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ABSTRACT 

Conjugate steady-state hea't transfer and fluld 
flow (Including buoyancy) In a vertical, externally 
Irradiated assembly of manifolded finned tubes is 
analyzed from fundamental prlncipleo. The assembly 
consists of two horizontal circular manifolds inter- 
connected by a number of plane-finned circular tubes. 
The problem has application to several types of heat 
exchalrgers including flat-plate solar collectors and 
plate heat exchangers. Buoyancy was found to tend to 
correct some of the flow naldistribution that would 
have occurred if the assembly was isothermal. by In- 
creasing the flow rate 111 the most flow-starved (and 
thus warmest) tubes. Results shovlng the influence of 
the main system parameters on heat exchanger flow dis- 
tribution, thermal performance. and pressure drop are 
presented. For example, for an assembly that lo 
cha~acteristic of a flat-plate solar collector, at 
least one tube was found to recdve a minimum of 15 
percent less flow than average when the tubes were 
ioothenal. 

NOMENCLATURE (for major symbols and those not deflned 
in text) 

B dimensionless radiosity (scaled by UT~O 
d inside diameter 
g acceleratior! of gravity 
GP* mod1 led Gyshof nu5ber for fluid. d eerE (Tnb+~df)/(k v I 
h hea ttansfer coefficient 
h length of tubes 
xe dimeasionless radlant flux from high temperature. 

source (T/UT~~) 

5 thermal conductlvlty based on TI 
m mass flow rate 
Nu local Nusselt number (h,d /kc) 
n number of tubes in assekbfy -4 

dimensionless fluid pressure lTc/OiU ) Fc dimension eso pressure in manifold branch reelon 
I v 4, ,. . . 

P '  dimeds!b~?l;ss pressure in manifold "an-branch 
reglon ( P ' / O ~ V ~ , ~  ) 

ASSEMBLY OF 

P* dimensionless pressure in tubes (?*/P TI, 12) 
aPmb dimensionless pressure drop frun fricti n and 

lnertia caused by buoyancy (AP 1 0 ~ 1  ') ab 1 
aPhb dimensionless hydrost tic pressure cidngr from 

buoyancy (aP 10 V '1 
Pr Prnndtl numbs! ok &]?id 
r dimensional radial coordinate in tubes (TIP ) 
r, tube radius 

t 

3 1 2  
oTl c o /[kftfll-c1)1 

h 
u ~ ~ ~ ~ ~ v ~ / [ k  t (I-c 1 1  
fin half wi6t6 
thickness 
dinensionless temperature (T/Ti) 
dinensionless tube local axial velocity 
[Cl(v/r )] 
dimensibnless tube mean velocity (Om 
dimensionless tube local radlal velocity 
[V/(V/P I 1  
dinensi6nless manifold mean velocity (Vfl,,,) 
length of nanlfolds 
local fin coordinate in fin transverse direction 
(see Fls. 31 ~. 

X pl"bal coordinate in direction of inlet manifold 
flow (see Fig. 2) 

r dinensionlers axial coordinate in tubes (T/r ) 
t 

6 fin-tube bond thickness 
t emlonivity 
n dimensionless transverse cuurdlnate in fin. 

(X-P ) / 8  
e angufa~ position far tube 
Y t.12~. 
v kinsiktie viscosity (evaluated at T ) 

i I dimensionless axial coordinate (?/he) 
0 fluid densitv 
u stephsn-~oltmann constant 
O dime~sl0nle8~ perturbed temperature for finned 

tube. (T-T)/T. 



fin 
hyd~oatatic 
Inlet manifold 
due to fluid notion 
normal beam 
outlet manifold 
radiation sink 
tube 
total 

-- dimensional pressure, velocity. and temperature 
h high temperature source 
1 low temperature source 
f fin 

) an symbol f 
t tube 

INTRODUCTION 

we consider the problem of conjugate. steady-state 
heat transfer and fluid flow in a vertical, externally 
irradiated assembly of manifolded finned tubes as shown 
in Pip. 1. The assembly consists of two horlaonfsl 

$for reverse flow %" 
mmuel- 

I - q u ~ ~ s d -  - - g Z J  

Pip. 1. Assembly of manifold finned tubes 

circular manifolds interconnected by a number of plane- 
finned circular tobea. A fluid is pumped into one end 
of the lover manifold where it is distributed through 
the tubes. becomes heated, and then combined in the 
upper nanlfold. The fluid departs the assembly in 
either the same direction as the inlet flow (parallel 
flow c o n f i g u ~ a t i o n )  OP in the oppoolte direction 
(reverse flow configuration). This problem has 
application to several types of plate heat exchangers 
Including flat plate solar collectors and plate heat 
exchangers where the inter-plate heat-transfer rate may 
be approximated as spatially constant. 

In contrast to some of the previous manifold flow 
studies [cf. Bajura and Jones (1976). Bassiouni and 
Martin (1984a. 1984b)l the authors and their co-workers 
[Jones and Llor (1978). Menuchin ct al. (1981)l and 
Hoffman and Plannery (1985) have included both inertial 
and frictional effects in the manifolds. Here. flow 
branching occurs at discrete locations along the 
aanifolds with only frictional pressure loss in the 
non-branch reglons. This formulation results in s 
system of nonlinear algebraic equations that must be 

solved numerically. The advsntaee of thls fornulatian 
is that it spans the entire range of manifold designs 
from inertially to frictionally dominant at the expense 
of l n c ~ e a s e d  difficulty of salutlon. Results for 
Isothermal assemblies show that flow distribution 
becomes more uniform with decreased number of tubes 
(for a fixed manilold length). decreased ratio of tube 
diameter to nanlfold diameter, and with increased tube 
height-to-diameter ratio. Also. flow becomes unifornly 
distributed as the pressure drop in the tubes becomes 
the doninsnt one in the assembly. 

In contrast to isothermal manifold systems, the 
interaction between manifold flow distribution and heat 
transfer to the fluid has received little attention 
because of its inherent complexity [Chiou (1982). 
Window and Hardlng (1983)l. The effect of a prescribed 
flow distribution pattern on thermal performance of 
flat plate collectors was shown to degrade efficiency 
by 1-20: with r e a l i o t i c  c o l l e c t o r  fluid-flow 
distributions. 

ANALYSIS 

Manifold hydrodynamics. We formulate the nanlfald 
hydrodynamics part of the present conjugate problem 
assuming discrete flow branching in the manifolds. The 
geometry and definitions of the variables used in thin 
formulation are given in Pig. 2. The manifold assembly 

APl.1 
Pig. 2, Manifold geometry for j-th section 

is divided into n increments, where n is the nunber of 
tubes. and manifold and tube velocities and pressure 
changes areidentified with each increment. Specifl- 
cally, A . A P ~  k. and @- refer to the pressure 
changes ar d ng fr 6 inertial And frictional effects in 
the branch region for the jth increment and the kth 
manifold lk-l far inlet nanifold. 2 for outlet 
nanifoldl. fric:i*nal effects in the non-branch region 
for the jth increment and the kth nanlfold, and frlc- 
tional effects for the jth tube respectively. Manifold 
and tube velocities ere V and u Referring to Pig. 
2. flow to the right andJ(lbwarda Ab taken as positive 



for the parallel flow confiyuratlon, and outlet- 
manifold flow to the left is taken as positive fur the 
reverse flow case. 

The fluid dynamics of manifold flow are described 
by Keller (1949). McNown (1954). ~crlvos et al. (1959). 
BaJura (1971). and Bajura and j0n.s (1976). Here the 
dimenolanless form of the momentum and mass conservs- 
tion equations fur a branch in the inlet manifold are 

and 

respectively, where AP - P - P. The third 
term on the right hand'slide d'gq. (Gj.&brrects this 
pressure increase to account for loss of manentun from 
the manifold stream by the branching manifold flow. 
I is the ratla of the velocity in the direction of 
idlit-manifold flow at the entrance to the tube mouth. 
to the branch inlet velocity V and is termed a 
"static pressure regain coefflciedt!' It is determined 
empirically, and is a weak function of branch and 
nanlfold geometry, and branch-flow ratios as discussed 
below. A value of 1 for 7 Indicates a maximal loss 
of momentum in manifold fl&d whereas a value of zero 
corresponds to no loss of nonentum to the branching 
flow and the largest static pressure regain as seen 
from Eq. (la). The terms B are dimensionless. 
momentum correction factors thaC'$onvert the momentum 
flux based on mean velocity to that actually possessed 
by the flow for a prescribed flaw reglme. They are 
usu&lIy fired at unity for the experiments performed to 
obtaln the r coefficients. 

A modified Bernoulli equation is written in 
dimensionless form to express pressure loss in a non- 
branch reglan 

For parallel flow. the equations corresponding to Eqs. 
(1) and (2 )  for the outlet manifold are 

In Eq. (3a). 1 is a dimensionless, empirically 
determined -stat26 pressure decrease coefficient" and 
accounts for the transport of momentum in the direction 
of outlet manifold flow from the combining tube stream. 
and momentum loss fro. turbulent mixing of the two 
OtPeB.8. 

A modified Bernoulli equation in dlmenslonless 
form for the tube flow is 

where c and c are emplricslly determined mechanical- 
C d 

energy loss coefficients that account lor flow turninc 
in outlet and inlet  ani if old branches. and f 1, an 
axially averaged frlctlon factor for i s ~ d e r m a l .  
developing flow in the tubes. APmb and AP account 
for presure changes arising from bdoyancy Pk'Jhe tubes 
attributed to fluid motion (inertial and frictional 
pressure drop), and the buoyant part of hydrostatic 
pressure change, respectively. For an isothermal 
assembly. AP and AP are bath zero .  These terms 
are discusse!bld more dkkdl further below. 

Since the mean pressure at any locatlon in the 
assembly is sincle-valued, the net pressure change 
around any closed loop is zero. The loop equation for 
parallel flow is 

Equations (1-6) are a system of (1011-3) simultaneous 
algebraic equations for Ion pressure and velocity 
variables. The boundary conditiuns are 

"1.1 - l. + - 0 and 

V1,2 = 0 (parallel flow) or Vn+1,2 - 0 (reverse flow). 

Values for the flow coefficients r r . c . and c 
have been emplrlcslly determined &V ncN'o& (9954) an8 
Aerlvos et al. (1959). 

Heat transfer in the finned tubes. The finned 
tube geometry is s h a m  in Fig. 3. To be consistent 

~ i g .  3. Pinned-tube geometry for j-th section 

with the manifold-hydrodynamics formulation. the 
assembly is dlvided into n increments correaponding to 
the number of tubes; each increment consisttne or a 
tube and the fin to its left. High temperature- 
source diffuse and normal-beam radiation from 'I and 
Tnb, and low tenperature-source radiation fro. $Em- 
perature T are lncfdent as the front surface of the 
assembly. s~onduction and radiation heat transfer occur 
from the jth and (j+l)st fins to the jth tube. and the 
tube is irradiated directly. The assembly losen heat 
by convection through a constant heat transfer 
coefflcient (h,) to tenperature Ta, by radiation 
outward from thedfront surface, and by conbined forced/ 
natural convection through variable heat transfer 
coefflclent (h ) to the tube fluid at bulk temperature 
T . For the a%alysla that follows. we assume that the 
tkicknrss of the bond between the fins and tubes and 
heat loss through the back of the assembly are 
negligibly small, although they may be included without 
much difficulty. 

In contrast with previous formulations of heat 
t ~ a n s f e r  in collectors, in particular the Hottel- 
Whlllier-Bliss (HWB) .ode1 (Hottel and Woertz 1942. 
Whllller 1953. Bliss 1859. Chlou 1959) which neglect 
fin/tuba radiant interaction. we include radlaat 
lnteractlon among sealgray (Lieblein 1959. Planondon 
and Landram 1966). dlffuse fin/tube surfaces in the 
present formulation. 



Assuming that helo >> 1 Y o  that fill cullduction may 
be approximated a s  one-dimensional, the steady 
constant-property energy equation in dimensionless forn 
for the Jth fin is 

f 
/dn2-i2(Of,j+Pfl*~i ~ i , ~ ( n , t  1*kh B;,~(~I - 0 ,  

where B and Bh are diaensionless iow and high 
tempera!&e-uourc!~~~adiosities for a differential 

f 
element of fin area located at I ;  the former 
composed of emitted plus reflected in8iddnt energy from 
low-temperature sources, and the latter of only 
reflected incident energy from the high-temperature 
source. l2 is the ratlo of radiative plus convective 
conductance from the front of the fin, to the 
conduction conductance in the fin. Pf is a constant 
dimensionless fin temperature resulting from convgctian 
and radiation from the fin surface. k1 and R are 
COnDtants. 

Because temperature variations in the fin are expected 
to be smaller than the absolute temperature 'Ti. we use 
a dimensionless perturbed temperature O in Eq. (7a) 
defined as ( 7  -T )R . )  . This approachf dnplifies the 
problem sincef'&efnonfinear emission tern may then be 
linearized by using a truncated binomial expansion 
(Eno. 1976) where. 

(Tf,j/~i)4 = ( I * ~ , ~  l 4  = 1 + 4 0 ~ , ~ + 0 ( 0 ~ , ~ 1  2 . 0 ~ , ~ < 1 .  (81 

If only the first two terms in the serien are retained 
for ose in the energy balance, errors in temperature of 
less than a feu percent are expected since typical 
values of O are 0.1 or smaller. 

The ex6duoians for fin radiosity are 

In Eq. (9). it was assumed thst h /s << 1 as 
before, s o  that the two manifold peper do not 
participate io the radlation processes. The finned 
tubes are diffuoe reflectors of low temperature source 
radiation to be consistent with the high-temperature 
source radiation. and a are the angles defining 
the upper and loue:k?mits 04 visibility for the tube 
when viewing a fin. The kernels of the inte~ral equa- 
tions. K, are from dlffuse configuration factors 
between fin differential-area elenents and infinitely- 
long. differentially-wide elenents of tube area (Sotos 
and Stockman. 19641. It has been demonstrated by 
Sparrow and Krovech (1977) that most of the heat 
transfer between fin and tube elemental areas occurs 
for elements having the same axial coordinatfs. Thus. 
radiant exchange between a fin element at t . and two 
parailel tubes, can be approximated as if the tubes are 
infinite in length and axially isothermal. at the 
temperature corresponding to that location. 

F are diffuse canfiguratiun factors far a 
differAdfPai element of fin area viewing the tsothenal 
surface in front of the assembly. The terms r in Eq. 
(91 are one or zero depending on the value of j: for 
j-1. = 0, and r - 1 otherwise. 

Fcii+t;i::wfGe: ;ut;sf'results frod an order-of- 
magnitude analysis show thst axial conduction and 
radial temperature gradients in the tube wall are 
negligibly small. In addition, the circumferential 
variation of tube-wall temperature and heat flux is 
also shown to be negligible if the thermal conductivity 
of the tube is is~ge. and the tube-wall energy balance 
is thus formulated as quasi-one dinansional, which. in 
dimensionless forn. becones 

where O and @ are dimensionless perturbed tube 
and bulJ.liuid te%bdratures defined in the sane manner 
as flrt temperature. and P and lt depend on flow 
and heat transfer in and oukdide of a'dube. 

r, JB:.,(e.tf~~(ej.nj)de n-~i"-l~ 

t 3 1 wtnj Pt,j(t I= (r Ti rt [ I + 

aj(n) 

4 (lla) 
Ts E ( f 4 1 , j ( ~ ~ ' ~  

1 < j <n+l. (gal 
ch ~:,~(e)/(1-0~1) do] + o T~~ ap c'/(~-c') 



where a = rt(n-2sin-1ul is the perimeter of the top 
alde of 'a tube. In ~ g .  (lo), the tube-wall temperature 
1% a linear function of the bulk fluid temperature. 
1 IS the ratio of the convective conductance between 
t 6 3  tube wall and the fluid, to the sun of all 
conductances from the tube to the external radiative 
and convective sinks and to the fluid. The term P 
is a dimensionless stagnation temperature for the t6nd 
which occurs for Nu equal to zero (or no fluid flow). 

Rsdiosity disdibutions for the tubes are written 
In the sane way as for the fins in Eq. (9) but are not 
Presented here for brevity. In this case, radiant 
contributions to a differential element of tube area 
are from the adjacent tube and fin that view it, and 
the radiant sink temperature or high temperature source 
as before. 

The finned tubes are insulated along the outer 
edger. The remaining boundary condition is a matching 
of the fin and tube tenperature where they are in 
contact. Thus. temperature continuity is satisfied 
acros9 the fin and tube interface, and Eq. (11) 
satisfies continuity of heat flow there. 

Pluid flow and heat transfer in a tube. The 
configu?ation considered is upward flaw of a Boussinesq 
fluid in n externally vertical circular tubes of length 
h and radius rt, which, equally spaced. connect an 
lalet manifold to an outlet manifold. The radial and ~~ ~~~~~~ ~~~ ~~~~ ~ ~~~- 

axial direction and velocity components arc denoted as 
tT.71 and lB.iil, respectively. The mean velocity at 
the inlet to each tube is 3 . and the inlet temperature 
for all tubes is T . WJ predict the pressure and 
temperature distribution for each tube and couple this 
information to the parts of the problem that treat 
flnned-tube heat transfer and manifold hydrodynamics. 
In thio way. mass. momentum, and energy conservation 
fpr theentlre assembly are satisfied simultaneously. 
As an example of thio coupline. heat transfer to a 
particular tube infuences the tube friction factor 
which affects a change in the tube fluid flow rate and. 
in turn, alters the rate of heat transfer from the 
orieinal value. 

The topic of developing, buoyancy-assisted 
coabined convection in a vertical tube has received 
considerable attention in the past. The studies 
performed considered either constant temperature 
(Zeldin and Schmidt 1972. Marner and Mcnillan 1970. 
Lamence and Chato. 1966). or constant heat flux tube 
walls (Zeldin and Schmidt 1972. Lawrence and Chato 
19661. Because the more realistic conjugate problem is 
belng solved in this study, neither of these conditions 
may be imposed: rather siaultaneous solution of the 
problem coupling all subsystems is executed. As is 
ofteo the case for flow in compact and plate heat 
exchangers having smooth and small flow passages, and 
relatively low velocity. it in assumed that the flow is 
laminar. The inlet velocity to each tube is taken to 
be uniform. After an entry length (of about 10 tube 
diameters for the cases considered here) the radial 
pressure gradient is negligibleL In the usual m y ,  the 
axial pressure gradient (d? /dz) is expressed as the 
sum o f  two independent $reosure gradients: one 
attributed to fluid motion and the other arising from 
hydrostatics: 

where dc /dT = -Otg, and is referenced to tube-wall h 
temperature. With D - 0 [I + 8 (Ti -c)]. where B 1s 
the coefficient of tfer.a+ expansion. 

Since Convective acceleration is small for this 
case, the axial component of the nolaentun equation 
using Eqs. (12) and (13) is 

G m / d i  - -oig B (Tt - Tc) + [VISCOUS terms]. (14) 

In Eq. (14). the temperature difference term is 
positive and the viscous terms are negative. so we see 
that the effect of buoyancy on the flow is to increase 
the axial pressure gradient dFm/di relative to that in 
the isothermal case. 

The total pressure gradient is now written froa 
Eqs. (12)-(14) 

d? /dZ=-oig B(T -7 1 [viscous terms1 
C t C  

The first two terms on the right-hand side of Eq. 
(IS) represent the contribution froa fluid motion 
(d: /di), and the third and fourth terms are the 
buo?ant and isothermal contributions from hydrostatics 
respectively. The fourth term is 2-3 orders of 
magnitude smaller than the rest and for this reason it 
will he neglected. The first and third terms in Eq. 
(15) combine to form a single positive-valued buoyancy 
tern (because T > Ti) and since the viscous term are 
negative, thecoverall effect of buoyancy on forced 
upward flow in an isolated, externally heated tube is 
to reduce the total Pressure qradient relative to the 
isothermal care. This is equivalent to a reduction in 
tube friction factor when conpared with that for 
isothermal flow. It is this effect that causes an 
increased tube flow rate with tube-wail temperature as 
cited in the example above. Compared with isothermal 
conditions, the partially flow-starved land thus 
warmest) tuber in the assembly exhlkit a reduced flow 
resistance compared with cooler tubes and, hence, an 
increase in fluid flow rate -when bubyancy effects 
exist. 

Past numerical i'tudies of assisting combined 
convection in an inclined tube (Cheng and Hong 197Za. 
1972b) have shown that local friction factors and 
Nusselt numbers are independent of Prandtl number and 
increase nonotonically with angle of inclination from 
the horizontal, till a vertical orientation is reached. 
Increased local heat transfer lo the tubes increases 
performance of the assembly directly, and also 
indirectly through more uniform flow distribution as 
discussed above. It follows then that solutions of the 
present problem, which treats vertical tubes, represent 
an upper bound on improvement in thermal performance 
over the isothermal ease. ~~ ~ -- - ~~ 

Based on the preceding developments. the following 
is to be used with Eq. ( 5 )  



where the first term In parenthesis in Eq. (16b) 
accounts for the actual pressure gradlent for a tube 
having an externally heated wall, and the second one is 
the pressure eradient occurring for the sane hydro- 
dynamic conditions if the flow is Isothermal. 

Por the case where the Peclet number for tube flow 
1. greater than 100. so that axlal momentum and heat 
transport ape neglected, the equatlons governing mass. 
momentum. and energy conservation in dlnensionlevs form 
for the flow in each tube are 

In Eqs. (17a)-(17d). the velocity components. prysure. 
and coordinates are scaled wlth u/rt oi(u/rt) , and 
rt. respectively. The boundary condltions are 

where Pr is the Prandtl nunber. Re is the tube Reynolds 
number. and or* is a modified Grashof number. 

Thls part of the conjugate problem Is coupled to 
the remaining two parts through the buoyancy term in 
Eq. Il7c) where the tube-wall temperature affects the 
velocity and temperature fields for the fluld In each 
tube. and through the boundary conditon at the tube 
entrance where the tube Reynolds numbers result froa 
manlfold hydrodynamics. 

WETHOD OF SOLUTION 

The equations that govern the temperature. 
radiosity, pressure, and veloclty dlstrlbutions for the 
conjugate problem are slnultaneouo nonlinear partial 
differential equations [far fluid flow and heat 
transfer in a tube. Eq. (17)l. simultaneous linear 
o r d i n a ~ y  lntegro-differential equations [for heat 
transfer in the flnned tubes. Eq. (7)-(ll)], and 
simu 1 tanenus n o n l i n e a ~  aleebralc equatlons [far 
manifold hydrodyna.1~~. Eq. (1)-(6)l. A system of 
simultaneous llnear Integral equations [for the high 
temperature-source radia~lty.~Eq. (Yb)] needs to be 
solved initially to produce B dlstributions for the 
finned tube. The problems associated with the flrst 
three equatlon system are viewed as components of the 
conjupate problem and are referred to as 'sub- 
problems.' The solutlon to the conjugate problem is 
obtalned by solvine one subproblem after another In 
sequence, and re-solving them until convergence 1s 
reached. The solutlon to the conjugate problea is 
b e n c e  refined wlth each c& of this "overall 
iterative procedure' because any one subproblem Is 
solved subject to boundary conditions that correspond 
to the moot recent solutions for the remainlne two. 

A schematic black diagram of this procedure is 

oresenfed In  Pig. 4. Each step In the procedure is 

HmROOVNAMICS 
SUBPROBLEM 

DYNAMICS AND 
HEAT TAANBIER 

HEAT TIANSFEI 

SUBPROBLEM SUBPROBLLM 
RESCAUNO - 

Pig. 4. Block diagram for solution of conjugated 
problem Indlcating coupling among 
subproblems. 

described brlefly below, Isothermal candltlans are 
Initially assumed. (I) The flrst step is to solve for 
hieh tenperature-source radiosity distributions which 
remain unchanged throughout the procedure. (2) Solve 
the equations for manifold hydrodynamics to obtain flow 
distribution and calculate Reynolds numbers for each 
tube. (3) For the first cycle of the procedure only. 
eatimatc local Nusselt numbers from a suitable 
correlation (Churchill and Ozoe 1973) uslng Reynolds 
numbers from step 2. (4) Calculate lo* temperature- 
souPce radioslty and temperature dlstrlbutlons far the 
fins and tubes from the equations for finned-tube heat 
transfer and most recently estimated Nusselt numbers; 
froa a macroscopic energy balance on the flow In each 
tube. re-estimate the bulk fluld temperature. ( 5 )  Solve 
o r  the fluid temperature. pressure, and velocity 
dlstributions in each tube subject to most recent tube 
Reynolds numbers and tube-wall temperatures: re- 
estimate Nusselt number distributions for each tube. 
( 6 )  From the most recent tube-wall temperatures. 
evaluate &Pbh for each tube from Eqs. (13) and (16a): 
from a correlstlon for hydrodynamically developing 
Isothermal flow (Shah 1978). and pressure dlstrlbutions 
from atep 5. evaluate AP for each tube from Eq. 
(16b). and ( 7 )  Repeat S e p s  2 through 6 until 
convergence occurs. 

V c h l c l e s  f o r  informatlon transfer anone the 
subproblens. as seen in Flg. 4 and described above. are 
summarized in the following table. 



Vehfcles fop information Transfer Amone the Subproblems 
Hanlfold Flnned-tube Fluid 

Hvdrodynamlcs Heat Transfer Dynamics 
and Heat 
Transfer 
in n Tube 

Manlfold -- Re 
1 

Rej. 
Hydrodynamics 

APnb.j' 

Pinned-tube -- 
Heat Transfer + t . ~ .  

(or *t,j). 

NU J 
I.ocal Nusselt numbers have been used in the part as 
vehicles far inforlnatlon transfer between parts of a 
conjugate problem by Sparrow and Faghri (1980). and 
they work well. 

The manifold-hydrodynamics subproblem was solved 
by the Newton-Raphson method which used Choleski 
decomposition (for parallel flow cases1 or Gauss-Jordan 
reduction (for reverse flaw). Convergence was achieved 
when all equations were satisfied to within a 
dimensionless velocity and pressure change of 
The equations for finned-tube heat transfer were solved 
by flnite differences using 11 nodes for the fin in the 
transverse direction and for the tube in the 
circumferential direction. Five-point backward or 
forward differences were used for the temperature 
gradlento in Eq. (llal. The kernel functions and 
configuration factors in the radiosity integral 
equations were evaluated for all fin- and tube-node 
~ombinat10ns. Because of the sensitivity of the 
kernels and configuration factors to slight changes in 
coordinate values in the neighborhood of the fin/tube 
interfaces. the nodes nearest to the interfaces were 
sub-divided into 10 finer nodes and the kernels and 
configuration factors were calculated for these and 
then averaged. Integral equations were approxinsted by 
a sixth-order Simpson's rule wlth fourth-order end 
correctfons. The system of linear algebraic equations 
-4 solved by Gauss-Seldel iterstlon using a relative 
convergence criterion of lo-'. The radiosity integral 
equations for the high temperature-source were 
approximated in the sene way and solved by iteration 
where convergence was schleved when all equations were 
satisfled to within 10- dlmensionleso radiosity units. 

The equations for fluid flow and heat transfer In 
the tubes were solved by flnite differcences using a 
flne axial-dlrectlon mesh in the region near the tube 
mouth and a coarser mesh downstream Iron this. 
Typically. 41 radial and flrst-region axlal nodes were 
used with 31 second-region axlal nodes. Upwind 
differences were used far axial convection and central 
differences far the diffusion term*. Theequations were 
solved lnplicitly by marching in the downstream 
direction, solving far velocity, pressure, and 
temperature at a11 radial nodes for each step of the 
march. A sparse-coefficient, linear algebraic equation 
solver (Gupta and Tanjl 1977). which employs matrix 
de~~mposftion. wan used to solve the system of linear 
algebraic equations at each axial location. 

Only about three of four cycles were required to 
cenvepge the "overall iterative procedure". described 
in Fig. 4, except for several cases with large tube 
diaaeters which required slx or seven cycles because of 

the atronger affects from buoyancy. Typical runnlng 
time on an IBM 4341 computer was nbout 1250 seconds for 
an asscnbly of four tubes, whlch converged in four 
cycles. 

RESULTS AND DISCUSSION 

B e c a u s e  the principal focus is on flow 
dlstributlon, tube diameter and tube length were 
selected as primary paraaeters since these not only 
affect flow dist~ibution far an isothermal assembly but 
also influence heat transfer to the tube fluid (throueh 
Gr* and flow development considerational. The analysis 
was also performed for parallel and reverse flow 
configurations. It has been shown by Jones and Lior 
(19781 that nearly uniform flow conditions exlst far 
d id I d  /d 1 of 0.25 and smaller, and so we take this 
a& tie ]$we? bound for d A reasonable upper bound 
was assumed to be dt/di J'0.75. The speclfic example 
for which this analysis was used concerned flat plate 
so1.a~ ~ o l l e c t o r s  which typically have manifold 
diameters of about 1.27 cm and tube lengths of 1 to 2 
m .  TO Investigate the effect of tube length on flow 
distribution and perfornance, we choose two values for 
tube length: 0.61 n ("short aosembly"). and 1.83 n 
f"1ong assembly"). The remaining varlables are fixed 
at the values as shorn below. 

c1 - 0.2 ch = 0.8 fluid: water 

Pour tubes (risers) ware chosen for computational 
convenience. The expected results for assemblies 
having more than four tubes are briefly discussed 
below. 

To address the effect of buoyancy on flou 
distribution and assembly performance, two limitiny 
cases were considered: one with and one without 
buoyancy effects. The solutlon of the conjugate 
problem is thus obtained for 24 different conbinatlons 
of varlables: three diameter ratios for short and long 
assemblie8 for both upper- and lower-bound cases. and 
far parallel and reverse flow. 

The influence of buoyancy on flow dlstribution. 
overall preooure drop, and thermal performance for all 
24 combinations 1s presented in Plg. 5 where ratios of 
these quantities arc plotted for the lover-(1) and 
upper-(") bound cases against dlameter ratio. AP is 
the total dimensi nleoo pressure drop for the assesbly 
(scaled by plVl 14) less 1-0 gh as discussed above. 
The thermal pdrformance. . 5 s  the ratio of the 
instantaneous heat transfer to the fluid. to the total 
irradiance on the surface of the assembly. The 
variable r la a dimensionless flaw naldistribution 
fraction defined as 

* = - ;minl/+/n) (18) 

where the denominator 1s the mass flow rate per tube 
for uniformly distributed flow, r: is the difference 
between the maximal and minimal dimensionless mass flou 
for the tubea. K - 0 indicates uniform flow 
d i s t r i b u t i o n .  whereas a nonzero value shows 
naldlstrihuted tobe flaw: larger values indlcsting 
larger maldistrfbution. 

Referring to Fig. 5 ,  the reaults for d /dl-0.251 
(where the flow dlstribution is approximatel$ uniform) 
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Pig. 5. Ratio of maldistribution fraction ( K ) ,  overall 
dual-manifold system pressure drop (AP I and thermal 

T 
efficiency (E) for the ratio of lower- to the upper- 
b o u ~ d  cases for both assembly lengths and for parallel 
flow. Results for reverse flow are identical. 

indlcate practically no influence from buoyancy for all 
cases. Thin is because Gr* 1s only 556 in contrast to 
a tube Peclet nunber of about 7200. so that heat 
transfer to the coolant is donlnated by forced 
convection. The effect of natural convection is seen 
to Increase with the diameter ratio. At dt/dl = 0.75 
(here  Or* is about 45.000). the overall pressure drop 
In the assenbly decreases from the isothermal value by 
about 38 percent and the maldlstribution fractlon is 
reduced about 24 percent for the long assembly and for 
parallel and reverse flow. @or the short assembly. 
buoyancy effects are weaker because of a smaller 
difference between the mean tube-wall and fluid 
teperatures and an overall lower temperature increase 
ln the fluid. For all cases. we note a thermal 
performance Increase of 0.4 percent or less (as 
measured from the lower-bound case) when buoyancy is 
included. In analyzing this result. re note that 
buoyancy whlch assists the flow in the tubes enhances 
performance dlrectly by increasing the rate of heat 
transfer to the fluid (just as the pressure gradient 
d 6  /dT la increased). and Indirect1 by causing an 
adyustment of the tube flow toward uYniformlty. The 
first effect causes smaller temperature differences 
between the tube wall and the fluid resulting in cooler 
tube and fin temperatures and thus smaller heat losses. 
However, If the tube Peclet nunber is large, the 
coolant and tube-wall temperature rise is snall so that 
a further slight decrease in tube-wall temperature 
caused by improved heat transfer between it and the 
fluld l o  negligible. The minimal Peclet number for the 
examples considered here is about 1600. large enough to 
explain the very small improvement due to buoyancy. 

The second effect is explained with the help of 
Pig. 6 which shows dimensionless tube flow rates far 
each of the four tubes in the assembly far the short 
and long, and upper- and lower-bound cases. Also shorn 
for reference is the unlform flow distribution assumed 
for s "base" case (b) which corresponds to the HUB 
model discussed above. Although the maldlstribution 
fraction indicates a 24 percent change in going from 
the lower-bound to upper-bound cases for the long 
assembly, the actual change in flow dlstrlbution 1s not 
very large. In the first tube, the flow increases from 
0.85 to 0.90. and in the last tube, the flow decreases 

DIMENSIONLESS DISTANCE ALONG MANIFOLDS IXIW! 

Pig. 6. Dlnensionlens mass flow rate among rloer tubes 
for dt/d = 0.75. long, 2 .  short, s. assenblles and 
upper- h) and lower- (L) bound and base-model (b) 
Cases. 

to 1.16 from 1.20. Similar conclusions are d r a m  Iron 
the results for reverse flow. Pig. 8 also shows that 
the manifolds are inertially dominant; the last tube 
(nearest X-1) havlng more than average flow, and the 
first tube less than average for parallel flow (and the 
opposite for reverse flow). This arlses because of the 
relatively snall tube spacing of about 11.1 cn so that 
frictional pressure losses in the "an-branch regions 
are small when compared with Inertial pressure changes 
In the branches. 

Dlnensionlesa fin temperatures are shorn in Pig. 7 

Xi-'t 
DIMENSIONLESS TRANSVERSE DISTANCE ALONG FIN h = 

Pig. 7. Dimensionless fln temperature dlstributlon ( O  ) 
for dimensionless axial locations (?/h ) of 0.1 and 0'9 
for d /dl - 0.75. short assembly an$ lower- ( 2 )  and 
upperf bound cases. 

for the short assembly and for the upper- and lower- 
bound. and base cases. The diameter ratio la 0.75 and 
temperatures a r e  plotted for diaensionless axlal 
locations of 0.1 and 0.9. The profiles indicate 
slightly cooler fln temperatures for the right slde of 
the assembly than for the left because of the larger 
flow of fluld through tubes 3 and 4 compared wlth tubes 
1 and 2. Thla difference la small, however, amounting 
to only 2-3 K. The reduction in fin temperature in 



colng from the lower- to upper-bound casesf Is 
Inperceptlble for the axlal locatlon plong tube) t of 
0.1 and is measurable but small f n ~  r "r n o J 

~ -.- .-. 
Developlng axlal velocl ty '4;; -L;nperature 

distrlbutlons for the flow In a slnglr tube are 
presented In PIC. 8 for the upper-bound case of a 0.75 

~ a t l o s  of 0.25 and smaller. tube flaw 1s nearly 
uniformly dlstrlbuted and there is negligible Influence 
from buoyancy. An dlameter ratla increases. flow 
maldlstrlbution for an isothermal assembly also 
Increases but is lessened somewhat when the assembly is 
externally heated and buoyancy in the tubes Included. 
Pressure drop through the assembly decreases when the 
assembly Is heated. For an assembly consisting of four 
tubes and a dlameter ratlo of 0.5, the effect of 
buoyancy lo to reduce loothermal pressure drop and flow 
aaldlstrlbutlon fraction by less than 10 percent. Par 
a diameter ratio of 0.75. lsothernal pressure drop and 
maldistrlbutlon fraction decrease 38 percent and 24 
percent respectively, although, thermal performance of 
the assembly 1s nearly lnsensltive to buoyancy-Induced 
tube-to-fluld heat transfer enhancement and flow 
readjustment for both parallel and reverse flow. This 
IS due In part to the large Peclet number tube flaw. 
and to the values chosen for the external heating rate 
of the assembly and the parameters that effect 
radiative and convectlve lasses from the assembly 
surface. 

1 h Because of the values chosen for c . o . h . and 
i , the heat flux to the fluid is axlally cosstant 

t 8 b w ~ q 6 ~ n  about 7 percent slnce the ratlo of the rate 
of heat loss from the assembly surface, to the absorbed 
radlant flux doer not increase slgnlficantly in the 
axla1 direction. Thus, the results obtalned here nay 
be applied to a corresponding plate heat exchanger 
w h e r e  the inter-plate heat transfer rate lo 
approximately Constant. 

DIMENSIONLESS RADIAL LOCATION [?.+I IN FLUID 

Plg. 8. Developlng dimensionless axlal veloclty and 
temperature for tube-fluld. and for several r* 
locations. Or* = 4.5 x 10 and Re - 538. 
dlameter ratlo. long asseably. Here. Or* is 45.000 and 
the tube Reynolds number la 538. The proflles are 
shorn for six dlmenslonless axial lacatlons deflned as 
z* [-?/P Pel, where Pe-Re Prl: the tube inlet. three 
internedfate r* values. z*-0.0174 corresponding to the 
location of naxlmal axlal velocity at the tube 
centerllne. and E*-0.121 whlch lo the tube outlet. 
Plow and thermal proflle develovment proceed from the 
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