed without

re-sampling. The provided software package had re-sampling

disabled because enabling it leads to a software bug.

80

Fig. 8. Probability distributions of response time for 2 tasks analyzed with
2 different multiples of maxATime using Uppaal.

TABLE I
TIME USED FOR COMPUTING THE RESPONSE TIME DISTRIBUTIONS

#maxATime
Matlab 2-Task Matlab 3-Task Matlab 4-Task
Uppaal 2-Task Uppaal 3-Task Uppaal 4-Task

3
0.0624 0.3432 1.4976
1.355 3.844 4.437

7
0.3744 5.3508 21.6997
2.963 4.005 13.392

15
3.1668 69.202 254.078
6.733 6.976 19.237

35
40.7943 1315.5 5053.4
14.122 19.724 38.92

90
1152.2 39501. 168500.

30.603 40.498 86.095

Table I presents the computation times for all of these

experiments. The first six data points of the second column

(experiment for 2 tasks) of Table I are presented in Figure 9

in order to illustrate that the computation time of our method

grows linearly in the number of maxATime that we analyze,

while the Matlab method grows exponentially with regard

to the number of triggerings that are being analyzed. For

the experiments with 90 maxATime, Table I shows huge

differences between the results obtained by both analysis

methods.

Fig. 9. Computation time for the 2-task set with different #maxATime.

Since we have concluded that the Matlab method stabilizes

after only a few triggerings of look ahead, we here choose

to analyze the computation time for different numbers of

samples in the probability distributions. We run both Matlab
and UPPAAL analysis for a set of 4 tasks with 7 multiples of

maxATime, while we vary the number of samples from 2 to

5.

Fig. 10. Computation time for different sample sizes of the probability
distributions.

Fig. 10 presents the results of such experiments, where

the computation time of Matlab grows with a higher rate

compared to our UPPAAL analysis in the number of samples.

As stated in the introduction, our method is very flexible and

can just as easily handle dynamic scheduling policies such as

EDF. Fig. 11 shows the response time probability distributions

for the same task set using two different scheduling algorithms.

Only one of the PSA models has to be exchanged in order to

change the scheduling policy.

Fig. 11. Response time distributions for identical task sets with 2 different
scheduling policies.

TABLE II
TIME AND MEMORY USAGE OF SMC ANALYSIS (10 TASKS, 8 SAMPLES)

runTime / runCnt Time Memory
100,000 / 10 11 s 35,632 KB
100,000 / 100 115 s 33,132 KB
100,000 / 1000 1,039 s 30,632 KB

81

Table II shows the computation time and memory usage

for the analysis of 10 tasks with 8 samples. We have fixed

the runT ime to 100,000 while we vary the number of runs

(runCnt). This further illustrates, as stated in the introduction,

the well known fact that Statistical Model Checking scales to

industrial size systems [20].

D. PoMD Computation

PoMD can be used to answer the question; how schedulable

is the system? It is a statistical metric that conceptually has

the same meaning as DMP [24] but computed differently.

TABLE III
PoMD ANALYSIS FOR 4 TASKS WITH 4 SAMPLES

#maxATime PoMD Time
3 36.368 1.3s
7 31.388 2.48s
15 30.000 5.1s
35 29.535 11.34s
90 29.361 29.35s

1000 29.216 301.53s

Table III shows the PoMD we computed for a set of 4 tasks

having 4 samples for each probability distribution, while we

vary the multiple of maxATime in the analysis. One can see

that the PoMD becomes stable from a certain point (35 time

maxATime) of the analysis duration.

E. Analysis Using Symbolic Model Checking

For more safety, in the case of hard real-time, it would be

necessary to also check whether a given task set is schedulable

or not according to a classical definition [21]. The main point

of the method presented in this paper is to handle soft real-

time systems. For the purpose of hard or mixed criticality

systems, we can use symbolic model checking on the same

models as we use for the statistical analysis [3]. Below we

present the verification times we obtained using the symbolic

model checker UPPAAL for different task sets. Notice that the

TABLE IV
SYMBOLIC MODEL CHECKING RESULTS (TASK SET = ((BCET,WCET),

(MIN PRD,MAX PRD), DEADLINE))

Tasks Task Set Results Time Memory

2
((6, 6),(9,13),9)

Schedulable 0.01s 13,952KB
((1,2),(14,18),14)

3
((5,6),(16,17),12)

Schedulable 0.01s 22,820KB((2,2),(14,25),14)
((27,29),(1,2),20)

4

((2,6),(20,21),20)

Schedulable 108.14s 36,692KB
((3,4),(25,26),20)
((2,2),(26,34),25)
((1,3),(36,39),31)

4

((2,6),(17,21),20)

Unschedulable 1.31s 45,388KB
((3,4),(25,26),20)
((2,2),(26,34),25)
((1,3),(36,39),31)

tasks’ attributes have a range of values, i.e. bcet and wcet, and

minimum and maximum inter-arrival time. UPPAAL analyzes

the same models, but does it differently. The uncertainty is

handled as non-determinism. As shown in Table IV each

task attribute is given by lower and upper bounds. For each

task attribute UPPAAL non-deterministically selects one value

for each period, and analyze the state space obtained by all

combinations. Thus, UPPAAL provides a qualitative answer,

yes or no, for the schedulability property.

VI. DISCUSSION AND EVALUATION

In this section we compare drawbacks and advantages of

our work. As other simulation based approaches, ours can

provide concrete traces for specific scenarios. We find that the

use of concrete traces makes the method easier to understand

for software engineers. Our method can also be updated to

reflect the particularities of a given platform, something that

is impossible with an analytical approach that only abstracts

one generic task behavior.

We have performed a simple form of sensitivity analysis

[29] in Section V-D, when examining how the simulation time

(hyperperiod) affects the output. Further investigation into the

sensitivity of the model based on the different input parameters

could be future work.

Compared to classical analytical approaches, our method

has the drawback that it is a simulation based approach. Thus,

there can be cases that are very unlikely but possible and that

maybe do not show up in the statistical analysis. For medium

sized systems, we can prove the schedulability using the same

models and symbolic model checking as shown in Table IV.

Since [24] only consider fixed priorities, when computing

the response time (R) distribution of a task all lower priority

tasks can be ignored. For all shown examples the authors

compute the response time distributions of the lowest priority

tasks, but can also calculate the response time for tasks other

than the lowest priority task. When analyzing a task with

priority n where n is not the lowest priority any task with

priority lower than n will be ignored. This also has the effect

that the method cannot handle dynamic priorities.

A. Scalability

Comparing our work to [24], our framework obtains similar

results in terms of response time distributions but with a much

faster computation time. Based on the experiments shown in

Table I and Fig. 7, the computation time of Matlab is exponen-

tial in the number of tasks and the multiple of maxATime
analyzed. The Matlab analysis time also grows much faster

than the analysis time of UPPAAL based on the size of the

initial probability samples as seen in Fig. 10. Based on results

depicted in Table I, Fig. 8 and Fig. 10, the computation time of

UPPAAL analysis grows linearly in all metrics. As an example,

for a scheduling system of 3 tasks with 4 samples for each

probability distribution of the task attributes, the computation

time generated by our framework does not exceed 2% of the

computation time of the response time generated by the Matlab

implementation of [24]. An example of the computation time

used by MATLAB for a simple system of 7 tasks with 4

82

samples for each probability distribution and 3500 time units

(90 triggerings) as a simulation time is 47 hours.

We have successfully analyzed a system of 16 tasks having

each 4 samples for the probability distributions. The analysis

of such a system for 15 times maxATime takes less than 8

minutes. We can thus conclude that our analysis method scales

well.

VII. CONCLUSION

We have presented a flexible framework for the schedula-

bility analysis of probabilistic sporadic tasks. The framework

is given as a set of Parameterized Stopwatch Automata (PSA)

models that can be analyzed using both UPPAAL SMC and

UPPAAL. We have also introduced PoMD as a metric for the

degree of schedulability of probabilistic scheduling systems.

We compare the response time distributions we obtained to

those obtained in [24]. The results are not identical, but we

believe that the results we obtain are more useful when eval-

uating the schedulability of a real-time system. Our method

considers all possible scenarios in the system while [24] only

considers cases where the task under analysis has just been

preempted. This gives a probability distribution of a set of

almost worst case scenarios which we find less useful. The

analysis time of our method grows linearly in all parameters

of the system under analysis. This is in contrast with the

method of [24] which grows exponentially in the number of

tasks and the number of triggerings analyzed. We have shown

the flexibility of our framework by including the analysis of

a dynamic scheduling policy as well as by estimating another

parameter of the system (PoMD).

REFERENCES

[1] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. In
Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE,
pages 123–132, Dec 1998.

[2] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay. Statistical
abstraction and model-checking of large heterogeneous systems. Interna-
tional Journal on Software Tools for Technology Transfer, 14(1):53–72,
2012.

[3] A. Boudjadar, A. David, J. Kim, K. Larsen, M. Mikuionis, U. Nyman,
and A. Skou. Hierarchical scheduling framework based on compositional
analysis using uppaal. In J. L. Fiadeiro, Z. Liu, and J. Xue, editors,
Formal Aspects of Component Software (FACS 2013), Lecture Notes
in Computer Science, pages 61–78. Springer International Publishing,
2014.

[4] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Hierarchical scheduling framework based
on compositional analysis using uppaal. In Proceedings of FACS 2013,
LNCS volume 8348, P 61-78, 2013.

[5] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Degree of schedulability of mixed-criticality
real-time systems with probabilistic sporadic tasks. In Proceedings of
TASE 2014. IEEE Computer Society Press, 2014.

[6] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang. UPPAAL-SMC: Statistical model checking for
priced timed automata. In H. Wiklicky and M. Massink, editors, QAPL,
volume 85 of EPTCS, pages 1–16, 2012.

[7] L. Carnevali, A. Melani, L. Santinelli, and G. Lipari. Probabilistic
deadline miss analysis of real-time systems using regenerative transient
analysis. In Proceedings of the 22Nd International Conference on Real-
Time Networks and Systems, RTNS ’14, pages 299:299–299:308, New
York, NY, USA, 2014. ACM.

[8] F. Cassez and K. G. Larsen. The impressive power of stopwatches.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in
Computer Science, pages 138–152. Springer, 2000.

[9] E. Clarke, J. Faeder, C. Langmead, L. Harris, S. Jha, and A. Legay. Sta-
tistical model checking in biolab: Applications to the automated analysis
of t-cell receptor signaling pathway. In M. Heiner and A. Uhrmacher,
editors, Computational Methods in Systems Biology, volume 5307 of
LNCS, pages 231–250. Springer Berlin Heidelberg, 2008.

[10] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, 26(4):404–413, 1934.

[11] L. Cucu and E. Tovar. A framework for the response time analysis of
fixed-priority tasks with stochastic inter-arrival times. SIGBED Review,
3(1):7–12, 2006.

[12] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van
Vliet, and Z. Wang. Statistical model checking for networks of priced
timed automata. In U. Fahrenberg and S. Tripakis, editors, FORMATS,
volume 6919 of LNCS, pages 80–96. Springer, 2011.

[13] J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez, S.-L. Min,
and O. Mirabella. Stochastic analysis of periodic real-time systems. In
Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pages
289–300, 2002.

[14] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In
Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd
IEEE, pages 215–224, Dec 2001.

[15] J. Frey. Fixed-width sequential confidence intervals for a proportion.
The American Statistician, 64(3):242–249, 2010.

[16] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A model
checker for parametric Markov models. In Proc. 22nd International
Conference on Computer Aided Verification (CAV’10), volume 6174 of
LNCS, pages 660–664. Springer, 2010.

[17] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A
tool for automatic verification of probabilistic systems. In H. Hermanns
and J. Palsberg, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 3920 of Lecture Notes in Computer Science,
pages 441–444. Springer Berlin Heidelberg, 2006.

[18] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

[19] T. Hrault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In B. Steffen and G. Levi, editors,
Verification, Model Checking, and Abstract Interpretation, volume 2937
of Lecture Notes in Computer Science, pages 73–84. Springer Berlin
Heidelberg, 2004.

[20] A. Legay and B. Delahaye. Statistical model checking : An overview.
CoRR, abs/1005.1327, 2010.

[21] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[22] S. Manolache, P. Eles, and Z. Peng. Optimization of soft real-
time systems with deadline miss ratio constraints. In Real-Time and
Embedded Technology and Applications Symposium, Proceedings. RTAS
2004. 10th IEEE, pages 562–570, 2004.

[23] J. Martins, A. Platzer, and J. Leite. Statistical model checking for
distributed probabilistic-control hybrid automata with smart grid appli-
cations. In S. Qin and Z. Qiu, editors, Formal Methods and Software
Engineering, volume 6991 of Lecture Notes in Computer Science, pages
131–146. Springer Berlin Heidelberg, 2011.

[24] D. Maxim and L. Cucu-Grosjean. Response Time Analysis for Fixed-
Priority Tasks with Multiple Probabilistic Parameters. In RTSS 2013 -
IEEE Real-Time Systems Symposium, Vancouver, Canada, 2013.

[25] D. Maxim, M. Houston, L. Santinelli, G. Bernat, R. I. Davis, and
L. Cucu-Grosjean. Re-sampling for statistical timing analysis of real-
time systems. In RTNS, pages 111–120. ACM, 2012.

[26] D. C. Montgomery. Design and Analysis of Experiments. June 2000.
[27] L. Santinelli, P. Yomsi, D. Maxim, and L. Cucu-Grosjean. A component-

based framework for modeling and analyzing probabilistic real-time
systems. In Emerging Technologies Factory Automation (ETFA), 2011
IEEE 16th Conference on, pages 1–8, Sept 2011.

[28] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Probabilistic preemption
control using frequency scaling for sporadic real-time tasks. In The 7th
IEEE International SIES, June 2012.

[29] F. Zhang, A. Burns, and S. Baruah. Sensitivity analysis for edf
scheduled arbitrary deadline real-time systems. In Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2010 IEEE 16th
International Conference on, pages 61–70, Aug 2010.

83

