From: "Maldistribution of Flow &
its Effect on Heat Exchanger

Performance," ASME HTD-Vo). 75
-J.B. Kitto,Jr. &

J.M. Robertson, Editors, 1987

CONJUGATE HEAT TRANSFER AND FLOW DISTRIBUTION IN AN ASSEMBLY OF
MANIFOLDED FINNED TUBES

G, F. Jones
Geological Engineering
Los Alameos National Laboratory
Los Alamos, New Mexico

N. Lior

Department of Mechanical Engineering and Applied Mechanies
University of Pennsylvania
Phitadelphia, Pennsylvania

ABSTRACT

Conjugate steady-state heat transfer and fluid
flow (including buoyancy} in a vertical, externally
irradiated assembly of manifolded finned tubes is
analyzed from fundamental principles. The assembly
consists of two horizontal circular manifelds inter-
connected by a number of plane-finned circular tubes.
The problem has application to several types of heat
exchangers including flat-plate solar collectors and
plate heat exchangers. Buoyancy was found to tend te
correct some of the flow maldistribution that would
have occurred if the assembly was Isothermal, by In-
creasing the flow rate in the wost flow-starved {and
thus warmest) tubes. Results showing the influence of
the maln system parameters on heat exchanger flow dis-
tribution, thermal performance., and pressure drop are
presented. For example, for an assembly that is
characteristic of a flat-plate solar collector, at
least une tube was found to receive a minimum of 15
percent less flow than average when the tubes were
isothermal.

NOMENCLATURE {for major symbols and those not defined
in text)

B dimensionless radjosity (scaled by éT

d inside diameter

g acceleration of gravity

Gr* lodixied Grashof nugber for fluid,
gbr ¥/ k v

h heaE t:ansrer coafficlent

h length of tubes

I dimensionless radiant flux from high temperature,

source (I/¢T.")

k thermal condictivity based on T

n mass flow rate

Nu local Nusselt number (h d /kc}

n number of tubes in assefib y

P dimensionless fluid pressure (p /o, U }

P dimensionéess pressure in maniféld branch region

(F/o v )

p! dinensibnless _pregsure in manifold non-branch
region (F' /o L )

P* dimensionless pressure in tubes (P*/p V
dimensionless pressure drop from rric%i 1 and

nb

inertia caused by buoyancy ldF /o v )

Aphb dimensionless hydrostatxc pressure cﬂange from

buoyangy (AP /n
Pr  Prandtl number o} }luld
r dimensional rad1a1 coordinate in tubes lr/r )

rt tube radius

R! oT 3e1s2/[k to(1-el))

Y o BeM®/ (i e (1-eM)

s fin half Nlétg

t thickness

T dimensionless temperature (1/T,)

u dimensionless tube local axial velocity

[0/ {v/r )]

U dimensionless tube mean velocity (T/V

v dimensionless tube local radial veloc%ty
[V/(v/r )]

v dimensiconless manifold mean velocity (V/Vl l}

W length of manifolds '

X local (in covordinate in fin transverse direction
(see Fig. 3)

X global coordinate in direction of inlet manifold
flow (see Fig. 2)

z dimensionless axial coordinate in tubes (EVrt)

Greek Symbols

fin-tube bond thickness

emissivity

dimensionless transverse coordinate in fin,
(x-r_)/s

anguiar position for tube

t /Zr

kfnematic viscosity (evaluated at T,)
dimensionless axizl coordinate (z/h }
fluid density

Stephan-Boltzmann constant

dimensioniess perturbed temperature for finned
tube, (T-T\/T

diuensloniess temperature,
(T“'ri)/[(ldfdnb)rt/kc]
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Subscripts

convective (ambient) sink
bulk fluid

fluid

diffuse

fin

hydrostatic

inlet manifold

due to fluid motion
normal beam

outlet manifold
radiation sink

tube

total

=

HetoO0DOE TR0 O
o

Superscripts

dimensional pressure, velocity, and temperature

h high temperature source
1 low temperature source
¢ fin

} on symbol £
t tube
INTRODUCTION

We consider the problem of conjugate, steady-state
heat transfer and fluld flow in a vertical, externally
irradiated assembly of manifolded finned tubes as shown
in Fig. 1. The assembly coneistes of two horizontal

wpfor reverse flow

d
-

5 -
fiaie
Fig. 1. Assembly of manifold finned tubes

circular manifolds interconnected by a number of plane-
finned circular tubes. A fluid is pumped intoc one end
of the lower manifold where it {s distributed through
the tubes, bhecomes heated, and then combined in the
upper manifold. The fluid departs the assembly in
either the same direction as the inlet flow (parallel
flow configuration) or In the opposite direction
(reverse flow configuratien}. This problem has
application to several types of plate heat exchangers
Including flat plate solar collectors and plate heat
exchangers where the jinter-plate heat-transfer rate may
be approximated as spatially constant.

In contrast to some of the previous manifold flow
studies [cf. Bajura and Jones (1876), Bassiouni and
Martin {1984a, 1984b)] the authors and their co-workers
[Jones and Lior (1978), Menuchin et al. (1981)] and
Hoffman and Flannery (1985) have included both inertial
and fric¢tional effects in the manifolds. Here, flow
branching occurs at discrete locationg alang the
manifolds with only frictional pressure loss in the
non-branch reglons. This formulation results in a
system of nonlinear algebralc equations that must be
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solved numerically. The advantage of this formulation
i{s that it spans the entire range of manifold designs
from inertially to frictionally dominant at the expense
of Increased difficulty of solution, Results for
isothermal assemblies show that flow distribution
becomes more uniform with decreased number of tubes
(for a fixed manifold length). decreased ratio of tube
diameter to manifold dlameter, and with increased tube
height-to-dlameter ratfo. Also. flow becomes uniformly
distributed as the pressure drop in the tubes becomes
the dominant one in the assembly.

In contrast to i{sothermal manifold systems, the
interaction hetween manifold flow distribution and heat
transfer to the fluid has recelved little attention
because of fts inherent complexity ([Chiou (1982).
Window and Harding (1983)]. The effect of a prescribed
flow distribution pattern on thermal performance of

flat plate collectors was shown to degrade efficlency
by 2-20% with realistic collector fluid-flow
distributions.

ANALYSIS

Manifold hydrodynamics, We formulate the manifold
hydrodynamics part of the present conjugate problem
assuming discrete flow branching in the manifolds. The
geometry and definitions of the wvariables used in this
formulation are given in Fig. 2. The manifold assembly
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Fig. 2. Manifold geometry for j-th section

is divided into n increments, where n is the number of
tubes, and manifold and tube velocities and pressure
changes are identified with each increment. Specifi-

cally, aF, . aF ke and aP* refer to the pressure
changes arfifﬂg frdh inertial And frictional effects in
the branch region for the jth increment and the kth
manifold (k-1 for inlet manifeold, 2 for outlet
manifold), frictinnal effects in the non-branch region
for the jth I{ncrement and the kth manifold, and fric-

tional effects for the jth tube respectively. Manifold
and tube velocities are V and T,, Referring to Fig.
2, flow to the right andjh%wards %s taken as positive




for the parallel flow configuration, and outlet-
manifold flow to the left is taken as positive for the
reverse [low case.

The fluld dyramics of manifold flow are described
by Keller (1949). McNown {1954), Acrivos et al. {1959),
Bujura (1971), and Bajura and Jones (1976). Here the
dimensionless form of the momentum and mass conserva-
tion equations for a branch in the inlet manifold are

2 2 2

aP, = v 5
e TR B P T PR R

1<j<n (1a)
and
0=V AR

j*1,1 3 h] 2

1€ J<n (1b)
respectively, where AP The third

=P - P, .
term on the right handjhﬁde o%'%q. (iaﬁ'%orrects this
pressure increase to account for loss of monentum from
the manifold stream by the branching manifold flow.
¥ 1 is the ratio of the velocity in the direction of
lﬂlet-nanifold flow at the entrance to the tube mouih,
to the branch inlet wvelocity V 1 and is termed a
"static pressure regain coefficleﬂt.“ It is determined
empirically, and is a weak function of branch and
manifold geometry, and branch-flow ratios as discussed
below. A value of 1 for ¥ indicates a maximal loss
of momentum in manifold fILH{ whereas a value of zero
corresponds to no loss of momentum to the branching
flow and the largest static pressure regain as seen
from Eq. (la}. The terms B are dimensionless,
somentum correction factors tha%'%onvert the momentum
flux based on mean velocity to that actually possessed
by the flow for a2 prescribed flow regime. They are
usually fixed at unity for the experiments perforzed to
obtain the v coefficients.

A modified Bernoulll equatjon is written
dimensionless form to express pressure loss in a non-
branch region

in

=% o 2
aPy =ty 4.y Wi(ndp) - 1] (ddp) vy 52,

2< J<n. (2)

For parallel flow, the equations corresponding to Egs.
{1) and {2) for the outlet manifold are

2 2 2

By a0 Ve e Yaue g Ny YR 2ty

1< j<n. (3a)

2 .
0 = VJ+1-2 - vj,z + Uj (dL/du) e (5 (3b)
2
) - E; /

APj.z ‘-.J.a [W/(n dt) 1] (dt/du) lez 25

2 han: (4)
In Eq. (3a}, ¥ 2 Is a dimensionless, empirically
determined “statfd pressure decrease coefficient” and

accounts for the transporti of momentum in the direction
of outlet manifold flow fror the combining tube stream,
and momentum loss from turbulent mixing of the two
streams.

A modified Bernoull{ equation in dimensionless
fors for the tube flow is

2
- +C .+ j
APj (1+cc 4 fr.J he/dt) Uj /2¢Apib.jfaphb.J' i1<j<n (5)

where cc are empirically determined mechanical-

and C4
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energy loss coefficients that account for flow turning
in outlet and inlet wmanifold branches, and f is an
axially averaged friction factor for isgfgermal.
developing flow in the tubes. AP b and AP account
for pressure changes arising fro= b&oyancy ER'éhe tubes
attributed to fluld motion (inertial and frictional
pressure drop), and the buoyant part of hydrostatic
pressure change, respectively. For an isothermal
assembly, AP b and APh are both zZero. These terms
are discussel] iA more dekéf} further below.

Since the mean pressure at any location fn the
asgembly is single-valued, the net pressure change
around any closed loop is zero. The leop equation for
parallel flow is

K “ij,t

1¢J<n-1

0w AP =
J

= Apj,l =

% ;
&Pe * P52 *(aPy ,*8Py o

AP, )/2 (8)

J+1,1

Equations {1-6) are a system of (101-3} simultaneous
algebraic equations for 10n pressure and velocity

variables. The boundary conditions are
V1.1 =1, vn*l.l a 0, and
v]'z = 0 (purallel flow} or vn*l.a = 0 (reverse flow).

, and ¢

Values for the flow coefficients ¥ 1 4 2
! e (P954) and

have been empirically determined

Acrivos et al. (1859).
Heat transfer in the finned tubes, The finned
tube geometry Is shown in Fig. 3. To be consistent
Fluid
8 2 * 2t Oy
Sl i
\\_ 1 B’
e 3
7 I ] t O‘L Fin |
G Tube
Fig. 3. Finned-tube geometry for j-th section
with the manifold-hydrodynamics formulation, the

asgembly is divided into n increments corresponding to
the number of tubes: each increment consisting of a
tube and the fin to its left. High temperature-
source diffuse and normal-beam radiation from T r and
T; , and low temperature-source radiation from gel—
perature T are incident on the front surface of the
assembly. *tonduction and radiation heat transfer occur
from the jth and (j+1)st fins to the jth tube, and the
tube is irradiated directly. The assexbly loses heat
by convection through a constant heat transfer
coefficient (h ) to temperature T , by radiation
catward from the® front surface, and by combined forced/
natural convection through varjable heat transfer
coefficient (h ) to the tube fluid at bulk temperature
T . For the aﬁa]ysis that follows, we assume that the
tRickness of the bond between the fins and tubes and
heat Jloss through the back of the assembly are
negligibly small, although they may be included without
much difficulty.

In contrast with previocous formulations of heat
transfer in collectors, in particular the Hottel-
Whillier-Bliss (HWB) model {(Hottel and Woertz 1942,
wWhillier 1953, Biiss 1959, Chiou 1959) which neglect
fin/tube radiant interaction, we include radiant
Interaction among semigray (Lieblein 1959, Plamondon
and Landram 1966), diffuse fin/tube surfaces in the
present formulation.




Assuming Lhat hefs >> 1 so that fin conduction may
be approximated as one-dimenslonal, the steady
constant-property energy equation in dimensionless form

for the jth fin is
2 2 .2 1.1 f. .h ch
d or_j/dn 2% (¢f_j+Pf)'R Bf_j(ﬂ.i )+R Bf_j(n) =0,

1 ¢ J < n+l (7a)
where B1 , and Bh j are dimensionless low and high
Lenperaih%e—source'radioslties for a differential

element of fin area located at (n..E{); the former
composed of emitted plus reflected in&idéut energy from
low-temperature sources, and the Jatter of only
reflected _incident energy from the high-temperature
source. )\° is the ratic of radiative plus convective
conductance from the front of the fin, to the
conduction conductance in the fin. P_. is a constant
dimensionless fin temperature resulling fqpm conv$$tion

and radiation from the fin surface. R* and R" are
constants.
e 2
B 1 e 6T, G Y] 2K D
f a a i | s (7b)

- 1

2" = [ha+4 £ o Tj3/{1-511} szftk £2)

: G
Because temperature variations in the {in are expected
to be smaller than the absolute temperature T,, we use
a dimensionless perturbed temperature ¢ in"Eq. {Ta}
defined as (T} .-Tj)/T.). This approach Ylmplifies the
problem since 'the ‘nonlinear emission term may then be
linearized by using a truncated binomial expansion
{Eno, 1978) where,
(Y, /To% = (10, 0% = 1ea0. 006, )% 0, <1, (8)
.31 .3 f.J £,.5° " 'f.]

If only the first two terms in the series are retained
for ase in the energy balance, errors in temperature of
less than a few percent are expected since typical
values of & are 0.1 or smaller.

The exgtéssions for fin radiosity are

ailjtn.ef) el 144 oflj(n,tf)] +
Gj_][n)
(1-eh w8y jce.eh) Kley  ny) de
sin_lu

s o=l
m-sin "u

1 f
rj Bt_j(e.t )K(ej.nj)da

aj(ﬂ)

+ Ts4 F(ﬂ-s],j(nl}’ 1 £} & n+t, {9a)
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aj_l(ﬂ)
i AW h
Bf'j(nj—{l € (rj-l Bt,j~1‘s)K(°j—1'Yj)de
sin—lu

n-sin lu

3l
J Bh o
'j t,j(B)K(ej'nj)de ldf F(f-s),j(n) 2 ‘nb}'

. (n)
: 1< j<n+l (9b)
In Eq. (9), it was assumed that h /s << 1 a3z
before, so that the two manifold pf%es do not
participate in the radiation processes. The finned
tubes are diffuse reflectors of low temperature source
radiation to be consistent with the high-temperature
source radiation. « 1 and «a, are the angles defining
the upper and lower &Emits og visibility for the tube
when viewing a fin. The kernels of the integral egua-
tions, K, are from diffuse configuration factors
between fin differential-area elements and infinitely-
long, differentially-wide elements of tube area (Sotos
and Stockman, 1964). It has been demonstrated by
Sparrow and Krowech (1977) that =most of the heat
transfer between fin and tube elemental areas occurs
for elements having the same axial coordinath. Thus,
radiant exchange between a fin element at £, and two
parallel tubes, can be approximated as if the tubes are
infinite in length and axially isotherma), at the
temperature corresponding to that location.

F are diffuse configuratjon factors for a
differégff%h element of fin area viewing the {sothermal
surface in front of the assembly. The terms T' in Eq.
(9) are one or zero depending on the value of j: for
J=1. I, " 0, for j = n, Fj = (0, and ', = 1 otherwise.

FOr thin-walled tubes,’results frofl an order—of-
magnitude analysis show that axial conductior and
radial temperature gradients in the tube wall are
negligibly small, in addition, the clircumferential
variation of tube-wall temperature and heat flux is
also shown to be negligible If the thermal conductivity
of the tube is large., and the tube-wull energy balance

is thus formulated as quasi-one dimensional, which, in
dimensionless form, becomes

t t t t
¢t_j(£ ) Pt,j(i )i Rt.j(g ) ob.j(c )

1INC e, (10)
where ¢ and ¢ are dimensionless perturbed tube

and bulé'gluid tegbératures defined in the same manner

as fin temperature, and P and kt , depend on flow
and heat transfer in and odfshde of a'tube,
n-sinlu
t 3 ¥ ek t 1
wt,J Pt.jlt )= {e T} T, [ {¢ Bt'j(a.t V/{1-e7) +

sin "u
{11a)

" 8 (er/(1-e"y ao) v o T,% a elr1eh

+h, a (1-T ))s/(kete) = 96g (/oM o+ 3 4 /9]



W <t
w5 Mo, g€ = Tk Nugeh) ok, ey 82
-3 1 1
W, 4 (40T a e /(1-e7) + Tk, Nuj(Er')

+ ha al_] s/lkf tf) (11c)

where a_ = r (m-2sin"tu) s the perimeter of the top
side of 'a tube. 1In Eq. (10), the tube-wall temperature
is a linear function of the bulk fluid temperature.
% 1s the ratio of the convective conductance between
tﬁbj tube wall and the fluid., te the sum of all
conductances from the tube to the external radiative
and convective sinks and to the fluid. The term Pt

is a dimensionless stagnation temperature for the ind
which occurs for Nu, equal to zero {or no fluid flow}.

Radiosity dist‘l'ibutions for the tubes are written
in the same wav as for the fins in Eq. (9) but are not
presented here for brevity. In this case, radjant
contributions to a differential element of tube area
are from the adjacent tube and fin that view It, and
the radiant sink temperature or high temperature source
as before.

The finned tubes are insulated along the outer
edges. The remaining boundary condition is a matching
of the fin and tube temperature where they are in
contact, Thus, temperature continuity is satisfied
across the fin and tube interface, and Eq. (11)
satisfies continuity of heat flow there.

Fluid flow and heat transfer in _a tube. The
confipguration considered fs upward flow of a Boussinesq
fluid in n externally vertical circular tubes of length
he and radius r,. which, egqually spaced. connect an
irilet manifold t6 an outlet manifold. The radial and
axial direction and velocity components are denoted as
{r.Z) and (V,U), respectively. The mean velocity at
the inlet to each tube is U,, and the inlet temperature
tor all tubes is T, wé predict the pressure and
temperature distributjion for each tube and couple this
Information to the parts of the problem that treat
finned-tube heat transfer and manifold hydrodynamics.
in this way, mass, momentum, and energy conservation
for the .entire assembly are satisfied simultaneocusly.
As an example of this coupling. heat transfer to a
particular tube infuences the tube friction factor
which affects a change in the tube fluid flow rate and,
in turn, alters the rate of heat transfer from the
original value.

The topic of developing, buoyancy-assisted
combined convection in a vertical tube has received
considerable attention in the past. The studies
performed considered elther constant temperature
{Zeldin and Schmidt 1972, Marner and McMillan 1970,
Lawrence and Chato, 1966), or constant heat flux tube
walls (Zeldin and $chmidt 1872, Lawrence and Chato
1966). Because the more realistic conjugate problem is
being solved in this study, neither of these conditions
may he Iimposed; rather simultaneous solution of the
problem coupling all subsystems {s executed. As is
oftenp the case for flow in compact and plate heat
exchangers having smooth and small flow passages, and
relatively low velocity, it is assumed that the flow is
laminar. The inlet velocity to each tube is taken to
be uniform. After an entry length (of about 10 tube
diameters for the cases considered here) the radial
pressure gradient 1s negligible. In the usual way, the
axial pressure gradient (dp /dz) is expressed as the
sum of two {ndependent pressure gradients: one
attributed to fluid moticon and the other arising from
hydrostatics:

dpc/dz = dpm/dz + dph/dz (12)
where dp /dz = -o_g, and is referenced to tube-wall
temperature. With e =op, [1 + B ('l'i -c)]. where 8 is

the coefficient of tﬁernali expansion.
dp,/dz =-ep.g + 0.2 B (T, - T,) (13)
Since convective acceleration is small for this

case, the axial component of the momentum equation
using Egs. (12} and (13} |Is

dEn/dz =08 (T, - Tc) + [viscous terms]. (14}
In Eq. (14). the temperature difference term lIs

positive and the viscous terms are negative, so we see
that the effect of buoyancy on the flow is to increase
the axial pressure gradient dp_/dz relative to that in
the isothermal case. .

The total pressure gradient is now written from
Eqs. {12)-{14)

dpcfdz=-oig S(Tt-‘!‘c! + [viscous terms]

(& (15)

+0,e8 (Tt-Tj) -0

The first two terms on the right-hand side of Eq.
(15) represent the contribution from fluid motion
{(dp_/dz), and the third and fourth terms are the
buovant and isothermal contributions from hydrostatics
respectively. The fourth term 1s 2-3 orders of
magnitude smaller than the rest and for this reason it
will be neglected. The first and third terms in Eq.
(15) cembine to form a single positive-valued buoyancy
term (becavse T_» T,) and since the viscous terms are
negative, the “overall effect of buoyancy on forced
upward flow in an isolated, exterhally heated tube is
to reduce the total pressure gradient relative to the
isothermal case. This is equivalent to a reduction in
tube friction factor when compared with that for
iscthermal flow. It Is this effect that causes an
increased tube flow rate with tube-~wail temperature as
cited in the example above. Compared with isothermal
conditions, the partially flow-starved {and thus
warmest) tubes In the assembly exhibit a reduced flow
resistance compared with cooler tubes and, hence, an
increase in fluid flow rate -when buoyancy effects
exist.

Past numerical Ftudies of assisting combined
convection in an inclined tube (Cheng and Hong 1972a,
1972b} have shown that local friction factors and
Nusselt numbers are independent of Prandtl number and
increase monotonically with angle of inclinatien from
the horizontal, till a vertical orientation is reached.
Increased local heat transfer in the tubes increases
performance of the assembiy directly, and also
indirectly through more uniform flow distribution as
discussed above. It follows then that solutions of the
present problem, which treats vertical tubes, represent
an upper bound on Iimprovement in thermal performance
over the isothermal case.

Based on the preceding developments, the following
is to be used with Eq. (5)

LR

o — = == =y, 2

APy, = {2 Iﬁaph/oz) rdr dz)/rt +oE he. (16a)
0 0



he l‘t
e - = — e 2
&P, =(2 [(9p,/32) , -(9p /32)  _ |*dT dZ}/r
0 0 (16b)
where the first term in parenthesis in Eq. (16b)

accounts for the actual pressure gradient for a tube
having an externally heated wall, and the second one is
the pressure gradient occurring for the same hydro-
dynamic conditions if the flow ls isothermal.

For the case where the Peclet number for tube flow
is greater than 100, so that axial momentum and heat
transport are neglected, the equations governing mass.
momentum. and energy conservation in dimensionless fora
for the flow in each tube are

a(rv)/ror + 3u/9z = 0, (17a)
vav/ar + uav/9z = fapnfar + a(rav/ar)/rar—w’rz, (17b)
vau/ar+usu/az = -3p /3z+3(rau/ar)/rar-6r*(v -¥ ), (1%c)

(17d)

vzvcmr + uwc/?z = [Nrwcfar)/rar]/Pr.

In Egs. (172)}-(17d), the velocity components, prezssure.
and coordinates are scaled with vw/r_ . p (\J/rt) , and

rt. respectively. The boundary conditions are

v(r=0,2) =v(r=1,z) = u(r=1,z) = su/er (r=0,z)=0, (17e)
p.{r.z=0) = apl/ar (r=0.z)=wc/ar(r=0.z)=0. (17€)
u(r,z=0) = Re/2 = Udt/zu. wc(r-J.z) = ¥ (z). (17g)

where Pr is the Prandt]l number. Re is the tube Reynolds
number, and Gr* is a modified Grashof number.

This part of the conjugate problem 1is coupled to
the remaining two parts through the buoyvancy term in
Egq. (17¢) where the tube-wall temperature affects the
velocity and temperature fields for the fluid in each
tube. and through the boundary conditon at the tube
entrance where the tube Reynolds numbers result from
sanifold hydrodynamics.

METHOD OF SOLUTION

The equations that govern the temperature,
radiosity, pressure, and velocity distributions for the
conjugate problem are simultanecus nonlinear partial
differential equations [for fluid flow and heat
transfer in a tube., Eq. {17}]. simuitaneous linear
ordinary integro-differential equations [for heat
transfer in the finned tubes., Eg. (7)-{11)], and
simultaneous nonlinear algebraic equations [for
manjfold hydrodynamics, Eq. {1)-(6)}. A system of
simultaneous linear integral equations [for the high
temperature-source radiosity, Eg. (%¥b}] needs to be
solved initially to produce B distributions for the
finned tube. The problems associated with the first
three equation system are vjewed as components of the
conjugate problem and are referred to as "sub-
problems.” The solution to the conjugate problem is
obtained by solving one subproblem after another in
sequence, and re-solving them until convergence Iis
reached. The solution to the conjugate problem s
hence refined with each cycle of this “overall
iterative pracedure“ because any one subproblem is
solved subject to boundary conditions that correspond
to the most recent solutions for the remaining two.

A schematic block diagram of this procedure is
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4,

presented In Flg. Each step in the procedure is

MANIFOLD
HYDRODYNAMICS
SUBPROBLEM

Nul and SOLVE
FOR B aND
h
BIJ

BEGIN
R.j

FUOE RLUID FINNED-TUBE
REAT TANSFER HEAT TRANSFER
SUBPROBLEM

SUBPROBLEM

RESCALS Iﬂ\{hﬂm%

‘Pq Dy

Fig. 4. Block diagram for solution of conjugated
problem indicating coupling among
subproblens.

described briefly below. Isothermal conditions are
Initially assumed. (1) The first step is to solve for
high temperature-source radiosity distributions which
remain unchanged throughout the procedure, (2) Solve
the equations for manifold hydrodynamics to obtaln flow
distribution and calculate Reynolds numbers for each
tube, (3) For the first cycle of the procedure only,
estimate local Nusselt numbers from a suitable
correlation (Churchill and Ozoe 1973) using Reynolds
numbers from step 2, (4) Calculate low temperature-
source radiosity and temperature distributions for the
fins and tubes from the equations for finned-tube heat
transfer and most recently estimated Nusselt numbers;
from a macroscopic energy balance on the flow in each
tube. re-estimate the bulk fluid temperature, (5} Solve
For the fluid temperature. pressure, and velocity
distributions in each tube subject to most recent tube
Reynolds numbers and tobe-wall temperatures; re-
estimate Nusselt number distributions for each tube,
{6} Freom the most recent tube-wall temperatures,
evaluate AP for each tube from Eqs. (13) and (16a):
from a correlation for hydrodynamically developing
isothermal flow (Shah 1978}, and pressure distributions
from step 5. evaluate AP for each tube from Eq.
(16b), and (7) Repeat llslace[:)s 2 through 6 until
CONVEergence occurs,

Vehicles for information transfer among the
subproblens, as seen in Fig. 4 and described above. are
summarized in the following table.




Vehicles for Informatlon Transfer Among the Subproblems

Manifold Finned-tube Fluld
Hydrodynamics Heat Tranafer Dynamics
and Heat
Transfer
in a Tube

Manifold - Re Re ..
Hydrodynamics ] J
Apnh.j'

4Beb.q

Finned-tube - ’t 5
Heat Transfer '

{or ¥ .},

tJ

Nuj
lLocal Nusselt numbers have been used in the past as
vehicles for Informatfjon transfer bhetween parts of a
conjugate problem by Sparrow and Faghri (1980), and
they work well.

The manifold-hydrodynamics subproblem was solved
by the Newton-Raphson method which used Choleski
decomposition (for parallel flow cases) or Gauss-Jordan
reduction {for reverse flow). Convergence was achieved
when all equations were satisfied to wlthln4a
dimensionless velocity and pressure change of 10 .
The equations for finned-tube heat transfer were solved
by finite differences using 11 nodes for the fin in the
transverse direction and for the tube in the
¢circumferential direction. Five-point backward or
forward differences were used for the temperature
gradleats in Eq. (1lal. The kernel functicons and
configuration facters in the radiosity integral
equations were evaluated for all fin- and tube-node
comblnations. Because of the sensitivity of the
kernels and configuration factors to slight changes in
coordinate values in the neighborheed of the fin/tube
interfaces. the nodes nearest to the interfaces were
sab-divided into 10 finer nodes and the kernels and
configuration factors were calculated for these and
then averaged. Intepgral equations were approximated by
a sixth-order Simpson's rule with fourth-order end
corrections. The system of linear algebralc equations
was solved by Gauss-Seidel }teration using a relative
convergence criterion of 10 ~. The radiosity integral
equations for the high temperature-source were
approximated In the same way apd solved by iteration
where convergence waa‘ﬂfhieved when all equations were
satisfied to within 10 - dimensionless radiosity unlts.

The equations for fluid flow and heat transfer in
the tubes were solved by finite differcences using a
fine axial-direction mesh in the region near the tube
mouth and a cosrser mesh downstream from this.
Typically, 41 radial and first-region axial nodes were
used with 31 second-region axial nodes. Upwind
differences were used for axial convection and central
differences for the diffusjon terms. Theequations were
solved implicitly by marching in the downstreanm
directlion, solving for velocity, pressure, and
temperature at all radial nodes for each step of the
march. A sparse-coefficient, linear algebraic equation
solver (Gupta and Tanjl 1977). which employs matrix
decomposition, was used to solve the system of linear
algebraic equations at each axial location.

Only about three of four cycles were required to
converge the "overall {terative procedure”, described
in Fig. 4, except for several cases with large tube
diameters which required six or seven cycles because of

the stronger effects from buovancy. Typical running
time on an IBM 4341 computer was about 1250 seconds for
an assembly of four tubes, which converged in four
cycles,

RESULTS AND DISCUSSION

Because the principal focus is on flow
distribution, tube diameter and tube length were
selected as primary parameters since these not only
affect flow distribution for an isothermal essembly but
also influence heat transfer to the tube fluid (through
Gr* and flow development conslderations). The analysis
was also performed for parallel and reverse flow
conflgurations, It has been shown by Jones and Lior
(1978) that nearly uniform flow conditions exist for
dt/d (-dt/dol of 0.25 and smaller, and so we take this
as tLe lower bound for dt. A reascnable upper bound
wag assumed to be d _/d, = 0.75. The specific example
for which this analysis was used concerned flat plate
solar collectors which typlcally have manifold
diameters of about 1.27 cm and tube lengths of 1 to 2
m. To investigate the effect of tube length on flow
distribution and performance, we choose two values for
tube length: 0.6F m ("short assembly"), and 1.82 m
{"long assembly™}. The remalning variables are fixed
at the values as shown below.

. — — —

M. =0.015 kg/s T,=300 K T,=T =289 K

t.=0.76 mm s=5.98 cm ke=173.1 W/m K
- 2 2

Tdf-[nb-sm W/m h,=2.84 W/m" K n =4

el = 0.2 PLE S fluid: water

Four tubes (risers) were chosen for computaticnal
convenience. The expected results for assemblies
having more than four tubes are briefly discussed
below.

To address the effect of buoyancy on flow
distribution and assembly performance, two Jlimiting
cases were consldered: one with and one without
buoyancy effects. The solution of the conjupate
problea is thus obtained for 24 different combinations
of variables: three diameter ratios for short and long
assemblies for both upper- and lower-bound cases, and
for parallel and reverse flow.

The influence of buoyancy on flow distribution.
overall pressure drop, and thermal performance for all
24 combinations 1s presented in Fig. 5 where ratios of
these quantitlies are plotted for the lower-(1) and
upper-(u) bound cases agalnst diameter ratio. aP. is
the total dimensi%nless pressure drop for the assembly
(scaled by .V ) less (-p gh ) as discussed above.
The thermal” pérformance, é. 3 the ratio of the
instantaneous heat tranafer to the fluid., to the total
irradiance on the surface of the assembly. The
variable x is a dimensionless flow maldistribution
fraction defined as

K = (i_ax - inin";r’“’ (18)

where the denominator is the mass flow rate per tube
for uniformly distributed flow. x 13 the difference
between the maximal and minimal dimensionless mass flow
for the tubes. kK = O indicates uniform flow
distribution. whereasz a nonzero value shows
maldistributed tube flow: larger values indicating
larger maldistribution.

Referring to Fig. 5, thé results for d /d1-0.25)
{where the flow distribution 1s approximate1§ uiiiform)
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Fig. 5. Ratio of maldistribution fraction {x), overall
dual-manifold system pressure drop (aP_) and thermal
efficiency (E) for the ratio of lower-" to the upper-
bound cases for both assembly lengths and for parallel
flow. Results for reverse flow are ldentical.

indicate practically no influence from buoyancy for all
cases. This is because Gr* is only 556 in contrast to
a tube Peclet number of about 7200, so that heat
transfer to the coolant is dominated by forced
convection. The effect of natural convection is seen
to increase with the diameter ratio. At d_/d, = 0.78
(where Gr* is about 45,000), the overall preéssure drop
in the assembly decreases from the Isothermal value by
about 38 percent and the maldistribution fraction is
reduced about 24 percent for the leng assembly and for
parallel and reverse flow. For the short assembly,
buoyancy effects are weaker because of a smaller
difference between the mean tube-wall and fluid
teperatures and an overall lower temperature increase
in the filuid. For all cases, we note a thermal
pertormance increase of 0.4 percent or less {as
measured from the lower-bound case) when buovancy is
Included. In analyzing this result, we note that
buoyancy which assists the flow in the tubes enhances
performance directly by increasing the rate of heat
transfer to the fluid (just as the pressure gradient
dp_/dz Is increased), and indirectly by causing an
ad!hstnent of the tube flow toward uniformity. The
first effect causes smaller temperature differences
between the tube wall and the fluid resulting in cooler
tube and fin temperatures and thus smaller heat losses.
However, if the tube Peclet number is large, the
coolant and tube-wall temperature rise is small so that
a further slight decrease in tube-wall temperature
caused by improved heat transfer between it and the
fluld Is negligible. The minimal Peclet nuaber for the
examples considered here is about 1600, large enough to
explain the very small improvement due to buoyancy.

The second effect is explained with the help of
Fig. 6 which shows dimensionless tube flow rates for
each of the four tubes in the assembly for the short
and long, and upper- and lower-bound cases. Alsc shown
for reference is the uniform flow distribution assumed
for a "base" case (b) which corresponds to the HWB
model discussed above. Although the maldistribution
fraction indicates a 24 percent change In going from
the lower-bound to upper-bound cases for the long
assembly, the actual change in flow distribution is not
very large. In the first tube, the flow increases from
0.85% to 0.90, and in the last tube, the flow decreases
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Fig. 6. Dimensicnless mass flow rate among riser tubes

for dt/d = 0,75, long, &. short, s, assemblies and
upper- éu) and lower- (L) bound and base-model (b)
cases.

Similar conclusions are drawn from
Fig. 6 also shows that

to 1.16 from 1.20.
the results for reverse flow.
the manifolds are inertially dominant; the last tube
(nearest X=1) having more than average flow, and the
first tube less than average for paraliel flow (and the
opposite for reverse flow). This arises because of the
relatively small tube spacing of about 11.1 cm so that
frictional pressure losses in the non-branch regions
are small when compared with fnertial pressure changes
in the branches,

Dimensionless fin temperatures are shown in Fig. 7
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Fig. 7. Dimensionless fin temperature distribution (¢,)
for dimensionless axial locations {Z/h_) of 0.1 and 049
for d /di = 0.75. short assembly and lower- (2) and
upper- bound cases.

for the short assembly and for the upper- and lower-
bound. and base cases. The diameter ratio is 0¢.75 and
temperatures are plotted for dimensionless axial
locations of 0.1 and 0.9. The profiles indicate
slightly cooler fin temperatures for the right side of
the assembly than for the left because of the larger
flow of fluid through tubes 3 and 4 compared with tubes
1 and 2. This difference is small, however, amounting
to only 2-3 K. The reduction in fin temperature in




going from the lower-

to upper-bound cases, is
imperceptible for the axial location falong tube} Ej of

0.1 and is measurable but small for ¢ of 0.9.
Developing axial velocity ;nd temperature

distributions for the flow jn a single tube are

presented fin Fig. 8 for the upper-bound case of a 0.75
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Fig. 8. Developing dimensionless axial velocity and

temperature for tube:{lnid. and for several z*
locations. Gr® = 4.5 x 10" and Re = 538.

diameter ratio, long assembly. Here, Gr* is 45.000 and
the tube Reynolds number is 538, The profiles are
shown for six dimensionless axial locations defined as
z* [=z/r,_ Pe), where Pe=Re Pr]: the tube inlet, three
intermediate z* values, z¥=0.0174 corresponding to the
location of maximal axial velocity at the tube
centerline, and z*=0.121 which is the tube outlet.
Flow and thermal proflile development proceed from the
tube entrance up to z*=0.0174 with the radial gradients
of wvelocity and temperature decreasing with axial
distance as usual, At this location, the thermal
boundary layer progressed from the tube wall to about
r=0.3 with buovancy sufficiently strong to cause a
reversal in the growth of velocity at the tube
centerline. ¥rom z* of 0.0i74 to 0.0508, the velocity
at this location decreases by about 5 percent and,
through mass conservation, produces increased velocity
gradlents at the tube wall resulting in an increased
axial pressure gradient. The radial temperature
gradients also increase at the tube wall because of
increased axial convective heat transfer there. At

z* = (0,0508. the thermal boundary laver has complete
enveloped the flow field and at z* = 0,121, the tube
outlet is reached with the centerline velocity 9
percent lower than 1ts value at 2* = 0.0174 and about
15 percent lower than the lsothermal asymptotic value
of 2.0.

CONCLUSIONS

The complete formulation and solution of conjugate
heat transfer and flow distribution In an assembly of
manifolded finned tubes was carried out. The results
obtained indicate that for tube-to-manifold diameter

ratios of 0.25 and smaller. tube flow is nearly
uniformly distributed and there is negligible influence
from buovancy. As diameter ratio increases, flow
maldistribution for an i{sothermal assembly also
increases but is lessened gomewhat when the assembly is
externally heated and buoyancy in the tubes {ncluded.
Pressure drop through the assembly decreases when the
assembly {s heated. For an assembly consisting of four
tubes and a diaseter ratioc of 0.5, the effect of
buoyancy is to reduce isothermal pressure drop and flow
maldistribution fraction by l}ess than 10 percent. For
a diameter ratio of 0.75, isothermal pressure drop and
maldistribution fraction decrease 38 percent and 24
percent respectively, although, thermal performance of
the assembly is nearly insensitive to buoyancy-induced
tube-to-fluld heat transfer enhancement and flow
read justment for both parallel and reverse flow. This
is due in part to the large Peclet number tube flow,
and to the values chosen for the external heating rate
of the assembly and the parameters that effect
radiative and convective losses from the assembly
surface. b

Because of the wvalues chosen for cl. £ . h_, and
T b*T . the heat flux to the fluid is axially codstant
tg wiqﬁin about 7 percent since the ratjeo of the rate
of heat loss from the assembly surface, to the absorbed
radiant flux does not Increase significantly in the
axial direction. Thus, the results cbtained here may
be applied to a corresponding plate heat exchanger
where the inter-plate heat transfer rate 1is
approximately constant.
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