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Abstract--A simple equation suitable for predicting the growth rate of a vapor bubble in uniformly- 
superheated pure liquids and in binary solutions with a non-volatile solute was developed. The equation 
also improves on the popular pure-liquid bubble growth expression of Miki6 et al. (International Journal 
of  Heat and Mass Transfer, 1992, 35, 1711-1722) in that it is valid throughout the bubble growth history, 
i.e. in the surface-tension-, inertia-, and heat-transfer-controlled regimes, it accounts for bubble growth 
acceleration effects, and uses correctly-related and variable fluid properties. It was found to agree very well 
with experiraental data for pure water and for aqueous NaCl solutions. As the bubble growth in superheated 
solutions with a non-volatile solute was found to be quite insensitive to diffusion and nonequilibrium 
effects in a broad range of common solution properties, this equation is likely to be universally valid for 

many liquids and solutions. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Bubble growth in superheated fluids is of key interest 
in boiling phenomena in general and in flash evap- 
oration in particular. Most of the large amount of 
research on such bubble growth has been conducted 
for pure liquids (see reviews in refs. [1-3]), and very 
little is therefore known about bubble growth in super- 
heated solutions with a non-volatile solute, a topic 
of both fundamerLtal and practical importance, with 
applications including a wide variety of separation 
processes such as water desalination, and energy con- 
version processes such as ocean-thermal energy con- 
version, geothermal power generation, and nuclear 
reactor safety. 

Amongst the small number of papers on bubble 
growth in superheated binary solutions, Scriven [4] 
(with corrections [5, 6]) has described the general 
approach to modeling uniformly-heated spherically- 
symmetric bubble growth of both pure liquids and 
binary mixtures, and has derived approximate asymp- 
totic solutions in the heat and mass-transfer-con- 
trolled regime; subsequent studies are cited in refs. 
[7-12]. 

t Author to whom correspondence should be addressed. 

The past research shows that bubble growth in 
superheated liquids can be characterized as pro- 
gressing in three consecutive regimes (as depicted in 
Fig. 1) : at first, just when the bubble has nucleated 
(with radius just larger than the critical), surface ten- 
sion is dominant, impeding significant growth for a 
certain "delay period". After the nucleus grew some- 
what, say doubled its diameter, inertia forces become 
dominant and the bubble grows primarily due to the 
difference between the vapor pressure inside the bub- 
ble (Pv) and the exterior pressure (Po~). During that 
period bubble growth is a linear function of time, 
R ~ t. As the bubble grows further and its wall tem- 
perature consequently drops, causing an increased 
temperature difference between the surrounding liquid 
and the bubble wall, its growth rate becomes domi- 
nated by heat transfer from the surrounding liquid 
which causes addition of vapor to the bubble by evap- 
oration at the interface. During that period bubble 
growth is characterized by R ~ t U2. 

The primary objective of this paper is to introduce 
a simple yet rather accurate universal equation for 
bubble growth rates in either pure, or binary solution 
liquids with a non-volatile solute, which is valid 
throughout all of the bubble growth regimes. 

Miki6 et aL [13] have developed a simple general 
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NOMENCLATURE 

A ÷ parameter defined by equation (3) 
[ms - ' ]  

.4* parameter defined by equation (10) 
[m s -I] 

B + parameter  defined by equation (4) 
[m s-  1/2] 

B* parameter defined by equation (I 1) 
[m s-  ,/2] 

el specific heat of pure liquid or of solvent 
[J kg - l  K -l] 

D mass diffusivity [m 2 s-l]  
hf s latent heat of vaporization [J kg-l]  
P vapor pressure of pure liquid or of 

solution [Pa] 
Pv vapor pressure inside the bubble [Pa] 
poo pressure in pure liquid or solution far 

from the bubble [Pa] 
R bubble radius [m] 
Rc critical bubble radius expressed by 

equation (13) [m] 
R ÷ dimensionless bubble radius defined by 

equation (2), dimensionless 
R* dimensionless bubble radius defined by 

equation (9), dimensionless 
gas constant [J kg -1 K -l] 

t time [s] 
td bubble growth delay period, defined as 

the time at the intersection of R = Rc 
and the tangent to the R vs t relation 
curve at the point d2R/df l  =0 [s] 

tu upper limit of time during the period 
concerned [s] 

t + dimensionless time defined by 
equation (5), dimensionless 

t* dimensionless time defined by 
equation (12), dimensionless 

t* dimensionless time for estimating Tr, 
dimensionless 

T temperature [°C] 
7 ~ absolute temperature [K] 
Te equilibrium temperature of solution 

corresponding to poo [°C] 
T~ bubble wall temperature [°C] 
Tr reference temperature at which Pv is 

evaluated [°C] 
Ts saturation temperature [°C] 
Ti bubble wall absolute temperature [K] 
7~s saturation absolute temperature [K] 
Too temperature of pure liquid or of 

solution far from the bubble. 

Greek symbols 
a l thermal diffusivity of pure liquid or of 

solvent [m 2 s -1] 
AP0 initial pressure difference between 

interior and exterior of  the bubble, 
expressed by equation (17) for pure 
liquid and by equation (22) for a 
solution [Pa] 

AT~ superheat defined by equation (7) for 
pure liquid and by equation (20) for a 
solution [°C], [K] 

Pl density of pure liquid or of solvent 
[kg m -  3] 

Pv density of pure liquid vapor or of 
solvent vapor [kg m -3] 

a surface tension [N m 1] 
ao evaporation coefficient, dimensionless 
~oo~ mass fraction of solute in solution far 

from the bubble, dimensionless. 

equation for calculating bubble growth rates in pure 
liquids, starting with a bubble radius of zero, only in 
the inertia- and heat-transfer-controlled regimes, viz. 

R + =~[ ( t++l )3 /2 - - ( t+)3 /2 - -1]  (1) 

where 

A + 
R + - R (2) 

(B+)  2 

A+~(~hfgPv~_Ts~ I/2 
p, T, / (3) 

{12 )I/2 ClRI AT s 
B + = ~--~ o~,/I hfgpv (4) 

and 

A + ,~2 
l + \ ~ - j  t. (5) 

The properties of the vapor and liquid in the above 
equations are based on the saturation temperature 
(Ts) of the liquid, which corresponds to the pressure 
(p~) in the liquid far from the bubble, viz. 

Poo = (P) T, (6) 

and the superheat (AT0 is defined as 

ATs = Too -- Ts. (7) 

In the development of this bubble-growth, Miki6 et 
al. [13] have assumed that the relationship between 
the vapor pressure and temperature can be expressed 
by the linearized Clausius-Clapeyron equation, and 
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Fig. 1. Bubble growth history in water and comparison of 
the pure-liquid simple bubble growth equation (O symbols) 
and numerical solution (solid line) of Miyatake and Tanaka 
[15] with the equation by Miki6 et aL [13] (dashed line) 
and the limiting-case equations (dotted lines) for the inertia- 
controlled regime (Rayleigh [17]) and the heat-transfer-con- 
trolled regime (Plesset and Zwick [18]). The dimensionless 
bubble radius R + and time t+are defined by equations (2) 
and (5), respectively. The bubble growth delay time (t~-) here 
is at the intersection of the tangent at the solution inflection 
point (d2R+/(dt+) 2 = 0) with the critical radius (R + = R+). 

sidered to start from R(0) = 0, which is a physical 
impossibility. 

(3) The correct, non-linear relationship between 
the vapor pressure and temperature, obtained from 
the steam tables, was used, eliminating the linear 
relationship assumption used in ref. [13]. 

(4) The effect of the bubble growth acceleration 
term d2R/dt 2, neglected in ref. [13], was included. 

The new general equation for bubble growth in pure 
liquids [15], between a dimensionless bubble radius 
(R*) and dimensionless time (t*), which was shown 
in ref. [16] to represent experimental data very well, is 

+ ~- exp [ -  (t* + 

where 

that the vapor density is constant. Theofanous and 
Patel [14] have shown that these assumptions may 
lead to large errors for large initial superheats, when and 
the vapor density changes during the process sig- 
nificantly, and have modified the Miki6 et al. [13] 
bubble growth equation to correct this deficiency by 
using a more realistic dependence of vapor density on 
temperature, where 

and 
2. AN IMPROVED BUBBLE GROWTH EQUATION 

FOR PURE LIQUIDS 

In an experimentally-validated numerical study, 
Miyatake and Tanaka [15, 16] have developed an 
improved simple equation for bubble growth in pure 
liquids, which has more generality and reflects reality 
more closely, by in,eluding the following effects : 

(1) The initial, surface-tension-controlled bubble 
growth regime, which occurs immediately after the 
nucleation of a bubble, and which causes an initial lag 
in bubble growth (the 'delay period', to, see refs. [1]- 
[4] and Fig. 1 where t2 =(A+/B+)2td) was added to 
the inertia- and heat-transfer-controlled regimes taken 
into account in t])e equation by Miki6 et al. [13]. 
Consequently, the new equation now covers the entire 
bubble life span. 

(2) Consistently with improvement 1 above, 
growth was considered to start when the bubble radius 
was just larger tha:a the critical radius Re (at which the 
bubble nucleus is sustained as a result of equilibrium 
between surface tension and the pressure difference 
across the bubble wall), specifically here at 
R(0) = 1.0001R~. i[n ref. [13] bubble growth was con- 

x [(t*+l)3/2--(t*)3/2--1] (8) 

A* 
R* = ( ~ ( R -  P~) (9) 

(P,)T~J (10) 

L(pv)r,J\ hr, /T, 

t*=(A*)2{t--td[1--expI--C~d)211}\B*] (12) 

td = 6P~/A*. (14) 

In the above equations the properties are based on 
T®, T, and Tr of the liquid. Tr is a reference tem- 
perature at which the temperature-sensitive saturation 
density (Pv) of the vapor is evaluated, and is defined 
a s  

Tr = Ts+ (T~o -- T~){1-2(t~)'/2[(t~ + 1) '/z -- (t~)'/2]} 

(15) 

where 

t; = (1/2)(A*/B*) 2 (t, - td) (16) 

and where t~ is the upper limit of the time period 
during which the bubble growth is investigated by 
these equations. 

The initial pressure difference (AP0) between the 
bubble interior and exterior is expressed by 

AP0 = (P)r~--Po~ (17) 

in which P is the vapor pressure of the liquid, and the 

Rc = 2(a)r /APo (13) 
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subscript is indicating the temperature T~o at which 
the vapor pressure is evaluated. 

Examination of the bubble growth equations by 
Mikid et al., equations (1)-(5), show that R,~0 = A+t, 
i.e. A + is the dominant coefficient in the inertia-con- 
trolled regime, and R , ~  = B+?/2, i.e. B + is the domi- 
nant coefficient in the heat-transfer-controlled regime. 
The same is true for the equation of Miyatake and 
Tanaka, equations (8)-(12), where the corresponding 
coefficients A* which depends on AP0, and B* which 
depends on ATe, play the same roles in these regimes. 

The comparison of the simple general bubble 
growth equation of Miyatake and Tanaka { [15], equa- 
tions (8)-(12)} with the equation by Miki6 et al. [13], 
with the experimentally-validated numerical solution 
of Miyatake and Tanaka [15, 16], and with the Ray- 
leigh [17] and Plesset and Zwick [18] equations which 
represent bubble growth in the limiting cases of the 
inertia- and heat-transfer-controlled regimes, respec- 
tively, is shown in Fig. 1 [15]. The agreement between 
the numerical solution and this equation is excellent, 
and the capability of the equation to predict bubble 
growth from its inception at the critical radius and 
through the surface-tension-, inertia-, and heat-trans- 
fer-controlled regimes is clearly demonstrated. The 
equation by Miki6 et al. [13] over-predicts the radius 
in the early stage (by up to about three-fold for the 
case shown in Fig. 1) because it does not consider the 
delay period and its effects on subsequent growth; 
and increasingly under-predicts it (up to about 15% 
for the case and range of growth time shown in Fig. 
I) due to the omission of the acceleration term. 

All of these simplified bubble growth equations [13, 
14] have been developed assuming equilibrium at the 
evaporating interface, i.e. 

Pv(,) = (P)r,(0. (18) 

Real evaporation is, however, a non-equilibrium 
process, characterized by an equation such as [19] 

2 - -a ,  dR(t)p~(t)[2nt?Ti(t)], i/2 pv(t) = (P)r~,0- ~ - ~  ) - - ~  

(19) 

where a, is the evaporation coefficient and /~ is the 
gas constant. The evaporation coefficient has a value 
between 0 and 1.0, depending on the liquid and its 
purity, and is especially sensitive to the presence of 
surfactants on the evaporating interface. Increasing 
values of ao imply higher vapor pressures and closer 
approach to equilibrium, and lead to higher evap- 
oration and bubble growth rates. The studies by Miya- 
take and Tanaka [15, 16] have shown that bubble 
growth rates decrease, as expected, with a decrease in 
a~, but that this decrease is negligible for 
0.5 < ao < 1.0, the range currently believed to be per- 
taining to evaporation of water, and becomes sig- 
nificant only for approximately ao ~< O. 1. 

3. DERIVATION OF A SIMPLIFIED EQUATION 
FOR THE RATE OF BUBBLE GROWTH IN A 
BINARY SOLUTION CONTAINING A NON- 

VOLATILE SOLUTE 

In contrast to the above-discussed bubble growth in 
pure liquids, bubble growth in uniformly superheated 
binary solutions with a non-volatile solute is deter- 
mined not only by the temperature (To) and pressure 
(p~) of the solution, but also by the mass fraction 
(~o~) of the solute. It was found in the authors' pre- 
vious study [20] that the concentration (cow) has a 
significant effect on the bubble growth rate when the 
far-field solution pressure (p~) is held constant. The 
bubble growth rates were observed to decrease with 
increasing concentration in this case because of the 
consequent boiling-point elevation, i.e. the reduction 
of the vapor pressure inside the bubble and the 
increase of the equilibrium temperature. This effect of 
the concentration was much larger for higher p~, 
where a change in concentration larger at a given T~ 
creates larger differences between (a) the magnitudes 
of the bubble-growth driving forces (Pv -P~)  dom- 
inating the inertia-controlled regime, and (b) the mag- 
nitudes of the bubble-growth driving forces (To - T~) 
representing the actual driving force (~T /~r )bubb lewat  1 
dominating the heat-transfer-controlled regime. 

As shown in Fig. 2(a), the effect of concentration 
became, however, very small when ATs was the par- 
ameter held constant, especially in the heat-transfer- 
controlled bubble growth regime, or, as shown in Fig. 
2(b), when AP0 was held constant, especially in the 
inertia-controlled regime. This is consistent with 
experiments, as an examination of the bubble-growth 
driving force ( p v - P ~ )  dominating the inertia-con- 
trolled regime, and the driving force ( T ~ -  T 0 dom- 
inating the heat-transfer-controlled regime, can dem- 
onstrate. When po~ is fixed (at constant To~) both 
driving forces increase when co~ is lower, the first one 
due to an increase in p~ and the second one due to the 
decrease in the equilibrium temperature (which is also 
the temperature T0. 

If the superheat (AT0 defined as 

ATs = T~ -- T,, (20) 

where T. is the equilibrium temperature satisfying the 
relation 

P~ =(P)ro,~,.. (21) 

in which P is the vapor pressure of the solution, and 
the subscripts are indicating the temperature T and 
mass fraction ~o at which the vapor pressure is evalu- 
ated, is fixed, then both p~ and Pv are inversely pro- 
portional to ~Oo~. The dominant bubble-growth driving 
force (p~-poo) in the inertia-controlled regime conse- 
quently becomes almost constant, affected only by the 
relatively-weak dependence of p~(T) on co~ for the 
conditions examined in this study. 

The dominant driving force ( T ~ -  Ti) in the heat- 
transfer-controlled regime also remains almost con- 
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Fig. 2. The bubble growth histories in aqueous NaCI solutions at four solute mass fractions (ta~), at three 
given solution temperatures (T~), from ref. [20], for three fixed values of (a) the superheat (AT,) ; (b) the 

initial pressure difference (AP0). 

stant because T~ can vary only within the fixed range 
from T~ to To, and consequently the effect of o9~ 
becomes practically negligible for a specified ATs in 
the heat-transfer-c, ontrolled regime. 

If  AP0 is specified, defined as 

A P0 = (P) r~.,o® - p® (22) 

~o~ has, by definition, no effect on bubble growth in 
the inertia-controlled regime. 

Since diffusion is present in binary solutions and 
not in pure liquids, the effect of the mass diffusivity 
was examined to determine the importance of its 
inclusion in the bubble growth equation. Evaporation 
at the bubble interface raises the solute concentration 

there, and thus causes its diffusion away from the 
interface into the solution. The diffusion has counter- 
acting effects in bubble growth. Decreasing the mass 
diffusivity reduces the migration of solute from the 
bubble interface, consequently increasing its con- 
centration and the boiling point elevation there. This, 
in turn, results in : (1) a decrease ofpv and increase of 
T=, with consequent decreases in the bubble-growth 
driving forces APo and A T,, respectively, and an over- 
all tendency to diminish R;  (2) an increase of the 
superheat of the generated vapor with consequent 
decrease of Pv, which tends to increase R. Large mass 
diffusivity obviously has a small effect on bubble 
growth. 
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Fig. 3. Examination of the effects of the solute concentration at the bubble wall on bubble growth, at 
several values of T~ and ATs. The solid lines represent the solutions under physically-correct formulation 
for the bubble-wall concentration, o9i = co i. The symbols • correspond to the simplifying assumption 
co~ = ~o~, where it is assumed that the concentration at the bubble wall does not change during evaporation 

and remains constant at co~. 

Using the authors '  experimentally validated 
numerical model  for bubble growth in binary solu- 
tions [20], computations of  bubble growth were made 
throughout  the range of  T~ and ATs for two limiting 
cases of  the interfacial concentration of  NaCI:  one 
being real (coi= co,.), and the other where it is assumed 
to equal the far-field concentration (o9i = co~). As seen 
in Fig. 3, the results are indistinguishable for lower 
concentrations and start differing somewhat when the 
concentration rises to cow = 0.20 at temperatures 
above 60°C. This indicates that NaC1 diffusion has 

negligible effect on bubble growth in the examined 
range of  variables because the above-described coun- 
ter-acting effects cancel each other. 

Based on the above conclusions, it seems reasonable 
to assume that the bubble growth equation for a 
superheated pure liquid, equation (8)-(12), may thus 
also be applicable for a superheated solution con- 
taining a non-volatile solute, i f  the superheat ATs 
defined by equation (7) is replaced by that defined 
by equation (20), the initial pressure difference AP0 
between the bubble interior and exterior defined by 
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Fig. 4. Comparison of the bubble growth equations (8)-(12), with the authors' experimental data [20], for 
bubble growth in aqueous solutions of NaCI. 

equation (17) is replaced by that defined by equation 
(22) and the physical properties of  the liquid are taken 
as those of  the so]Lvent. Shown in Fig. 4, the simple 
general bubble growth equation defined by equations 
(8)-(12) was thus compared with experimental results 
obtained from the' growth-measurement of  bubbles 
in uniformly superheated aqueous NaC1 solutions as 
described in the authors '  previous paper [20]. The 
agreement between the predictions of  the simple gen- 
eral bubble growth equation and the experimental 
results is seen to bc very good. 

The equation was developed for any binary solution 
with a non-volatile solute; the only consideration 
specific to the experimentally-examined aqueous NaCI 
solution was the neglection of  diffusion effects as dis- 
cussed above and shown in Fig. 3. The applicability 
of  the equation to other solutions was examined by 
noting that the mass diffusivity D of 34 common inor- 
ganic solutes in water are close to that of  NaC1, DNac~, 
viz. 0.5 < D/DNacl < 2.1. A numerical study con- 
ducted to examine the effect of  the magnitude of  D on 
bubble radius has shown that the deviation is within 
4% even for the low diffusivity value ofD/DNac, = 1/3. 
This result extends the validity of  the equation to 
many other aqueous inorganic solutions. 

~. CONCLUSIONS 
(1) A simple u:aiversal equation suitable for pre- 

dicting the growth rate of  a vapor  bubbles in uni- 
formly-superheated pure liquids and in binary solu- 
tions with a non-volatile solute was developed. 

(2) The equation is valid throughout  the bubble 
growth history, i.e. in the surface-tension-, inertia-, 
and heat-transfer-controlled regimes, it represents 

reality significantly better than the earlier equation of  
Miki6 et al. [13], and was found to agree well with 
experimental data for pure water and aqueous NaC1 
solutions. 

(3) As the bubble growth in superheated solutions 
with a non-volatile solute was found to be quite insen- 
sitive to diffusion and non-equilibrium effects in a 
broad range of  common solution properties, this 
equation is likely to be universally valid for many 
liquids and solutions. 
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