

Remark about Notation

Vectors

- x, y, a, ...
- ^A**X**
- *u*, *v*, *p*, *q*, ...

Potential for Confusion!

Matrices

• A, B, C, ...

- $^{A}\mathbf{A}_{B}$
- g, h, ...

The 3×1 vector **a** and its 3×3 skew symmetric matrix counterpart **a**^

$$\mathbf{a} = \mathbf{A}^{\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ -a_2b_1 + a_1b_2 \end{bmatrix}$$
$$\mathbf{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

For any vector **b** $\mathbf{a} \times \mathbf{b} = \mathbf{A} \mathbf{b}$

Rigid Body Transformation

Rigid Body Displacement

$$g: O \to R^3$$

Rigid Body Motion

$$g(t): O \to R^3$$

University of Pennsylvania

Coordinate Transformations and Displacements

Transformations of points

• Transformation (g) of points induces an action (g_*) on vectors

What are rigid body transformations? Displacements?

• g preserves lengths

• g_{*} preserves cross products

Rotational transformations in R^3

Properties of rotation matrices

- Transpose is the inverse
- Determinant is +1

Rotations preserve cross products
 R u × R v = R (u × v)

• Rotation of skew symmetric matrices

For any rotation matrix **R**:

$$\mathbf{R} \ \mathbf{w}^{\wedge} \ \mathbf{R}^{T} = (\mathbf{R} \ \mathbf{w})^{\wedge}$$

The same equation can have two interpretations:

- It transforms the position vector of any point in $\{B\}$ to the position vector in $\{A\}$
- It transforms the position vector of any point in the first position/orientation (described by {A}) to its new position vector in the second position orientation (described by{B}).

SE(3) is a Lie group

SE(3) satisfies the four axioms that must be satisfied by the elements of an *algebraic group*:

- The set is closed under the binary operation. In other words, if **A** and **B** are any two matrices in SE(3), $AB \in SE(3)$.
- The binary operation is associative. In other words, if A, B, and C are any three matrices ∈ *SE*(3), then (AB) C = A (BC).
- For every element $\mathbf{A} \in SE(3)$, there is an identity element given by the 4×4 identity matrix, $\mathbf{I} \in SE(3)$, such that $\mathbf{AI} = \mathbf{A}$.
- For every element $\mathbf{A} \in SE(3)$, there is an identity inverse, $\mathbf{A}^{-1} \in SE(3)$, such that $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$.

SE(3) is a continuous group.

- the binary operation above is a continuous operation the product of any two elements in SE(3) is a continuous function of the two elements
- the inverse of any element in SE(3) is a continuous function of that element.

In other words, *SE*(3) is a *differentiable manifold*. A group that is a differentiable manifold is called a *Lie group*[Sophus Lie (1842-1899)].

Rigid Body Kinematics Composition (continued)

 $\{A\}$

0

Composition of displacements

- Displacements are generally described in a body-fixed frame
- Example: ${}^{B}\mathbf{A}_{C}$ is the displacement of a rigid body from *B* to *C* relative to the *POSITION 1* axes of the "first frame" *B*.

Composition of transformations

- Same basic idea
- ${}^{A}\mathbf{A}_{C} = {}^{A}\mathbf{A}_{B} {}^{B}\mathbf{A}_{C}$

Note that our description of transformations (e.g., ${}^{B}\mathbf{A}_{C}$) is *relative* to the "first frame" (*B*, the frame with the leading superscript).

Note ${}^{X}\mathbf{A}_{Y}$ describes the displacement of the body-fixed frame from $\{X\}$ to $\{Y\}$ in reference frame $\{X\}$

{B}

University of Pennsylvania

POSITION 2

 $O^{"}$

POSITION 3

{*C*}

Subgroup	Notation	Definition	Significance
The group of rotations in three dimensions	<i>SO</i> (3)	The set of all proper orthogonal matrices. $SO(3) = \left\{ \mathbf{R} \mid \mathbf{R} \in R^{3 \times 3}, \mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I} \right\}$	All spherical displacements Or the set of all displacemen that can be generated by a spherical joint (S-pair).
Special Euclidean group in two dimensions	SE(2)	The set of all 3×3 matrices with the structure: $\begin{bmatrix} \cos\theta & \sin\theta & r_x \\ -\sin\theta & \cos\theta & r_y \\ 0 & 0 & 1 \end{bmatrix}$ where θ , r_x , and r_y are real numbers.	All planar displacements. O the set of displacements tha can be generated by a plana pair (<i>E</i> -pair).
The group of rotations in two dimensions	<i>SO</i> (2)	The set of all 2×2 proper orthogonal matrices. They have the structure: $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix},$ where θ is a real number.	All rotations in the plane, o the set of all displacements that can be generated by a single revolute joint (<i>R</i> -pair
The group of translations in <i>n</i> dimensions.	<i>T</i> (<i>n</i>)	The set of all $n \ge 1$ real vectors with vector addition as the binary operation.	All translations in n dimensions. $n = 2$ indicates planar, $n = 3$ indicates spati- displacements.
The group of translations in one dimension.	<i>T</i> (1)	The set of all real numbers with addition as the binary operation.	All translations parallel to or axis, or the set of all displacements that can be generated by a single prismatic joint (<i>P</i> -pair).
The group of cylindrical displacements	<i>SO</i> (2)× <i>T</i> (1)	The Cartesian product of $SO(2)$ and $T(1)$	All rotations in the plane an translations along an axis perpendicular to the plane, o the set of all displacements that can be generated by a cylindrical joint (<i>C</i> -pair).
The group of screw displacements	H(1)	A one-parameter subgroup of <i>SE</i> (3)	All displacements that can b generated by a helical joint (<i>H</i> -pair).

Subgroups

- 💑 -

of *SE*(3)

Rigid Body Kinematics