
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Code2Inv: A Deep Learning Framework for
Program Verification

Xujie Si1?(�), Aaditya Naik1?, Hanjun Dai2,
Mayur Naik1, and Le Song3

1 University of Pennsylvania
xsi@cis.upenn.edu

2 Google Brain
3 Georgia Institute of Technology

Abstract. We propose a general end-to-end deep learning framework
Code2Inv, which takes a verification task and a proof checker as input,
and automatically learns a valid proof for the verification task by inter-
acting with the given checker. Code2Inv is parameterized with an em-
bedding module and a grammar: the former encodes the verification task
into numeric vectors while the latter describes the format of solutions
Code2Inv should produce. We demonstrate the flexibility of Code2Inv by
means of two small-scale yet expressive instances: a loop invariant syn-
thesizer for C programs, and a Constrained Horn Clause (CHC) solver.

1 Introduction

A central challenge in automating program verification lies in effective proof
search. Counterexample-guided Inductive Synthesis (CEGIS) [3,4,17,31,32] has
emerged as a promising paradigm for solving this problem. In this paradigm, a
generator proposes a candidate solution, and a checker determines whether the
solution is correct or not; in the latter case, the checker provides a counterex-
ample to the generator, and the process repeats.

Finding loop invariants is arguably the most crucial part of proof search
in program verification. Recent works [2, 9, 10, 26, 29, 38] have instantiated the
CEGIS paradigm for synthesizing loop invariants. Since checking loop invariants
is a relatively standard process, these works target generating loop invariants
using various approaches, such as stochastic sampling [29], syntax-guided enu-
meration [2,26], and decision trees with templates [9,10] or linear classifiers [38].
Despite having greatly advanced the state-of-the-art in program verification,
however, there remains significant room for improvement in practice.

We set out to build a CEGIS-based program verification framework and iden-
tified five key objectives that it must address to be useful:
– The proof search should automatically evolve according to a given verifica-

tion task as opposed to using exhaustive enumeration or a fixed set of search
heuristics common in existing approaches.

– The framework should be able to transfer knowledge across programs, that is,
past runs should boost performance on similar programs in the future, which
is especially relevant for CI/CD settings [15,20,25].

? Both authors contributed equally to the paper.

2 X. Si et al.

– The framework should be able to adapt to generate different kinds of invariants
(e.g. non-linear or with quantifiers) beyond linear invariants predominantly
targeted by existing approaches.

– The framework should be extensible to a new domain (e.g. constraint solving-
based) by simply switching the underlying checker.

– The generated invariants should be natural, e.g. avoid overfitting due to
human-induced biases in the proof search heuristic or invariant structure com-
monly imposed through templates.

We present Code2Inv, an end-to-end deep learning framework which aims
to realize the above objectives. Code2Inv has two key differences compared to
existing CEGIS-based approaches. First, instead of simply focusing on counterex-
amples but ignoring program structure, Code2Inv learns a neural representation
of program structure by leveraging graph neural networks [8, 11, 19, 28], which
enable to capture structural information and thereby generalize to different but
structurally similar programs. Secondly, Code2Inv reduces loop invariant gener-
ation into a deep reinforcement learning problem [22,34]. No search heuristics or
training labels are needed from human experts; instead, a neural policy for loop
invariant generation can be automatically learned by interacting with the given
proof checker on the fly. The learnable neural policy generates a loop invariant
by taking a sequence of actions, which can be flexibly controlled by a grammar
that defines the structure of loop invariants. This decoupling of the action defini-
tion from policy learning enables Code2Inv to adapt to different loop invariants
or other reasoning tasks in a new domain with almost no changes except for
adjusting the grammar or the underlying checker.

We summarize our contributions as follows:

– We present a framework for program verification, Code2Inv, which leverages
deep learning and reinforcement learning through the use of graph neural net-
work, tree-structured long short-term memory network, attention mechanism,
and policy gradient.

– We show two small-scale yet expressive instances of Code2Inv: a loop invariant
synthesizer for C programs and a Constrained Horn Clause (CHC) solver.

– We evaluate Code2Inv on a suite of 133 C programs from SyGuS [2] by com-
paring its performance with three state-of-the-art approaches and showing
that the learned neural policy can be transferred to similar programs.

– We perform two case studies showing the flexibility of Code2Inv on different
classes of loop invariants. We also perform a case study on the naturalness of
the loop invariants generated by various approaches.

2 Background

In this section, we introduce artificial neural network concepts used by Code2Inv.
A multilayer perceptron (MLP) is a basic neural network model which can ap-
proximate an arbitrary continuous function y = f∗(x), where x and y are nu-
meric vectors. An MLP defines a mapping y = f(x; θ), where θ denotes weights
of connections, which are usually trained using gradient descent methods.

Code2Inv: A Deep Learning Framework for Program Verification 3

Recurrent neural networks (RNNs) approximate the mapping from a se-
quence of inputs x(1), ...,x(t) to either a single output y or a sequence of outputs
y(1), ...,y(t). An RNN defines a mapping h(t) = f(h(t−1),x(t); θ), where h(t) is
the hidden state, from which the final output y(t) can be computed (e.g. by
a non-linear transformation or an MLP). A common RNN model is the long
short-term memory network (LSTM) [16] which is used to learn long-term de-
pendencies. Two common variants of LSTM are gated recurrent units (GRUs) [7]
and tree-structured LSTM (Tree-LSTM) [35]. The former simplifies the LSTM
for efficiency while the latter extends the modeling ability to tree structures.

In many domains, graphs are used to represent data with rich structure,
such as programs, molecules, social networks, and knowledge bases. Graph neu-
ral networks (GNNs) [1, 8, 11, 19, 36] are commonly used to learn over graph-
structured data. A GNN learns an embedding (i.e. real-valued vector) for each
node of the given graph using a recursive neighborhood aggregation (or neu-
ral message passing) procedure. After training, a node embedding captures the
structural information within the node’s K-hop neighborhood, where K is a
hyper-parameter. A simple aggregation of all node embeddings or pooling [37]
according to the graph structure summarizes the entire graph into an embed-
ding. GNNs are parametrized with other models such as MLPs, which are the
learnable non-linear transformations used in message passing, and GRUs, which
are used to update the node embedding.

Lastly, the generalization ability of neural networks can be improved by an
external memory [12, 13, 33] which can be accessed using a differentiable atten-
tion mechanism [5]. Given a set of neural embeddings, which form the external
memory, an attention mechanism assigns a likelihood to each embedding, under
a given neural context. These likelihoods guide the selection of decisions that
are represented by the chosen embeddings.

3 Framework

We first describe the general framework, Code2Inv, and then illustrate two in-
stances, namely, a loop invariant synthesizer for C programs and a CHC solver.

Fig. 1 defines the domains of program structures and neural structures used
in Code2Inv. The framework is parameterized by graph constructors G that pro-
duce graph representations of verification instance T and invariant grammar A,
denoted Ginst and Ginv, respectively. The invariant grammar uses placeholder
symbols H, which represent abstract values of entities such as variables, con-
stants, and operators, and will be replaced by concrete values from the verifica-
tion instance during invariant generation. The framework requires a black-box
function check that takes a verification instance T and a candidate invariant
inv, and returns success (denoted ⊥) or a counterexample cex.

The key component of the framework is a neural policy π which comprises
four neural networks. Two graph neural networks, ηT and ηA, are used to com-
pute neural embeddings, νT and νA, for graph representations Ginst and Ginv,
respectively. The neural network αctx, implemented as a GRU, maintains the at-
tention context ctx which controls the selection of the production rule to apply

4 X. Si et al.

Domains of Program Structures:

G(T) = Ginst (Ginst is graph representation of verification instance T)
G(A) = Ginv (Ginv is graph representation of invariant grammar A)

A = 〈Σ]H,N,P, S〉 (invariant grammar)
x ∈ H]N (set of placeholder symbols and non-terminals)
v ∈ Σ (set of terminals)
n ∈ N (set of non-terminals)
p ∈ P (production rule)

S (start symbol)
inv ∈ L(A) (invariant candidate)
cex ∈ C (counterexample)
C ∈ P(C) (set of counterexamples)

check(T, inv) ∈ {⊥}] C (invariant validation)

Domains of Neural Structures:

π = 〈νT, νA, ηT, ηA, αctx, εinv〉 (neural policy)
d (positive integer size of embedding)

νT, ηT(Ginst) ∈ R|Ginst|×d (graph embedding of verification instance)

νA, ηA(Ginv) ∈ R|Ginv|×d (graph embedding of invariant grammar)

ctx ∈ Rd (neural context)

state ∈ Rd (partially generated invariant state)

αctx ∈ Rd × Rd → Rd (attention context)

εinv ∈ L(A)→ Rd (invariant encoder)

aggregate ∈ Rk×d → Rd (aggregation of embeddings)

νA[n] ∈ Rk×d (embedding of production rules for non-terminal n,
where k is number of production rules of n in Ginv)

νT[h] ∈ Rk×d (embedding of nodes annotated by placeholder h,
where k is number of nodes annotated by h in Ginst)

Fig. 1: Semantic domains. L(A) denotes the set of all sentential forms of A.

or the concrete value to replace a placeholder symbol at each step of invariant
generation. The neural network εinv, implemented as a Tree-LSTM, encodes the
partially generated invariant into a numeric vector denoted state, which captures
the state of the generation that is used to update the attention context ctx.

Algorithm 1 depicts the main algorithm underlying Code2Inv. It takes a
verification instance and a proof checker as input and produces an invariant
that suffices to verify the given instance4. At a high level, Code2Inv learns a
neural policy, in lines 1-5. The algorithm first initializes the neural policy and
the set of counterexamples (line 1-2). The algorithm then iteratively samples a
candidate invariant (line 4) and improves the policy using a reward for the new
candidate based on the accumulated counterexamples (line 5). We next elucidate
upon the initialization, policy sampling, and policy improvement procedures.

Initialization. The initPolicy procedure (line 6-10) initializes the neural
policy. All four neural networks are initialized with random weights (line 7), and

4 Fuzzers may be applied first so that the confidence of existence of a proof is high.

Code2Inv: A Deep Learning Framework for Program Verification 5

Algorithm 1: Code2Inv Framework

Input: a verification instance T and a proof checker check
Output: a invariant inv satisfying check(T, inv) = ⊥
Parameter: graph constructor G and invariant grammar A

1 π ← initPolicy(T,A)
2 C ← ∅
3 while true do
4 inv ← sample(π, T,A)
5 〈π,C〉 ←improve(π, inv, C)

6 Function initPolicy(T,A)
7 Initialize weights of ηT, ηA, αctx, εinv with random values
8 νT ← ηT(G(T))
9 νA ← ηA(G(A))

10 return 〈νT, νA, ηT, ηA, αctx, εinv〉

11 Function sample(π, T,A)
12 inv ← A.S
13 ctx← aggregate(π.νT)
14 while inv is partially derived do
15 x← leftmost non-terminal or placeholder symbol in inv
16 state← π.εinv(inv)
17 ctx← π.αctx(ctx, state)
18 if x is non-terminal then
19 p← attention(ctx, π.νA[x],G(A))
20 expand inv according to p

21 else
22 v ← attention(ctx, π.νT[x],G(T))
23 replace x in inv with v

24 return inv

25 Function improve(π, inv, C)
26 n← number of counter-examples C that inv can satisfy
27 if n = |C| then
28 cex← check(T, inv)
29 if cex = ⊥ then
30 save inv and weights of π
31 exit // a sufficient invariant is found

32 else
33 C ← C ∪ {cex}

34 r ← n/|C|
35 π ← updatePolicy(π, r)
36 return 〈π,C〉

37 Function updatePolicy(π, r)
38 Update weights of π.ηT, π.ηA, π.αctx, π.εinv, π.νT, π.νA by
39 standard policy gradient [34] using reward r

40 Function attention(ctx, ν,G)
41 Return node t in G such that dot product of ctx and ν[t]
42 is maximum over all nodes of G

6 X. Si et al.

graph embeddings νT, νA for verification task T and invariant grammar A are
computed by applying corresponding graph neural networks ηT, ηA to their graph
representations G(T),G(A) respectively. Alternatively, the neural networks can
be initialized with pre-trained weights, which can boost overall performance.

Neural policy sampling. The sample procedure (lines 11-24) generates a
candidate invariant by executing the current neural policy. The candidate is first
initialized to the start symbol of the given grammar (line 12), and then updated
iteratively (lines 14-23) until it is complete (i.e. there are no non-terminals).
Specifically, the candidate is updated by either expanding its leftmost non-
terminal according to one of its production rules (lines 19-20) or by replacing its
leftmost placeholder symbol with some concrete value from the verification in-
stance (lines 22-23). The selection of a production rule or concrete value is done
through an attention mechanism, which picks the most likely one according to
the current context and corresponding region of external memory. The neural
context is initialized to the aggregation of embeddings of the given verification
instance (line 13), and then maintained by αctx (line 17) which, at each step,
incorporates the neural state of the partially generated candidate invariant (line
16), where the neural state is encoded by εinv.

Neural policy improvement. The improve procedure (lines 25-36) im-
proves the current policy by means of a continuous reward. Simply checking
whether the current candidate invariant is sufficient or not yields a discrete
reward of 1 (yes) or 0 (no). This reward is too sparse to improve the policy,
since most candidate invariants generated are insufficient, thereby almost al-
ways yielding a zero reward. Code2Inv addresses this problem by accumulating
counterexamples provided by the checker. Whenever a new candidate invariant is
generated, Code2Inv tests the number of counterexamples it can satisfy (line 26),
and uses the fraction of satisfied counterexamples as the reward (line 34). If all
counterexamples are satisfied, Code2Inv queries the checker to validate the can-
didate (line 28). If the candidate is accepted by the checker, then a sufficient
invariant was found, and the learned weights of the neural networks are saved
for speeding up similar verification instances in the future (lines 29-31). Other-
wise, a new counterexample is accumulated (line 33). Finally, the neural policy
(including the neural embeddings) is updated based on the reward.

Framework Instantiations. We next show two instantiations of Code2Inv
by customizing the graph constructor G. Specifically, we demonstrate two sce-
narios of graph construction: 1) by carefully exploiting task specific knowledge,
and 2) with minimum information of the given task.

(a)

<loop>

y1

<

1000

<assign>

x2

=

+

x1 y1

<assign>

y2

=

+

y1 1

x y

(b)

Fig. 2: (a) C program snippet in SSA form; (b) its graph representation.

Code2Inv: A Deep Learning Framework for Program Verification 7

Instantiation to synthesize loop invariants for C programs. An effective graph
representation for a C program should reflect its control-flow and data-flow infor-
mation. We leverage the static single assignment (SSA) transformation for this
purpose. Fig. 2 illustrates the graph construction process. Given a C program,
we first apply SSA transformation as shown in Fig. 2a, from which a graph is
constructed as shown in Fig. 2b. The graph is essentially abstract syntax trees
(ASTs) augmented with control-flow (black dashed) edges and data-flow (blue
dashed) edges. Different types of edges will be modeled as different message
passing channels used in graph neural networks so that rich structural informa-
tion can be captured more effectively by the neural embeddings. Furthermore,
certain nodes (marked black) are annotated with placeholder symbols and will
be used to fill corresponding placeholders during invariant generation. For in-
stance, variables x and y are annotated with VAR, integer values 1000 and 1 are
annotated with CONST, and the operator < is annotated with OP.

(set-logic HORN)
(declare-rel itp (Int Int))
...
(rule (=> (and (itp D C)

(= A (+ 2 C))
(= B (+ 1 D)))

(itp B A)))
...

(a)

1

2

itp-v1

itp-v2

(b)

S => C
S => C && S
S => C || S
C => E < E
E => VAR

(c)

VAR

E-p1

C-p1S-p1

S-p2

S-p3

(d)

Fig. 3: (a) CHC instance snippet; (b) node representation for the CHC example;
(c) example of invariant grammar; (d) node representation for the grammar.

Instantiation to solve Constrained Horn Clauses (CHC). CHC are a uniform
way to represent recursive, inter-procedural, and multi-threaded programs, and
serve as a suitable basis for automatic program verification [6] and refinement
type inference [21]. Solving a CHC instance involves determining unknown pred-
icates that satisfy a set of logical constraints. Fig. 3a shows a simple example of
a CHC instance where itp is the unknown predicate. It is easy to see that itp
in fact represents an invariant of a loop. Thus, CHC solving can be viewed as a
generalization of finding loop invariants [6].

Unlike C programs, which have explicit control-flow and data-flow informa-
tion, a CHC instance is a set of un-ordered Horn rules. The graph construction for
Horn rules is not as obvious as for C programs. Therefore, instead of deliberately
constructing a graph that incorporates detailed domain-specific information, we
use a node representation, which is a degenerate case of graph representation and
requires only necessary nodes but no edges. Fig. 3b shows the node represen-
tation for the CHC example from Fig. 3a. The top two nodes are derived from
the signature of unknown predicate itp and represent the first and the second
arguments of itp. The bottom two nodes are constants extracted from the Horn
rule. We empirically show that node representation works reasonably well. The
downside of node representation is that no structural information is captured
by the neural embeddings which in turn prevents the learned neural policy from
generalizing to other structurally similar instances.

Embedding invariant grammar. Lastly, both instantiations must define the
embedding of the invariant grammar. The grammar can be arbitrarily defined,

8 X. Si et al.

and similar to CHCs, there is no obvious information such as control- or data-
flow to leverage. Thus, we use node representation for the invariant grammar
as well. Fig. 3c and Fig. 3d shows an example of invariant grammar and its
node representation, respectively. Each node in the graph represents either a
terminal or a production rule for a non-terminal. Note that this representation
does not prevent the neural policy from generalizing to similar instances as long
as they share the same invariant grammar. This is feasible because the invariant
grammar does not contain instance specific details, which are abstracted away
by placeholder symbols like VAR, CONST, and OP.

4 Evaluation

We first discuss the implementation, particularly the improvement over our pre-
vious prototype [30], and then evaluate our framework in a number of aspects,
such as performance, transferability, flexibility, and naturalness.

Implementation. Code2Inv5 consists of a frontend, which converts an in-
stance into a graph, and a backend, which maintains all neural components (i.e.
neural embeddings and policy) and interacts with a checker. Our previous pro-
totype has a very limited frontend based on CIL [24] and no notion of invariant
grammar in the backend. We made significant improvements in both the fron-
tend and the backend. We re-implemented the frontend for C programs based on
Clang and implemented a new frontend for CHCs. We also re-implemented the
backend to accept a configurable invariant grammar. Furthermore, we developed
a standard graph format, which decouples the frontend and backend, and a clean
interface between the backend and the checker. No changes are needed in the
backend to support new instantiations.

Evaluation setup. We evaluate both instantiations of Code2Inv by compar-
ing each instantiation with corresponding state-of-the-art solvers. For the task of
synthesizing loop invariants for C programs, we use the same suite of benchmarks
from our previous work [30], which consists of 133 C programs from SyGuS [2].
We compare Code2Inv with our previous specialized prototype and three other
state-of-the-art verification tools: C2I [29], LoopInvGen [26] and ICE-DT [10].
For the CHC solving task, we collect 120 CHC instances using SeaHorn [14]
to reduce the C benchmark programs into CHCs.6 We compare Code2Inv with
two state-of-the-art CHC solvers: Spacer [18], which is the default fixedpoint
engine of Z3, and LinearyArbitrary [38]. We run all solvers on a single 2.4 GHz
AMD CPU core up to 12 hours and using up to 4 GB memory. Unless specified
otherwise, Code2Inv is always initialized randomly, that is, untrained.

Performance. Given that both the hardware and the software environments
could affect the absolute running time and that all solvers for loop invariant
generation for C programs rely on the same underlying SMT engine, Z3 [23], we
compare the performance in terms of number of Z3 queries. We note that this
is an imperfect metric but a relatively objective one that also highlights salient

5 Our artifacts are available on GitHub: https://github.com/PL-ML/code2inv
6 SeaHorn produces empty Horn rules on 13 (out of 133) C programs due to optimiza-

tions during VC generation that result in proving the assertions of interest.

https://github.com/PL-ML/code2inv

Code2Inv: A Deep Learning Framework for Program Verification 9

features of Code2Inv. Fig. 4a shows the plot of verification cost (i.e. number
of Z3 queries) by each solver and the number of C programs successfully ver-
ified within the corresponding cost. Code2Inv significantly outperforms other
state-of-the-art solvers in terms of verification cost and the general framework
Code2Inv-G achieves performance comparable to (slightly better than) the pre-
vious specialized prototype Code2Inv-S.

0 10 20 30 40 50 60 70 80 90 100
instances solved

100

101

102

103

Z3

 q
ue

rie
s

C2I
PIE
ICE-DT
Code2Inv-S
Code2Inv-G

(a)

0 100 200 300 400 500 600 700
instances solved

100

101

102

Z3

 q
ue

rie
s

untrained
pre-trained

(b)

Fig. 4: (a) Comparison of Code2Inv with state-of-the-art solvers; (b) comparison
between untrained model and pre-trained model.

Transferability. Another hallmark of Code2Inv is that, along with the de-
sired loop invariant, it also learns a neural policy. To evaluate the performance
benefits of the learned policy, we randomly perturb the C benchmark programs
by various edits (e.g. renaming existing variables and injecting new variables and
statements). For each program, we obtain 100 variants, and use 90 for training
and 10 for testing. Fig. 4b shows the performance difference between the un-
trained model (i.e. initialized with random weights) and the pre-trained model
(i.e. initialized with pre-trained weights). Our results indicate that the learned
neural policy can be transferred to accelerate the search for loop invariants for
similar programs. This is especially useful in the CI/CD setting [25] where pro-
grams evolve incrementally and quick turnaround time is indispensable.

Flexibility. Code2Inv can be instantiated or extended in a very flexible
manner. For one instance, with a simple frontend (e.g. node representation as
discussed above), Code2Inv can be customized as a CHC solver. Our evaluation
shows that, without any prior knowledge about Horn rules, Code2Inv can solve
94 (out of 120) CHC instances. Although it is not on a par with state-of-the-art
CHC solvers Spacer and LinearArbitrary, which solve 112 and 118 instances,
respectively, Code2Inv provides new insights for solving CHCs and could be
further improved by better embeddings and reward design.

As another example, by simply adjusting the invariant grammar, Code2Inv
is immediately ready for solving CHC tasks involving non-linear arithmetic.
Our case study shows that Code2Inv successfully solves 5 (out of 7) non-linear
instances we created7, while both Spacer and LinearArbitrary failed to solve
any of them. Tasks involving non-linear arithmetic are particularly challenging

7 The non-linear instances we created are available in the artifact.

10 X. Si et al.

because the underlying checker is more likely to get stuck, and no feedback
(e.g. counterexample) can be provided, which is critical for existing solvers like
Spacer and LinearArbitrary to make progress. This highlights another strength of
Code2Inv—even if the checker gets stuck, the learning process can still continue
by simply assigning zero or negative reward.

Solution found by Spacer:
(and (or (not (<= B 16)) (not (>= A 8)))

(not (<= B 0))
(or (not (<= B 2)) (<= A 0))
(or (not (<= B 4)) (not (>= A 2)))
(or (not (<= B 6)) (not (>= A 3)))
(or (not (<= B 8)) (not (>= A 4)))
(or (not (<= B 10)) (not (>= A 5)))
(or (not (<= B 12)) (not (>= A 6)))
(or (not (<= B 14)) (not (>= A 7)))))))

Code2Inv: (<= v0 (- v1 v0))

(a) Spacer on add2.smt

Solution found by LinearArbitrary:
(or
(and true !(V0<=-50)

V1<=5 ((1*V0)+(-1*V1))<=-45
V1<=4 !(((1*V0)+(-1*V1))<=-51)
!(V1<=2)!(((1*V0)+(-1*V1))<=-50)
!(V1<=3) ((1*V0)+(1*V1))<=-40

)
... // omitting other 4 similar (and ...)

)

Code2Inv: (or (< V0 (+ 0 0)) (> V1 V0))

(b) LinearArbitrary on 84.c.smt

Fig. 5: Comparison of solution naturalness.

Naturalness. Our final case study concerns the naturalness of solutions. As
illustrated in Fig. 5, solutions discovered by Code2Inv tend to be more natural,
whereas Spacer and LinearArbitrary tend to find solutions that unnecessarily de-
pend on constants from the given verification instance. Such overfitted solutions
may become invalid when these constants change. Note that expressions such
as (+ 0 0) in Code2Inv’s solutions can be eliminated by post-processing sim-
plification akin to peephole optimization in compilers. Alternatively, the reward
mechanism in Code2Inv could incorporate a regularizer on the naturalness.

Limitations. Code2Inv does not support finding loop invariants for pro-
grams with multiple loops, function calls, or recursion. Code2Inv generally runs
slower compared to other contemporary approaches. Specifically, 90% of the
solved C instances took 2 hours or less, and the rest could take up to 12 hours
to solve. This could be improved upon by leveraging GPUs, developing more
efficient training algorithms, or leveraging templates [27].

5 Conclusion

We presented a framework Code2Inv which automatically learns invariants (or
more generally unknown predicates) by interacting with a proof checker. Code2Inv
is a general and learnable tool for solving many different verification tasks and
can be flexibly configured with a grammar and a graph constructor. We com-
pared its performance with state-of-the-art solvers for both C programs and
CHC formulae, and showed that it can adapt to different types of inputs with
minor changes. We also showed, by simply varying the input grammar, how it
can tackle non-linear invariant problems which other solvers are not equipped
to work with, while still giving results that are relatively natural to read.

Acknowledgements. We thank the reviewers for insightful comments. We thank Eliz-
abeth Dinella, Pardis Pashakhanloo, and Halley Young for feedback on improving the
paper. This research was supported by grants from NSF (#1836936 and #1836822),
ONR (#N00014-18-1-2021), AFRL (#FA8750-20-2-0501), and Facebook.

Code2Inv: A Deep Learning Framework for Program Verification 11

References

1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs. In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR) (2018)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Proceedings of Formal Methods in Computer-Aided Design (FMCAD) (2013)

3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS) (2017)

4. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (Nov 2018)

5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the International Conference on Learning
Representations (ICLR) (2015)

6. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday. pp. 24–51 (2015)

7. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. CoRR abs/1412.3555 (2014)

8. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models
for structured data. In: Proceedings of the International Conference on Machine
Learning (ICML) (2016)

9. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Proceedings of the International Conference on
Computer Aided Verification (CAV) (2014)

10. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Proceedings of the ACM Symposium
on Principles of Programming Languages (POPL) (2016)

11. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the International Conference on
Machine Learning (ICML). p. 1263–1272 (2017)

12. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR
abs/1410.5401 (2014)

13. Grefenstette, E., Hermann, K.M., Suleyman, M., Blunsom, P.: Learning to trans-
duce with unbounded memory. In: Proceedings of the Conference on Neural Infor-
mation Processing Systems (NIPS). pp. 1828–1836 (2015)

14. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Proceedings of the International Conference on Computer Aided
Verification (CAV). pp. 343–361 (2015)

15. Heo, K., Raghothaman, M., Si, X., Naik, M.: Continuously reasoning about pro-
grams using differential bayesian inference. In: Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI) (2019)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

17. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering (2010)

12 X. Si et al.

18. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (2016)

19. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

20. Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo ver-
sions: Towards usable verification. In: Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI) (2014)

21. McMillan, K.L., Rybalchenko, A.: Solving constrained horn clauses using interpo-
lation. Tech. Rep. MSR-TR-2013-6 (2013)

22. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (2015)

23. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2008)

24. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Proceedings of the
International Conference on Compiler Construction (CC) (2002)

25. O’Hearn, P.: Continuous reasoning: Scaling the impact of formal methods. In:
Proceedings of the Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) (2018)

26. Padhi, S., Sharma, R., Millstein, T.: Data-driven precondition inference with
learned features. In: Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI) (2016)

27. Ryan, G., Wong, J., Yao, J., Gu, R., Jana, S.: Cln2inv: Learning loop invariants
with continuous logic networks. In: Proceedings of the International Conference on
Learning Representations (ICLR) (2020)

28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

29. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Proceedings of the International Conference on Computer
Aided Verification (CAV) (2014)

30. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Proceedings of the Conference on Neural Information
Processing Systems (NIPS) (2018)

31. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.: Combinatorial
sketching for finite programs. In: Proceedings of Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2006)

32. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL) (2010)

33. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Proceedings of the Conference on Neural Information Processing Systems (NIPS)
(2015)

34. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press (1998)

35. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. In: Proceedings of the Association
for Computational Linguistics (ACL) (2015)

Code2Inv: A Deep Learning Framework for Program Verification 13

36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works? In: Proceedings of the International Conference on Learning Representa-
tions (ICLR) (2019)

37. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Proceedings of the
Conference on Neural Information Processing Systems (NIPS) (2018)

38. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Proceedings
of the ACM Conference on Programming Language Design and Implementation
(PLDI) (2018)

	Code2Inv: A Deep Learning Framework for Program Verification

