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Remark about Notation

Vectors
x, y, a, …
Ax
u,  v, p, q, …

Matrices
A, B, C, …
AAB

g,  h, …

Potential for Confusion!
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The 3×1 vector a and its 3×3 skew symmetric 
matrix counterpart a∧

For any vector b
a× b  =  A b
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Rigid Body Transformation

Rigid Body Displacement

Rigid Body Motion

( ) 3: ROtg →

O

R3
3: ROg → t
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Coordinate Transformations and Displacements

Transformations of points 
Transformation (g) of points induces an action (g*) on vectors

What are rigid body transformations? Displacements? 
g preserves lengths
g* preserves cross products 

p

q
g (p)

g (q)

v

g* (v)
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Rigid Body Transformations in R3

Can show that the most general coordinate 
transformation from {B} to {A} has the 
following form

position vector of P in {B} is 
transformed to position vector of P in 
{A}
description of {B} as seen from an 
observer in {A}

OAPB
B

APA ′+= rrRr

x
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z

ArP

O

BrP

ArO’

z'

y'

x'

{A}

O'
A

B
P

Rotation of {B} 
with respect to 

{A}

Translation of 
the origin of {B} 
with respect to 
origin of {A}
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Rotational transformations in R3

Properties of rotation matrices
Transpose is the inverse
Determinant is +1

Rotations preserve cross products
R u × R v = R (u × v)

Rotation of skew symmetric matrices

For any rotation matrix R:

R w∧ RT   =  (R w)∧
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Example: Rotation
Rotation about the x-axis through θ
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θ−θ=θ

cossin0
sincos0
001

,xRot
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Displacement 
x
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Example: Rotation
Rotation about the y-axis through θ

y

z

x

θ

z'
x'
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,yRot

Rotation about the z-axis through θ
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Rigid Motion in R3

The same equation can have two interpretations:
It transforms the position vector of any point in {B} to the position vector in {A}
It transforms the position vector of any point in the first position/orientation 
(described by {A}) to its new position vector in the second position orientation
(described by{B}). 
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B
P

OAPB
B

APA ′+= rrRr OAPA
B

APA ′′ += rrRr
Coordinate transformation from {B} to {A} Displacement of a body-fixed frame from {A} to {B}
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Mobile Robots
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The Lie group SE(3)

( )
⎭
⎬
⎫

⎩
⎨
⎧

==∈∈⎥
⎦

⎤
⎢
⎣

⎡
== ×

×
IRRRRrR

0
rR

AA TTRRSE ,,,
1

3 333

31

http://www.seas.upenn.edu/~meam520/notes02/RigidBodyMotion3.pdf
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SE(3) is a Lie group
SE(3) satisfies the four axioms that must be satisfied by the elements of an 
algebraic group:

The set is closed under the binary operation. In other words, if A and B are any two 
matrices in SE(3),  AB ∈ SE(3).  
The binary operation is associative. In other words, if A, B, and C are any three matrices ∈ 
SE(3), then (AB) C = A (BC). 
For every element A ∈ SE(3), there is an identity element given by the  4×4 identity 
matrix, I∈ SE(3),  such that AI = A.
For every element A ∈ SE(3), there is an identity inverse, A-1 ∈ SE(3), such that A A-1 = 
I.

SE(3) is a continuous group.
the binary operation above is a  continuous operation  ⎯  the product of  any two 
elements in SE(3) is a continuous function of the two elements
the inverse of any element in SE(3) is a continuous function of that element. 

In other words, SE(3) is a differentiable manifold.  A group that is a 
differentiable manifold is called a Lie group[ Sophus Lie (1842-1899)].
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Composition of Displacements
Displacement from {A} to {B}

Displacement from {B} to {C}

Displacement from {A} to {C}
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Note XAY describes the 
displacement of the body-fixed 
frame from {X} to {Y} in 
reference frame {X}
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Composition (continued)

x

y

z

O

z'
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{A}

O'

z''

x''
y''

O''

{B}

POSITION 1

POSITION 2

POSITION 3

{C}

Note XAY describes the 
displacement of the body-fixed 
frame from {X} to {Y} in 
reference frame {X}

Composition of displacements
Displacements are generally described 
in a body-fixed frame
Example: BAC is the displacement of a 
rigid body from B to C relative to the
axes of the “first frame” B. 

Composition of transformations
Same basic idea
AAC =  AAB 

BAC

Note that our description of 
transformations (e.g., BAC) is relative
to the “first frame” (B, the frame with 
the leading superscript).  



Rigid Body Kinematics

University of Pennsylvania 16

Subgroup Notation Definition Significance
The group of
rotations in

three
dimensions

SO(3) The set of all proper orthogonal
matrices.

( ) { }SO R T T3 3 3= ∈ = =×R R R R RR I,

All spherical displacements.
Or the set of all displacements

that can be generated by a
spherical joint (S-pair).

Special
Euclidean

group in two
dimensions

SE(2) The set of all 3×3 matrices with the
structure:

cos sin
sin cos

θ θ
θ θ

r
r
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⎥0 0 1

where θ, rx, and ry are real numbers.

All planar displacements. Or
the set of displacements that
can be generated by a planar

pair (E-pair).

The group of
rotations in

two
dimensions

SO(2) The set of all 2×2 proper orthogonal
matrices. They have the structure:

cos sin
sin cos

θ θ
θ θ−

⎡

⎣
⎢

⎤

⎦
⎥ ,

where θ is a real number.

All rotations in the plane, or
the set of all displacements
that can be generated by a

single revolute joint (R-pair).

The group of
translations in
n dimensions.

T(n) The set of all n×1 real vectors with
vector addition as the binary

operation.

All translations in n
dimensions. n = 2 indicates

planar, n = 3 indicates spatial
displacements.

The group of
translations in

one
dimension.

T(1) The set of all real numbers with
addition as the binary operation.

All translations parallel to one
axis, or the set of all

displacements that can be
generated by a single

prismatic joint (P-pair).
The group of
cylindrical

displacements

SO(2)×T(1) The Cartesian product of SO(2) and
T(1)

All rotations in the plane and
translations along an axis

perpendicular to the plane, or
the set of all displacements
that can be generated by a
cylindrical joint (C-pair).

The group of
screw

displacements

H(1) A one-parameter subgroup of SE(3) All displacements that can be
generated by a helical joint

(H-pair).

Subgroups 
of SE(3)


