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Abstract—An analysis was performed of the rise characteristics of bubbles, which are also growing, in a
pressure field which is decreasing exponentially with time. The bubble rise and growth occur due to flash
evaporation caused by reducing the pressure in the vapor space above a pool of liquid. Basset’s bubble
momentum equation was modified to include the effects of the generated pressure wave, and to include
bubble growth. The solution of the differential equation was obtained for three different expressions for
the bubble drag, for pressure ratios of 0.1-0.9, Jakob numbers of 5-113, Weber numbers of 0-0.16, and
time constants of the pressure transient down to 5 ms. Results indicate that different bubble drag expressions
give bubble velocities which differ by as much as 100%. The pressure term introduced by the authors has
a negligible effect in the range of parameters considered here but becomes significant for very rapid
depressurization rates, and the initial velocity of the bubble has little effect on the bubble’s subsequent rise
velocity.

1. INTRODUCTION

FLAsSH gvaporation occurs when the vapor pressure
above a liquid is reduced to a level which is below the
saturation pressure corresponding to the temperature
of the liquid. Typically, most of the vapor is liberated
through bubbles released from the liquid after a pro-
cess of nucleation, growth and rise to the liquid-vapor
interface. Typically, the pressure reduction process is
transient, where often the initial pressure drop is large
and it decays in time to a new state of equilibrium.
Such a process is common to many applications in
which flash evaporation plays an important role, such
as distillation, vacuum freezing, and loss of coolant
accidents (LOCA) in nuclear power plants. The pri-
mary objective of this study is to examine bubble
translation accompanied by growth inside a liquid
which is exposed to a pressure field decaying with
time.

Motion of bubbles and liquid droplets in fluids has
been studied extensively in the past (cf. ref. [1]}..Good
results were obtained, particularly for the limiting
cases of potential flow and for the steady-state ter-
minal velocity. A vast amount of literature exists on
the growth of bubbles. A number of researchers have
studied the problem of combined rise and growth of
bubbles, which is the objective of this study, but with
the restricting assumptions of heat transfer controlled
growth with rise induced purely by buoyancy (cf. refs.
[2-4}). The present analysis removes these two restric-

tions by: (1) considering the entire regime of bubble
growth, including the initial inertia-controlled growth
period, by using the results of Mikic¢ et al. [5]; and (2)
by directly incorporating the effects of the transient
pressure reduction term which drives the flash evap-
oration. The analysis is thus more general and covers
bubble rise and growth not only in steady-state boiling
but also in the transient process of flash evaporation.

2. PROBLEM FORMULATION

This section describes the problem formulation for
the force balance on a vapor bubble which grows
due to an imposed transient pressure reduction in the
vapor space, and translates upward due to buoyancy
and this pressure reduction. A force balance over a
horizontal cross-section of the bubble is used in this
study to determine the rise velocity for a given growth
rate.

The major assumptions used in deriving the govern-
ing equation are:

1. The bubble nucleus already exists when flashing
is initiated, most likely on a present micro-bubble {cf.
ref. [6]).

2. The bubble is spherical.

3. The bubble rises vertically in a fluid of infinite
expanse.

4. Growth is governed by the Miki¢. Rohsenow and
Griffith (MRG) [5] solution which accounts for the
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Cy  drag coefficient
C, specific heat of the liquid
d, effective diameter of the bubble

g gravitational acceleration

fiyy latent heat of vaporization

Ja Jakob number, ATC, /h,

k thermal conductivity of liquid
Mo"  Morton number, gu'/ps’

Pr final pressure in the vapor space
o initial vapor space pressure

p* pressure ratio, py/p;

Pe Peclet number, 2U, R,/

R bubble radius at any time ¢

R dimensionless bubble radius in MRG
expression

R, mitial radius of the bubble

Re Reynolds number, 2RU , /v,

! time

Iy traversal time for the pressure wave

NOMENCLATURE

! dimensionless time in MRG expression

T, initial temperature of the pool

T, saturation temperature inside the bubble

T, liquid temperature far away from the
bubble

¢,  liquid velocity far from the bubbie

Weber number, 2RU? p,/o

X,y spatial coordinates.

Greek symbols

& thermal diffusivity

I time constant of the depressurization

AT  superheat in the liquid

i viscosity

&, horizontal cross-section radius of the
bubble

P density

G surface tension.

successive inertial and thermal regimes during the
bubble growth process.

5. The liquid is incompressible.

6. The pressure in the vapor space is an ¢xpo-
nentially decaying function of time with a known,
arbitrary, time constant.

7. The effect of non-condensable gases in the liquid
is negligible.

The equation of motion for a growing bubble was
written as a force balance over its cross-section. A
schematic of the bubble translation in the vertical
direction is shown in Fig. 1. This force balance can be
derived from the basic equations of fluid mechanics
starting with the Navier—Stokes equations (as devel-
oped for bubbles in non-flashing liquids by Basset
[7]). Since the translation process examined here is
transient, the net force was equated (o the rate of
change of vapor and liquid momentum. The resulting
equation for the translation velocity, U, , in this flash-
ing case, followed by a brief explanation of the terms.
was written as:

d , .
G AR DU +3R p U, ) = 7R g(pi=p.)

d -, N
+ a‘,})‘[an_ —CpapUs nR?

1

Cdn. (1)
Ju—ty T

- ‘du,,
— 4R/ (mp ) “dr (t)
0

The first term represents vapor inertia, and the
second term on the left-hand side is the contribution
of the added mass due to liquid displacement. The
first term on the right-hand side is the buoyancy force,
and the second term is the effect of the pressure wave

traveling down from the vapor space due to the
imposed pressure reduction. The modeling of this
pressure term was carried out using an approximation
for the complex interactions occurring during the
pressure wave travel, a description of which is pro-
vided later in this section. The third term on the right-
hand side is the drag force contribution which arises
due to the frictional stresses. The drag coefficient used
in this study is different {rom the conventionally used
expression for drag because the change in bubble size
with time is taken into account in the modeling. The
last term represents a cumulative effect of past accel-
eration of the bubble weighted by the time elapsed,
and is referred to in the literature as the ‘Basset history
term’. This term arises due to the dissipation of vor-
ticity generated at the bubble surface into the liquid.
It represents a higher order effect of the transient, and
is usually neglected in practical situations. However,
as pointed out in this paper, large depressurizations
found in flash evaporation could lead to acceleration
levels that make the contribution of the history term
comparable to the other terms. An evaluation of its
magnitude is carried out in the Appendix,

The driving forces are those of buoyancy and the
applied pressure reduction, which tend to propel the
bubble upward, the restraining forces being those of
liquid inertia, added mass due to displacernent of the
liquid, unsteady drag force, and the Basset history
term (which accounts for the prior acceleration his-
tory of the bubble).

Since py/p. =~ 1000 for the flashing of water for
typical temperatures and pressures, the contribution of
vapor momentum on the left-hand side of equation (1)
is negligible in comparison to the liquid momentum.
Neglecting the vapor momentum and the history term
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FiG. 1. Schematic of bubble translation and pressure wave propagation.

(such an assumption is plausible for the case of small
pressure reductions encountered in flashing—which
in turn leads to a small contribution to the integral in
equation (1); this assumption is justified a posteriori
using the calculated rise velocity—see the Appendix),
equation (1) becomes

@ TR T,
3dp 1 3 U2

Next, models for the growth, drag and pressure terms
were inserted into the above equation to obtain a
single equation for the rise velocity as a function of
time.

We used the Mikit er al. [S] expression for the
growth history of the bubble. This equation is valid for
both inertial (initial) and thermally controlled (later)
growth regimes, and is therefore well suited for the
early stages of the growth process. For the conditions
considered here, R/R, typically reaches 2 maximum
of 50

R* = 3[(t" +1)V2 = (1) —1] 3)
where
AR A%t
Rt = —B;i', = —352—

2A 2 12 12
4= [:_ __Z{lfL’)"jl B = [_ Jaza]jl
3 Taum n

Ja = Ll —Cé}j .
Oy hfg

In this bubble translation analysis, the unsteady
nature of the drag coefficient was modeled using a
quasi-steady approximation. Drag expressions which
have been derived in the literature for constant size
bubbles are used here, but the radius, and hence, the
drag coefficient, is considered variable in the com-
putations. A variety of expressions for the appropriate
drag coefficient were tried out. One of the expressions
is taken from the list compiled by Clift e al. [1] (shown
in Table 1) for the range of translation Reynolds
number Re (=2RU,/v) corresponding to this inves-
tigation. It was found that the translation process is
quite sensitive to the value of the drag coefficient,
and widely differing results can be obtained by using
different available methods for its determination. A
list of the drag expressions used in this study is shown
in Table 1.

The drag coefficient is also affected by the Morton
number. Miyahara and Takahashi [8] have found that
the drag coefficient for bubbles is constant for Rey-
nolds numbers (based on equivalent diameter) larger
than 10. They also found a 0.3 power dependence
of Cp on the Morton number for small Reynolds
numbers, i.e.

and
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Table 1. Drag coefficients for spherical bubbles

® Moore [15] (fluid spheres)

48
CD = i{e |:]
® Peebles and Garber terminal velocity expression {13] (rigid
spheres)

2.2 v J
- +O(Re V) )
€

Co =R P9 rs007em) )
3182
» Fluid sphere drag [1}
Re Cp
0.1 1918
I 8.3
S 4.69
10 2.64
20 1.40
30 1.07
40 0.83
50 0.723
100 0.405
200 0.266
300 0.204
400 0.165
500 0.125

Cty = 0.03(Re’) H(Mo)"?

where

vt d Y , Re , glﬁ
C"”‘C"<d>‘ R =da MO g

and a = major axis diameter of the ellipsoidal bubble.
They observed a change in the behavior of Cy, with
Re at a value of Mo = 1077, For our calculations,
Mo is always below 1077 and thus the behavior of
the drag coefficient with Re as shown in Table | is
valid.

The pressure term in equation (1) represents the
effect of a depressurization (expansion) wave traveling
down the liquid from the vapor space as a conse-
quence of the imposed pressure reduction. Obser-
vations have shown [9, 10] that bubbles are accel-
erated upward soon after the pressure reduction is
imposed, but then their upward motion settles down
to a relatively quiescent rise pattern as they approach
the surface. Due to the large pressure reduction rates
that are possible in situations where rapid depres-
surization is used, such a pressure drop could exert
an impulse propelling the bubble upward. This effect
on bubble rise complements that due to buoyancy.

The strength of this expansion wave depends on the
depth at which bubble nucleation occurs (the depres-
surization effect is suppressed due to the hydrostatic
pressure) and on the rate of depressurization. The
duration of the effect is determined by the time of
passage of the wave moving vertically across the
bubble surface. The excess pressure which causes
bubble motion in the upward direction {superimposed
on the gravity field), acts over progressively increas-
ing areas of cross-section until the wave reaches the
bubble equator, then it acts over decreasing areas.

S. GopavakrisunNa and N. Lior

As shown in Fig. 1, the pressure difference dp acts over
the radius &, which is a function of bubble radius and
time. The net contribution to the pressure impulse is
dpx n&3, and an integral of this contribution over
time represents the total pressure force. As can be
seen from the functional form of the imposed
pressure reduction, the contribution becomes pro-
gressively smaller, and the initial impulse 1s the
largest contributing factor.

A limiting case of this entire phenomenon of the
pressure wave travel—that of the total pressure drop
acting over the maximum area of 7R’ for the period
of time ¢, it takes for the wave to travel across the
bubble---was considered in this study.

The pressure reduction imposed externally in the
vapor space was modeled as an exponential decay
with time (cf. ref. [11])

p=pH(pi—ple . (6)

The growth of this bubble is strongly affected by the
pressure reduction, and this is accounted for by using
the Jakob number (which is proportional to the
imposed superheat) in the growth expression.

For the largest depressurization rates encountered
in conditions of LOCA, with § = 1000 s ', the pres-
sure term is approximately 27 m s *, comparable in
magnitude to the constant buoyancy term. However,
the high contribution acts only for the duration of
time that the pressurc reduction wave takes to cross
the bubble.

The equations for the drag coefficient, pressure
reduction and growth were inserted into equation (2),
and this results in a non-linear ordinary differential
equation for the rise velocity U, asa function of time:

R N .Y
(l'+ o+ ])3'2‘[; k’?ﬂl

du, +9 ; A°
133

d¢ 2 P
8] A: 2 -
+ ﬁ_‘ U, Bi[(,w-+])32__[+1,_]],_
= 1
B’ ; . .
D et =0
i

(N
where 4 and B were defined in equation (3). and
equation {5) was used here for the drag coefficient.

The initial velocity for the integration of equation
(7) was taken to be a finite, small non-zero number
(typically 0.01 m s~ '). Since the magnitude of this
initial bubble velocity depends on the circumstance of
bubble nucleation and on the surrounding flow field
at that time and place, various values of the initial
velocity were examined to establish the dependence of
the solution on the initial conditions.

To compare the results obtained from the above
integration with oft-employed models which assume
potential flow for the calculation of terminal rise vel-
ocity (cf. ref. [12]) for a given growth rate, the
expression
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Table 2. Range of parameters used in this study

Quantity Minimum  Maximum
Pressure ratio, p* 0.1 1.0
Jakob number, Ja 8.5 113
Weber number, We 0 0.16
Radius, R (mm) 0.5 5
Time constant, §~' (ms) 5 ©
B 0 200

2q |"
Upolential = Eij R3 ds (8)
o

was evaluated numerically for the radius growth curve
given by the MRG expression. The range of par-
ameters used in this study is shown in Table 2.

3. SOLUTION PROCEDURE

Equation (7) was integrated numerically starting
from ¢ = 0% using a locally fifth-order Runge-Kutta
scheme. The integration was carried out for various
pressure reductions in the vapor space, as charac-
terized by the values of p* and f in the expression

p—p=(p—pre P =p(A—-pHe ¥ (9

Here, (p;— py) represents the overall imposed pressure
drop.

The integration is carried out until the combination
of the velocity U, and the bubble radius R result in
a Weber number which is greater than the limit speci-
fied for the sphericity condition to be valid
(We =~ 0.16). Beyond this time limit, the bubble shape
(spheroidal or ellipsoidal) will influence the rise
velocity, and needs to be determined simultaneously.

During the integration, care was taken to maintain
a time step compatible with the assumption of a pres-
sure wave impacting on the bubble surface. In other
words, the time step used in the calculations must be
of the same order as the time spent by the wave in
traversing the bubble surface, so that the process can
be modeled with sufficient accuracy. A time step of 1
us was used in all the computations, so that the esti-
mated wave travel time (x7.8x 1077 s) can be fol-
lowed closely in most of the cases of interest. As the
bubble radius increases, this time step describes the
phenomenon sufficiently well.

In addition to computation of the bubble velocity,
the magnitude of each of the terms contributing to
the momentum equation was also examined.

4. RESULTS AND DISCUSSION

Figure 2 shows the rise velocity as a function of
time for different levels of superheat imposed on the
liquid, and for three different expressions for the drag
coefficient (Cp). As shown in Fig. 2, the results depend
strongly on the drag coefficient expression employed.

The potential flow solution (equation (6)), gen-
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F1G. 2. Bubble rise velocity history for different rise velocities

as a function of time for various expressions

of the drag coefficients taken from Table 1, and for different
pressure ratios: § =200s" ', U,(0) = 0.0l ms™'.

erated for comparison with limiting cases, shows that
the translation velocity increases linearly with time.
The usage of Cp, from Peebles and Garber [13] results
in the rise velocity going through a maximum, as
shown in Fig. 2. The maximal rise velocity decreases
as the overall pressure reduction increases (cor-
responding to lower p*), because the drag as well as
the growth terms impede the motion and therefore
cause deceleration of the bubble (see equation (7)
for the sign of each of the terms). For small overall
pressure drops (p* = 0.9), the curve is almost coinci-
dental with the potential flow curve for the rise of a
bubble in water. As the imposed pressure drop
increases, the growth term contributes more and more
to the deceleration, leading to a maximum in the rise
velocity.

The observed trend of lower velocity for higher p*
(or Jakob number) is confirmed by the results of Pinto
and Davis [3], who obtained maximum rise velocities
of 25 cm s™' for a Jakob number of 5, whereas the
maximum velocity reached only about 12 cm s~ for
Ja = 50 (Fig. 3). As also seen in the comparison of
individual contributions to the acceleration (Fig. 4).
the drag term exerts a large influence and, eventually,
the velocity decreases as a function of time. Also seen
in Fig. 2 is the fact that increasing pressure drops
cause the velocity maximum to occur sooner.

The individual contributions of buoyancy, pressure
reduction, drag and growth terms in the force balance
equation (equation (7)) are examined further below
for the various drag expressions used in the calcu-
lations. The five terms from equation (7) are labeled
as Net Acceleration, Growth, Buoyancy, Drag, and
Pressure, respectively, in Figs. 4 and 5, for p* = 0.9
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F1G. 3. Comparison of results with Pinto and Davis [3].

and f =200 s~ '. These figures can be examined in
conjunction with Fig. 2, which describes the rise vel-
ocity. When using the Peebles and Garber drag
expression, the maximum velocity attained around
7 = 0.025 is scen to be the result of an exact balance
between buoyancy on the one hand and growth and
drag on the other. The growth term decreases from
the initial high value to almost zero for large times,
because of the decrease in growth rate. The gravity
(or buoyancy) term remains practically constant for
the conditions specified, with only minor changes
caused by variations in vapor density. The graphs
shown here are typical, and a similar trend is followed

20 = gttt —}

:?AA Buoyancy

w

£ 10

[ ¢+ X

2 e, . Net acceleration
> I — gt b —— b — — — — — =
2 ° ‘\ Pressuré =

—— /’/

g \. -t \

S o F /.)(t/ Growth

- *

§ " \.\’

= ey

> Drag

< -20

o

Q
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-30 J 1 { 1
0 0.02 0.04 0.06 0.08
2
t=al/Ry

FiG. 4. Individual contributions to the force balance:
pt=09 f=200s"" U,(©0)=001 m s ' Peebles and
Garber drag.
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FiG. 5. Individual contributions to the force balance:

p*=09,5=200s"", U, (0) =001 ms" ' Dragcoefficicnts
based on Clift ez al. {1]. shown in Table 1.

for other pressure reductions which have been
examined in this study.

The pressure term was observed to be quite small,
relatively negligible in the entire range of parameters
p* and f investigated here. Larger and faster depres-
surizations can occur in situations such as nuclear
reactor loss of coolant accidents (cf. ref. [14]). Using
the drag coefficient expression proposed by Moore
[15], the pressure term corresponding to LOCA con-
ditions (f = 1000 s~ ') was found to be about 20% of
the buoyancy term at the initial instant of time, not a
negligible quantity.

The bubble velocity calculations based on drag
coeflicients developed for fluid spheres [1]. sum-
marized in Table 1, are also shown in Fig. 2 and are
probably more representative of the actual situation
because they are a function of the Reynolds number
and were calculated more accurately using weighted
residual methods and boundary layer theory for a
range of Reynolds numbers. The trend shown is such
that larger depressurizations now cause higher vel-
ocities of translation. An examination of the con-
tribution of each term (Figs. 4 and 5) reveals the
source of this behavior. The growth term obviously
increases for the case of larger driving pressurc
reduction, and the influence of drag is felt at later
times as a reduction in the slope of the curve. Since
the coefficient of drag multiplies U2/R in the force
balance (equation (7)), a larger bubble size results in
a smaller drag contribution to the overall decelcration
of the bubble. This is in contrast to the Peebles and
Garber [13] drag expression, which predicts an R’
dependence of Cp. The drag expression from Clift ef
al. [1] predicts the lowest bubble rise velocities, and
we believe that this is the most appropriate choice for
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the case of flash evaporation studied in this paper.
In this connection, it should be mentioned that the
expressions for drag used by Peebles and Garber {13]
are for rigid spheres, whereas the other expressions
are for fluid spheres. Surfactants are often present in
the liquid and they accumulate on the surface of the
bubble, which causes it to behave as a rigid sphere as
far as fluid drag is concerned. During the early stages
of formation and growth, the assumption of a fluid
sphere is more appropriate, as demonstrated here.

This behavior was also confirmed by the use of
another drag expression, developed from potential
flow theory, by Moore [15]. As expected, the rise curve
is linear, resembling the potential flow curve. For
higher pressure reductions, the curve shifts upward,
and due to zero skin friction drag, the bubble accel-
erates upward. There is no deceleration because the
contribution of the growth term remains at a com-
parable level to that of buoyancy. Moore’s expression
obviously tends to overpredict the bubble rise velocity.

Figure 6 compares different initial velocity assump-
tions on the rise history for a given depressurization
level. The effect of initial velocity is seen to be minimal,
and a large initial value (such as 1 m s~ ') settles down
rapidly to the predicted rise curve as shown. Such a
situation arises because the drag term remains small,
whereas the growth term is quite large initially. The
net acceleration is a large, negative number because
of its annihilation by the growth term alone. The drag
term exerts an influence comparable to the others, as
shown in Figs. 4 and 5. This shows that the driving
forces are too great for the initial velocity to have an
impact on the rise characteristics.

Varying the time constant of the depressurization
(for p* = 0.9), it was found that there is practically
no difference in the rise pattern for three different
rates correspondingto f = 0, =20s" ", and 8 = 200
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¢~ . This is a direct consequence of the relatively small
value of the pressure term in the present range of
parameters, as discussed above.

5. CONCLUSIONS

1. The Basset equation was modified to include the
effect of the pressure wave generated by depres-
surization on bubble rise velocity.

2. Using the Miki¢, Rohsenow and Griffith equa-
tion for bubble growth [5], and a number of available
expressions for drag coefficient for spheres, this modi-
fied Basset equation was solved to determine the tran-
sient bubble rise velocity during flash evaporation
caused by transient depressurization.

3. The contributions of all the driving forces acting
on the vapor bubble growing and translating in the
time-varying pressure field were also examined,
including the extent of influence of the pressure
reduction force introduced in this study.

4. The effect of the imposed superheat is quite
important in determining the rise velocity charac-
teristics. An almost linear increase in velocity was
obtained for a high overall pressure drop (p* = 0.1).
As the imposed pressure reduction was decreased
{p* = 0.9), the retardation sets in carly, and only 20%
of the velocity reached for p* = 0.1 is reached in this
case for the case of drag coefficients from Clift ef al.
1.

5. The effect of the newly introduced pressure term
is short-lived and practically insignificant in the range
of parameters investigated here, contributing only
about 0.1% for the case of flash evaporation at normal
temperatures and pressure for the flashing of water,
but becomes more significant as the magnitude and
rate of depressurization increase.

6. The initial bubble rise velocity (post-nucleation)
plays only a marginal role in the eventual rise process,
because its effects are largely cancelled by the large
influence of the growth and drag processes as soon as
the bubble starts moving.

7. The nature of the drag expression in the unsteady
case is very influential in determining the resulting rise
velocity. Different drag expressions result in up to a
100% difference in rise velocity depending upon the
range of application.
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APPENDIX: EVALUATION OF THE ORDER OF
MAGNITUDE OF THE BASSET HISTORY
INTEGRAL

The Basset history term can be written as

. av, 1
Fa =4R~v<np,u,>£ Fr e LSRG

—1,)

S. GoraLakrisHNa and N, Lior

Typically, p, = 1000 K gm™*, and s, = 10" * Nsm . For
the highest accelerations, obtained in potential flow [12]

v, =2 R A2
=l . {A2)
For the growth defined by R o 1772, we get
5 [T
. N L.
Vo= gk 12t (A%
Therefore
4, 4g a
M»dﬁlw (f;) = {f = 3.56Tms .
The history term now becomes
. s 1 3387
Fip = 4x5x 107 % /(% 1000 % ]{)‘”)J i 1

0 \,")v("‘ 4 )

= 1.265 % 1077/t where ¢ is in seconds.
For the times considered here, i.e. ¢ & 0.1 s, the history term
contributes approximately 0.0004 N.

In comparison to the above estimate for the history term,
the typical contribution of the other terms is

Gravity
1R g(p—p,) = 0.00514 N,

This term is therefore at least one order of magnitude higher
at the largest radius (and the highest acceleration) than the
history term.

Drag
CpipUZaR? = 0.00499 N

(for Cy, = 1 : a high value, see Clift er a/. [1}, Table 1). For
the present calculations, therefore, the effect of the history
term can be safely neglected.

ANALYSE DE LA TRANSLATION DES BULLES PENDANT L’EVAPORATION
BRUSQUE

Résumé—On analyse les caractéristiques de la montée des bulles, lesquelles grossissent, dans un champ de
pression qui diminue exponentiellement dans le temps, ce qui modélise I"évaporation brusque par réduction
de pression dans Uespace de vapeur au-dessus du liquide, L’équation du momentum de la bulle selon Basset
est modifiée pour inclure les effets de 'onde de pression générée, ainsi que la croissance des bulles. La
solution de Iéquation est obtenue pour trois expressions différentes de la trainée de la bulle, pour des
rapports de pression de 0,1 4 0,9, des nombres de Jakob de 54 113, des nombres de Weber de 04 0,16 et
des constantes de temps allant jusqu'a 5 ms pour la pression. Les résultats indiquent que des expressions
différentes de la trainée de bulle donnent des vitesses qui peuvent différer de 100%. Le terme de pression
introduit par les auteurs a un effet négligeable dans le domaine des parameétres considéré ici mais il devient
significatif pour les dépressurisations rapides; et la vitesse initiale de la bulle a un effet trés faible sur la
croissance ultéricure de la vitesse,
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UNTERSUCHUNG DER BLASENBEWEGUNG BEI DER
ENTSPANNUNGSVERDAMPFUNG

Zusammenfassung—Das Aufstiegsverhalten von wachsenden Dampfblasen in einem zeitlich exponentiell
abfallenden Druckfeld wird untersucht. Blasenaufstieg und -wachstum werden durch Entspan-
nungsverdampfung erzeugt, indem der Druck im Dampfraum iiber einer Fliissigkeit abgesenkt wird.
Die Blasenimpulsgleichung nach Basset wird modifiziert, um den Effekt der durch die Druckabsenkung
erzeugten Druckwelle einzubeziehen. Die Differentialgleichung wird fiir folgende Bedingungen gelost : drei
unterschiedliche Ausdriicke fiir den Stromungswiderstand der Blasen, Druckverhéltnisse von 0,1 bis 0,9,
Jakob-Zahlen von 3 bis 113, Weber-Zahlen von 0 bis 0,16 und Zeitkonstanten der Drucktransienten bis
hinunter zu 5 ms. Die Ergebnisse zeigen, dall unterschiedliche Formulierungen fiir den Stro-
mungswiderstand der Blasen Unterschiede in der Blasenaufstiegsgeschwindigkeit bis zu 100% verursachen.
Der von den Autoren eingefithrte Druckterm hat im untersuchten Wertebereich der verschiedenen Pa-
rameter einen vernachlissigbaren EinfluB, wird aber wichtig fiir sehr hohe Druckabsenkungsgeschwin-
digkeiten. Die Anfangsgeschwindigkeit der Blasen beeinfluBt die sich spiiter einstellende Aufstiegs-
geschwindigkeit der Blasen wenig.

AHAJIN3 NMOCTYNATEJIBHOI'O JIBXXEHNA ITY3bIPBKOB B ITPOLIECCE
HEYCTAHOBUBHIEOCA HCITAPEHHA ITPU BCTIBIIKE

ARROTAINS—AHATHIUPYIOTCR XAPAKTEPHCTHKHE MOOBEMA PACTYIINX NY3BIPHKOB B NOJIC NABJICHHH, JKC-
NOHCHIHANBHO YMEHBIHAIOHMIEMCH co BpemeHeM. [ToaneM H pocT Ny3mPHKOB NPOHCXOMAT 34 CYET HCHA-
PeHBSA IDH BCOLILIKE, KOTOPOE O0YCIOB/ICHO YMEHBIUCHUCM NaBleHHA B 06BeMe napa Haj KHAKOCTBIO.
Ypasuenne bacce [A KONMHYECTBA ABWKEHHA NY3HIPLKOB MOMGRIHPYeTCs ¢ yeeroM ddexTos dopmu-
pyromeiics BORHN AaBNECHHS H POCTa Hy3nipekos. ITonyueno pemterne aroro muddepesuHanLHOro ypas-
HCHHS NPH TPeX DadIHYHLIX HANPAXKCHHAX AR CONPOTHBJICHHA Ny3HPbKOB, OTHONICHASX AaBJeHmHi
0,1-0,9, wucnax SAxoGa 5-113, wuciax Bebepa 00,16, a Taxke NOCTONHHEIX BPEMEHH, XAPAKTEPHIYIOLIAX
NAIeHHE aBJICHAS, COCTABASIONIAX N0 5 MC. Pe3yIbTaThl NOKA3LIBAIOT, YTO PAMIHYHLIE BHPAXCHHS 11K
CONPOTHBJIEHNS MY3BIPLKOB JAIOT CKOPOCTH NMy3HIPbKOB, OTHYalomuecs Ha 100%. DddexT BBenennoro
ABTOPAMH CJIAraeMoro, COASPAKALILUEro NaBjieHue, NpeHeGPEXHMO Mall B HCCIEYEMOM IHANIA30HE H3ME-
HEHHS [TAPaMETPOB, HO CTAHOBHTCH CYIUECTBEHHBM NPH OY€Hb GHICTPOM cOPOCE NABJIEHHS, B TO BpeMs
Kax Ha%aJbHas CKOPOCTS My3hIphka ciabo BIMAET Ha CKOPOCTH €ro NOCENYIOLIEro MOALEMa.

1761



