Some useful results on rotations and other displacements

- Transformations and Displacements
- Similarity transformations
- Rotations or spherical displacements
 - Euler’s theorem for rigid body rotations
 - The axis-angle representation for rotations
- General displacements
 - Chasles’ theorem for rigid body displacements
 - The screw axis representation for displacements
Coordinate transformation from \{B\} to \{A\}

- position vector of \(P\) in \{B\} is transformed to position vector of \(P\) in \{A\}
- description of \{B\} as seen from an observer in \{A\}

\[A \mathbf{r}^P = A \mathbf{R}_B B \mathbf{r}^P + A \mathbf{r}^{O'} \]
Displacements

The same equation can have two interpretations:

- It transforms the position vector of any point in \{B\} to the position vector in \{A\}

- It transforms the position vector of any point in the first position/orientation (described by \{A\}) to its new position vector in the second position orientation (described by \{B\}).

\[
^A r^{P'} = ^A R_B^B r^P + ^A r^{O'}
\]

Coordinate transformation from \{B\} to \{A\}

\[
^A r^{P'} = ^A R_B^A r^P + ^A r^{O'}
\]

Displacement of a body-fixed frame from \{A\} to \{B\}
Composition of Displacements

Displacement from \{A\} to \{B\}

\[A_A B = \begin{bmatrix} A_R B & A_r O' \\ 0_{1x3} & 1 \end{bmatrix} \]

Displacement from \{B\} to \{C\}

\[B_A C = \begin{bmatrix} B_R C & B_r O' \\ 0_{1x3} & 1 \end{bmatrix} \]

Displacement from \{A\} to \{C\}

\[A_A C = \begin{bmatrix} A_R C & A_r O'' \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_R B & A_r O' \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} B_R C & B_r O'' \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_R B \times B R_C & A_R B \times B r'' + A_r O' \\ 0 & 1 \end{bmatrix} \]

Note \(X_A Y \) describes the displacement of the body-fixed frame from \{X\} to \{Y\} in reference frame \{X\}
Kinematics

What happens when you want to describe the displacement of the body-fixed frame from \{A\} to \{B\} in reference frame \{F\}?

Displacement is described in \{A\} by the homogeneous transform, \(A^A_B \).

Want to describe the same displacement in \{F\}. The position and orientation of \{A\} relative to \{F\} is given by the homogeneous transform, \(F^A_A \).

The same displacement which moves a body-fixed frame from \{A\} to \{B\}, will move another body-fixed frame from \{F\} to \{G\}:

\[
F^A_G = F^A_A A^A_B B^B_A G
\]

\[
F^A_G = F^A_A A^A_B (F^A_A)^{-1}
\]
Euler’s and Chasles’ Theorems

Rotations

Any displacement of a rigid body such that a point on the rigid body, say O, remains fixed, is equivalent to a rotation about a fixed axis through the point O.

General Displacements

The most general rigid body displacement can be produced by a translation along a line followed (or preceded) by a rotation about that line.
Proof of Euler’s Theorem for Spherical Displacements

Displacement from \{F\} to \{M\}

\[P = Rp \]

Solve the eigenvalue problem:

\[Rp = \lambda p \]

\[|R - \lambda I| = 0 \]

\[-\lambda^3 + \lambda^2 a_{11} + R_{22} + R_{33} \]

\[-\lambda[a_{22} R_{33} - R_{32} R_{23} + a_{11} R_{33} - R_{13} R_{31} + a_{11} R_{22} - R_{12} R_{21}] + |R| = 0 \]

Three eigenvalues and eigenvectors are:

\[\lambda_1 = e^{i\phi}, \ p_1 = x \]

\[\lambda_2 = e^{-i\phi}, \ p_2 = x \]

\[\lambda_3 = 1, \ p_3 = u \]

where \[\cos \phi = \frac{1}{2} a_{11} + R_{22} + R_{33} - 1 \]
The Axis/Angle for a Rotation Matrix

Define

\[F R_{F'} = Q = \begin{bmatrix} v_2 & u \end{bmatrix} \]

and look at the displacement in the new reference frame, \{F'\}.

Can show:

\[R = Q \Lambda Q^T \]

where,

\[\Lambda = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[v_1 = \frac{1}{2} a + \lambda \]

\[v_2 = \frac{i}{2} a - \lambda \]

\[R v_1 = \frac{1}{2} a + \lambda \]

\[= v_1 \cos \phi + v_2 \sin \phi \]

\[R v_2 = \frac{i}{2} a - \lambda \]

\[= -v_1 \sin \phi + v_2 \cos \phi \]
Kinematics

Between Rotation Matrix angle Axis/Angle

Rotation about \(\mathbf{u} \) through \(\phi \)

\[
\mathbf{R}_p = p \cos \phi + \mathbf{u} \mathbf{u}^T p \mathbf{a} - \cos \phi + \mathbf{u} \sin \phi \times \mathbf{p}
\]

Rodrigues-Euler-Lexell formula

\[
\mathbf{R} = \mathbf{I} \cos \phi + \mathbf{u} \mathbf{u}^T \mathbf{a} - \cos \phi + \mathbf{U} \sin \phi
\]

where,

\[
\mathbf{U} = \begin{bmatrix}
0 & -u_3 & u_2 \\
-u_2 & 0 & -u_1 \\
u_1 & u_2 & 0
\end{bmatrix}
\]

Extracting the axis and the angle from the rotation matrix

1. Find the eigenvector corresponding to \(\lambda = 1 \).
2. From Rodrigues’ formula:

\[
\cos \phi = \frac{1}{2} \mathbf{a}_{11} + R_{22} + R_{33} - 1
\]

\[
\mathbf{U} = \frac{1}{2 \sin \phi} \mathbf{a} - \mathbf{R}^T \mathbf{j}
\]

Notes:

1. Map from \(\mathbf{R} \) to \((\mathbf{u}, \phi)\) is one to many.
 - restrict \(\phi \) to the interval \([0, \pi]\)
2. Singular
 - \(\mathbf{R} = \mathbf{I} \)
 - \(\text{trace}(\mathbf{R}) = -1 \)
Chasles’ Theorem for Planar Displacements

Displacements in the x-y plane

$$A = \begin{bmatrix} R & d \\ 1 & 0 \end{bmatrix}, \quad R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad d = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

If R is not the identity matrix, there is one fixed point on the rigid body for any displacement called the *pole* (or the instantaneous center) of the displacement.

$$c = a - R^{-1}d$$

This point corresponds to the eigenvector of the matrix A for a unit eigenvalue.

$$\begin{bmatrix} \cos \theta & -\sin \theta & d_x \\ \sin \theta & \cos \theta & d_y \\ 0 & 1 \end{bmatrix}$$

Pure translations?

Canonical representation of a planar displacement (except pure translations)
Chasles Theorem for General Displacements

Want a special reference frame in which we have a simple description of the displacement.

Translation part:

If the top 2×2 submatrix of \((Q^T R Q - I)\) is nonsingular, we can always find \(c'\) such that

\[
\Lambda = \begin{bmatrix}
 c^T & -Q^T c & d \\
 0 & 1 & 1
\end{bmatrix}
\]

so that

\[
Q^T R Q - Q^T c + Q^T d = \Theta^T R Q - I Q^T c + d'
\]

This implies \(\Lambda\) has the form

\[
\Lambda = \begin{bmatrix}
 \cos \phi & -\sin \phi & 0 & 0 \\
 \sin \phi & \cos \phi & 0 & 0 \\
 0 & 0 & 1 & k \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Rotational part:

Choose

\[
Q = \begin{bmatrix}
 v_2 \\
v_1
\end{bmatrix}
\]

so that

\[
Q^T R Q = \begin{bmatrix}
 \cos \phi & -\sin \phi & 0 \\
 \sin \phi & \cos \phi & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]
Chasles’ Theorem: Canonical Representation of Displacements

In \{G_1\},
\[G_1 A_{G_2} = \begin{bmatrix} R & d \\ 0 & 1 \end{bmatrix} \]

In new frame \{E_1\}, given by:
\[G_1 A_{E_1} = \begin{bmatrix} R & c \\ 0 & 1 \end{bmatrix} \]

the transformation consists of a translation along and a rotation about the \(z\)-axis:
\[E_1 A_{E_2} = \Lambda = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & k \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Screw Axis from Homogeneous Transformation Matrix

1. Find an appropriate proper orthogonal matrix \(Q \) such that its third column is \(u \) (the axis of rotation).

2. Find the projection of the vector \(d \) on a plane perpendicular to \(u \),
 \[d_p = d - k \ u, \quad k = (d \cdot u) \]

3. Choose \(Q \)
 \[Q = \begin{pmatrix} w & u \\ \hline v & \phi \end{pmatrix} \]
 where
 \[v = \frac{d_p}{d_p}, \quad w = u \times v \]

4. Choose \(c \)
 \[c' = \frac{d_p}{2} \begin{pmatrix} 1 & \sin \phi & 0 \\ \cos \phi & \cos \phi & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
 \[c = Qc' = \frac{d_p}{2} \begin{pmatrix} 1 & \sin \phi & 0 \\ \cos \phi & \cos \phi & 0 \\ 0 & 0 & 0 \end{pmatrix} + a \frac{\sin \phi}{\cos \phi} f v j \]
Homogeneous Transform from Axis, Pitch, and Angle

Given the screw axis, we know \mathbf{u}, ϕ, and h

Let \mathbf{Q} be any orthogonal matrix of the form:

$$
\mathbf{Q} = \begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 0 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

and \mathbf{c} be a position vector of any point on the screw axis.