
A Type System Equivalent to a Model Checker

Mayur Naik1 and Jens Palsberg2

1 Stanford University
mhn@cs.stanford.edu

2 UCLA
palsberg@ucla.edu

Abstract. Type systems and model checking are two prevalent ap-
proaches to program verification. A prominent difference between them
is that type systems are typically defined in a syntactic and modular
style whereas model checking is usually performed in a semantic and
whole-program style. This difference between the two approaches lends
them complementary to each other: type systems are good at explaining
why a program was accepted while model checkers are good at explaining
why a program was rejected.

We present a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. The model
checker is natural and may be instantiated with any finite-state abstrac-
tion scheme such as predicate abstraction. The type system which is
also parametric type checks exactly those programs that are accepted by
the model checker. It uses function types to capture flow sensitivity and
intersection and union types to capture context sensitivity. Our result
sheds light on the relationship between the two approaches, provides a
methodology for studying their relative expressiveness, is a step towards
sharing results between them, and motivates synergistic program analy-
ses involving interplay between them.

1 Introduction

1.1 Background

Type systems and model checking are two prevalent approaches to program
verification. It is well known that both approaches are essentially abstract inter-
pretations and are therefore closely related [10, 11]. Despite deep connections,
however, a prominent difference between them is that type systems are typi-
cally defined in a syntactic and modular style, using one type rule per syntactic
construct, whereas model checking is usually performed in a semantic and whole-
program style, by exploring the reachable state-space of a model of the program.
This difference between type systems and model checking has a significant con-
sequence: it lends the approaches complementary to each other, namely, type
systems are better at explaining why a program was accepted whereas model
checkers are better at explaining why a program was rejected.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 374–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Type System Equivalent to a Model Checker 375

A type inference algorithm that accepts a program annotates it with types
(keywords: syntactic, modular) explaining why it was accepted. The benefits of
type annotations are well known: they aid in understanding, modifying, reusing
and certifying the program. However, it is often unnatural to explain why a
program was rejected by a type inference algorithm, and there is a large body
of work on explaining the source of type errors especially in the context of
type inference algorithms for languages with higher-order functions like Haskell,
Miranda, and ML [46, 24, 6, 14, 44, 9, 19] and, more recently, for languages with
concurrency like Java [15, 16].

On the other hand, a model checker that rejects a program provides a coun-
terexample which is a program trace (keywords: semantic, whole-program) that
explains why the program was rejected. The benefits of counterexamples are
well known: they aid in debugging the program. However, it is often unnatural
to explain why a program was accepted by a model checker, and several proof
systems for model checkers have been devised [39, 31, 38, 21, 43, 32].

This complementary nature of type systems and model checking motivates
investigating the relationship between the two approaches, devising a methodol-
ogy for studying their relative expressiveness, sharing results between them, and
designing synergistic program analyses involving an interplay between a type
system and a model checker.

1.2 Our Result

In this paper, we present a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. In model checking
terminology, a safety property is a temporal property whose violation can be
witnessed by a finite program trace or, equivalently, by the failure of an assertion
at a program point. Our model checker is conventional and may be instantiated
with any finite-state abstraction scheme such as predicate abstraction [18]. The
type system which is also parametric type checks exactly those programs that are
accepted by the model checker. It uses function types to capture flow sensitivity
and intersection and union types to capture context sensitivity.

The implications of our result may be summarized as follows:

1. Our work sheds light on the relationship between type systems and model
checking. In particular, it shows that the most straightforward form of model
checking corresponds to the most complex form of typing.
Finite-state model checkers routinely associate with each statement s of the
program a set of the form:

{ 〈ωi, ωj〉 | ωj ∈ δs(ωi) }
where ω ranges over a finite set of abstract contexts Ω and δs : Ω ⇀ 2Ω

is a partial function called the abstract transfer function associated with s.
Intuitively, the above set says that if s begins executing in abstract context
ωi then it will finish executing in an abstract context ωj ∈ δs(ωi). For ex-
ample, in model checkers such as SLAM [4], BLAST [22], and MAGIC [7], Ω

376 M. Naik and J. Palsberg

represents the set of all valuations to the finite set of predicates with respect
to which the predicate abstraction (model) of the program is constructed.

Likewise, our type system assigns to each statement in the program, a
finitary polymorphic type of the form:

∧
i∈A(ωi → ∨

j∈Bi
ωj)

where A and ∀i ∈ A : Bi are finite. This is the most complex form of typing.
Conventional type systems employ restricted cases of this form of typing
such as ones requiring |A| = 1 (no intersection types) or ∀i ∈ A : |Bi| = 1
(no union types).

2. Our work provides a methodology for studying the relative expressiveness of
a type system and a model checker. Our technique for proving the equivalence
is novel and general: we have successfully applied it in two additional settings,
namely, stack-size analysis [25] and deadline analysis [29] for a class of real-
time programs called interrupt-driven programs [35].

3. Our work is a step towards sharing of results between the type systems
and model checking communities. The backward direction of our equivalence
theorem states that if the model checker accepts a program, then the program
is well-typed. We prove this by building a type derivation from the model
constructed by the model checker. We thereby obtain a model-checking-based
type inference algorithm for our type system.

4. Our work motivates synergistic program analyses involving interplay be-
tween a type system and a model checker. The analyses can use types to
document correct programs and counterexamples to explain erroneous pro-
grams. Moreover, they can be implemented efficiently due to the correspon-
dence between types and models: types already existing in the program or
inferred by a type inference algorithm can be used to construct a model for
performing model checking, as illustrated in [12, 8], and conversely, a model
constructed by a model checker can be used to infer types, as shown in this
paper.

1.3 Proof Architecture

We present an overview of our technique for proving the equivalence. A typical
type soundness theorem states that well-typed programs do not go wrong [27].
Usually, going wrong is formalized as getting stuck in the operational semantics.
More formally, for a program s, an initial concrete environment σ, and an initial
abstract environment ω, type soundness states that:

If 〈s, ω〉 is well-typed then 〈s, σ〉 does not go wrong (in the concrete semantics).

Type checking requires a predefined set of abstractions, namely, the types. Then,
the existence of a derivable type judgment implies that the program has the
desired property. Model checking, on the other hand, is not concerned with
types. It works with a model, that is, an abstract semantics, and can answer
questions such as:

〈s, ω〉 does not go wrong (in the abstract semantics).

A Type System Equivalent to a Model Checker 377

Model-checking soundness then states that:

If 〈s, ω〉 does not go wrong (in the abstract semantics) then
〈s, σ〉 does not go wrong (in the concrete semantics).

Our equivalence result states that:

〈s, ω〉 is well-typed iff 〈s, ω〉 does not go wrong (in the abstract semantics).

We prove the forward direction using a variant of type soundness in which the
step relation is the abstract semantics instead of the concrete semantics and
we prove the backward direction constructively by building a type derivation
from the model constructed by the model checker.

It is important to note that we do not prove the soundness of either the type
system or the model checker. Our equivalence result guarantees that the type
system is sound iff the model checker is sound but it does not prevent both
from being unsound. Proving soundness would require us to define a concrete
semantics and to instantiate the type system and the model checker (recall that
both are parametric). This in turn would detract from the generality of our
equivalence result.

1.4 Rest of the Paper

In Section 2, we present an imperative WHILE language and a model checker
for verifying temporal safety properties expressed as assertions in that language.
In Section 3, we present a type system that is equivalent to the model checker.
In Section 4, we prove the equivalence result. In Section 5, we illustrate the
equivalence by means of examples. In Section 6, we discuss related work. Finally,
in Section 7, we conclude with a note on future work.

2 Model Checker

The abstract syntax of our imperative WHILE language is as follows:

(stmt) s ::= p | assume(e) | assert(e) | s1; s2 | if (∗) then s1 else s2 |
while (∗) do s′

A statement s is either a primitive statement p (for instance, an assignment
statement or a skip statement), an assume statement, an assert statement, a
sequential composition of statements, a branching statement, or a looping state-
ment. For the sake of generality, we leave primitive statements p and boolean
expressions e uninterpreted. Our abstract syntax for branching and looping state-
ments is standard in the literature on model checking. It is related to the more
familiar syntax for these statements as follows:

if (e) then s1 else s2 ≡ if (∗) then { assume(e); s1 } else { assume(ē); s2 }
while (e) do s′ ≡ { while (∗) do { assume(e); s′ } }; assume(ē)

378 M. Naik and J. Palsberg

(state) a ::= ω | error | 〈s, ω〉

〈p, ωk〉 ↪→ ωl if l ∈ δp(k) (1)

〈assume(e), ωk〉 ↪→ ωk if k ∈ δe (2)

〈assume(e), ωk〉 ↪→ error if k /∈ δe (3)

〈assert(e), ωk〉 ↪→ ωk if k ∈ δe (4)

〈s1, ω〉 ↪→ ω′

〈s1; s2, ω〉 ↪→ 〈s2, ω′〉 (5)
〈s1, ω〉 ↪→ error

〈s1; s2, ω〉 ↪→ error
(6)

〈s1, ω〉 ↪→ 〈s′
1, ω

′〉
〈s1; s2, ω〉 ↪→ 〈s′

1; s2, ω′〉 (7)

〈if (∗) then s1 else s2, ω〉 ↪→ 〈s1, ω〉 (8)

〈if (∗) then s1 else s2, ω〉 ↪→ 〈s2, ω〉 (9)

〈while (∗) do s′, ω〉 ↪→ 〈s′; while (∗) do s′, ω〉 (10)

〈while (∗) do s′, ω〉 ↪→ ω (11)

Fig. 1. Abstract Semantics

where (∗) denotes non-deterministic choice and ē denotes the negation of e.
We next present a model checker for verifying temporal safety properties of

programs expressed in our language. The class of temporal safety properties is
precisely the class of properties whose violation can be witnessed by a finite pro-
gram trace or, equivalently, by the failure of an assertion at a program point. Our
model checker is conventional and is parameterized by the following components:

– A finite set of abstract contexts Ω.
– An abstract transfer function δp ∈ Ω → 2Ω per primitive statement p de-

scribing the effect of p on abstract contexts. We assume that δp is total and
∀i ∈ Ω : δp(i) �= ∅.

– A predicate δe ⊆ Ω per boolean expression e denoting the set of abstract
contexts in which e is true.

These components may be instantiated by any finite-state abstraction scheme.
For instance, if the scheme is predicate abstraction, then Ω is the set of all
valuations to the finite set of predicates with respect to which the predicate
abstraction of the program is constructed. For convenience, we treat Ω as a
set of indices instead of abstract contexts. We use i, j, ... to range over Ω and
ωi, ωj , ... to denote the corresponding abstract contexts indexed by them.

The abstract semantics of the model checker is presented in Figure 1. State
〈s, ω〉 is stuck if �a : 〈s, ω〉 ↪→ a. The only kind of state that can get stuck
is of the form 〈assert(e), ω〉 such that ω /∈ δe. State 〈s, ω〉 goes wrong if
∃〈s′, ω′〉 : (〈s, ω〉 ↪→∗ 〈s′, ω′〉 and 〈s′, ω′〉 is stuck). Given a program s and an
abstract context ω, the model checker determines whether 〈s, ω〉 goes wrong. If
〈s, ω〉 goes wrong, it reports a counterexample which is a finite trace 〈s, ω〉 ↪→∗

A Type System Equivalent to a Model Checker 379

〈assert(e), ω′〉 where ω′ /∈ δe. Otherwise, it returns the finite set of reachable
abstract states { a | 〈s, ω〉 ↪→∗ a } which serves as a proof that the concrete pro-
gram does not go wrong, provided the model checker is sound. Model checking
soundness is typically proved by showing that the abstract semantics simulates
the concrete semantics (see for example [29, 25]).

3 Type System

Our type system assigns a type of the form
∧

i∈A(ωi → ∨
j∈Bi

ωj) to each state-
ment in the program, where A and ∀i ∈ A : Bi are subsets of Ω. Recall that Ω
is finite whence the type is finitary. Intuitively, the type states that it is safe to
begin executing the statement in one of contexts { ωi | i ∈ A } and, furthermore,
if it begins executing in context ωi (i ∈ A) then it will finish executing in one of
contexts { ωj | j ∈ Bi }. Our type system includes the type � �

∧ ∅ to handle
the case in which A is empty, and the type ⊥ �

∨ ∅ to handle the case in which
any Bi (i ∈ A) is empty.

The type rules are shown in Figure 2. We say that an abstract state 〈s, ωk〉
is well-typed if statement s can be assigned a type that states that it is safe to
begin executing s in abstract context ωk (see rule (12)).

Rule (13) type checks primitive statement p. The type of p captures the effect
of the abstract transfer function δp associated with p. The side-condition of the
rule states that it is safe to begin executing p in any context in Ω because we
have assumed that δp is a total function.

Rule (14) type checks statement assume(e). The side-condition of the rule
says that it is safe to begin executing assume(e) in any context in Ω and, more-
over, the first conjunct in its type states that it has the effect of a skip statement
if it begins executing in a context in which e is true while the second conjunct in
its type states that there does not exist any context in which it finishes executing
if it begins executing in a context in which e is false.

Rule (15) type checks statement assert(e). The side-condition of the rule
says that it is safe to begin executing assert(e) only in a context in which e is
true, and its type states that it has the effect of a skip statement if it begins
executing in such a context.

Rule (16) type checks sequentially composed statements. The side-condition
says that it is safe to begin executing s1; s2 only in contexts in which it is safe
to begin executing s1 and, moreover, if s1 begins executing in such a context,
then it must be safe to begin executing s2 in each context in which s1 might
finish executing.

Rule (17) type checks branching statements. The side-condition says that it
is safe to begin executing if (∗) then s1 else s2 only in contexts in which it
is safe to begin executing both s1 and s2.

Rule (18) type checks looping statements. The side-condition says that it
is safe to begin executing while (∗) do s′ only in contexts in which it is safe
to begin executing s′ and, moreover, if s′ begins executing in such a context,
then it must be safe to begin executing while (∗) do s′ in each context in which

380 M. Naik and J. Palsberg

s :
∧

i∈A(ωi → ∨
j∈Bi

ωj)
〈s, ωk〉 is well-typed

[k ∈ A] (12)

p :
∧
i∈A

(ωi →
∨

j∈δp(i)

ωj) [A ⊆ Ω] (13)

assume(e) :
∧
i∈A

(ωi → ωi) ∧
∧
i∈B

(ωi → ⊥) [A ⊆ δe ∧ B ⊆ Ω \ δe] (14)

assert(e) :
∧
i∈A

(ωi → ωi) [A ⊆ δe] (15)

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ωj)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ωj)

s1; s2 :
∧

i∈A(ωi → ∨
k∈⋃{ B′

j | j∈Bi } ωk)

[
A ⊆ A1 ∧

⋃
i∈A

Bi ⊆ A2

]
(16)

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ωj)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ωj)

if (∗) then s1 else s2 :
∧

i∈A(ωi → ∨
j∈Bi∪B′

i
ωj)

[A ⊆ A1 ∩ A2] (17)

s′ :
∧

i∈A′(ωi → ∨
j∈Bi

ωj)
while (∗) do s′ :

∧
i∈A(ωi → ∨

k∈µX.({i}∪{Bj |j∈X}) ωk)

[
A ⊆ A′ ∧

⋃
i∈A

Bi ⊆ A

]

(18)

µX.E denotes the least fixed point of function λX.E : 2Ω → 2Ω

Fig. 2. Type Rules

s′ might finish executing. Let µX.E denote the least fixed point of the function
λX.E : 2Ω → 2Ω . Then, the type of while (∗) do s′ states that if the loop
begins executing in context ωi (i ∈ A), then it will finish executing in one of
contexts { ωk | k ∈ µX . ({i} ∪ {Bj | j ∈ X}) }, that is: (i) in the base case (0
iterations) the loop will finish executing in the context ωi in which it began
executing, and (ii) in the inductive case (n + 1 iterations where n ≥ 0) the loop
will finish executing in one of contexts { ωk | k ∈ Bj } where ωj is a context
in which the loop might finish executing in n iterations, in which case in the
n + 1th iteration, s′ will begin executing in context ωj and finish executing in
one of contexts { ωk | k ∈ Bj }.

4 Equivalence

In this section, we prove that a program type checks if and only if the model
checker accepts it.

The proof from type checking to model checking is similar to that of type
soundness, consisting of Progress (Lemma 1) and Type Preservation (Lemma 2),
the key difference being that the step relation is the abstract semantics of the
model checker instead of the concrete semantics of the language.

A Type System Equivalent to a Model Checker 381

Lemma 1. (Progress)
If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

Proof. See Appendix.

Lemma 2. (Type Preservation)
If 〈s, ωm〉 is well-typed and 〈s, ωm〉 ↪→t 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. See Appendix.

It is then straightforward to prove that if a program type checks then the model
checker accepts it.

Lemma 3. (From Type Checking to Model Checking)
If 〈s, ωm〉 is well-typed then 〈s, ωm〉 does not go wrong.

Proof. Suppose 〈s, ωm〉 is well-typed. We need to prove that 〈s, ωm〉 ↪→t 〈s′, ωn〉
implies 〈s′, ωn〉 is not stuck. Suppose 〈s, ωm〉 ↪→t 〈s′, ωn〉. From 〈s, ωm〉 is well-
typed and 〈s, ωm〉 ↪→t 〈s′, ωn〉 and lemma (2), we have 〈s′, ωn〉 is well-typed.
From 〈s′, ωn〉 is well-typed and lemma (1), we have 〈s′, ωn〉 is not stuck.

The proof from model checking to type checking is constructive and involves
building a type derivation from the model constructed by the model checker.
The following definitions show how to construct types from the model.

Definition 1. As = { i ∈ Ω | 〈s, ωi〉 does not go wrong }

Definition 2. Given statement s and i ∈ Ω, define Bs,i ⊆ Ω as follows:

Bs,i = δp(i) if s = p
Bs,i = {i} if s = assume(e) or assert(e) and i ∈ δe

Bs,i = ∅ if s = assume(e) or assert(e) and i /∈ δe

Bs,i =
⋃ { Bs2,j | j ∈ Bs1,i } if s = s1; s2

Bs,i = Bs1,i ∪ Bs2,i if s = if (∗) then s1 else s2

Bs,i = µX . ({i} ∪ { Bs′,j | j ∈ X }) if s = while (∗) do s′

The key lemma involves showing that the constructed types yield a valid type
derivation. It is proved by induction on the structure of the program.

Lemma 4. (Typability) s :
∧

i∈As(ωi → ∨
j∈Bs,i ωj).

Proof. See Appendix.

It is then straightforward to prove that if a program is accepted by the model
checker then it type checks.

Lemma 5. (From Model Checking to Type Checking)
If 〈s, ωm〉 does not go wrong then 〈s, ωm〉 is well-typed.

382 M. Naik and J. Palsberg

Proof. From lemma (4), we have s :
∧

i∈As(ωi → ∨
j∈Bs,i ωj). From 〈s, ωm〉 does

not go wrong and defn. (1), we have m ∈ As. From s :
∧

i∈As(ωi → ∨
j∈Bs,i ωj)

and m ∈ As and rule (12), we have 〈s, ωm〉 is well-typed.

Finally, we present our main result which states that a program type checks if
and only if the model checker accepts it.

Theorem 1. (Equivalence)
〈s, ω〉 is well-typed if and only if 〈s, ω〉 does not go wrong.

Proof. Combine lemma (3) and lemma (5).

5 Examples

In this section, we illustrate our equivalence result by means of three examples.
Example 1. Consider the following program:

s1 � lock1(); lock2() where lock() � assert(s = U); s := L

where U and L denote the unlocked and locked states, respectively. Suppose the
model checker is instantiated with predicate abstraction in which case Ω is a set
of program predicates, say {s=U, s=L}. It is easy to see that state 〈s1, s=U〉
goes wrong in the abstract semantics of Figure 1 and is not well-typed in the
type system of Figure 2. As a result, both the model checker and the type system
reject it.

Notice that although not every state 〈s, ω〉 is well-typed in our type system,
every statement s is typable (see lemma (4)). For instance, although 〈s1, s=U〉
is not well-typed, s1 has the type �. The following example motivates the need
for making every statement typable, namely, the need for the type �.
Example 2. Consider the following program:

s2 � lock1(); assume(false); lock2()

Assuming the same predicate abstraction as in the previous example, it is easy
to see that state 〈s2, s=U〉 does not go wrong in the abstract semantics of
Figure 1. This is because lock2() is rendered unreachable from state 〈s2, s=U〉
in the abstract semantics by the assume(false) statement as a result of which
the model checker does not even analyze lock2(). However, the type system must
type check all code, including code that is dead. In particular, it must assign a
type to lock2(). It uses the type � for this purpose. Then, a type derivation for
s2 illustrating that 〈s2, s=U〉 is well-typed is as follows:

lock1() : s=U → s=L assume(false) : s=L → ⊥
lock1(); assume(false) : s=U → ⊥ lock2() : �

s2 : s=U → ⊥
Example 3. Consider the following program:

s3 � { while (∗) do { assume(i �= 2); i := i + 1 } }; assume(i = 2)

A Type System Equivalent to a Model Checker 383

Suppose the abstraction scheme is predicate abstraction and suppose Ω = {i=0,
i=1, i=2}. Then, each of states 〈s3, i=0〉, 〈s3, i=1〉, and 〈s3, i=2〉 does not go
wrong in our abstract semantics and, likewise, each of them is well-typed in our
type system since s3 has type i=0 → i=2 ∧ i=1 → i=2 ∧ i=2 → i=2. For
instance, a type derivation for s3 illustrating that state 〈s3, i=0〉 is well-typed
is as follows:

assume(i �= 2) : i=0 → i=0 ∧ i=1 → i=1 ∧ i=2 → ⊥
i := i + 1 : i=0 → i=1 ∧ i=1 → i=2

assume(i �= 2); i := i + 1 :
i=0 → i=1 ∧ i=1 → i=2 ∧ i=2 → ⊥

while (∗) do { assume(i �= 2); i := i + 1 } :
i=0 → (i=0 ∨ i=1 ∨ i=2)

assume(i = 2) :
i=0 → ⊥ ∧
i=1 → ⊥ ∧
i=2 → i=2

s3 : i=0 → i=2

Thus, both the model checker and the type system accept each of states 〈s3, i=0〉,
〈s3, i=1〉, and 〈s3, i=2〉.

6 Related Work

In recent years, there has been a significant surge of interest in type systems for
checking temporal safety properties of imperative programs [47, 13, 17, 23, 26].
For instance, consider program s3 in Example 3 above which has the type i=0 →
i=2 ∧ i=1 → i=2 ∧ i=2 → i=2 in our type system instantiated with the
set of abstract contexts Ω = {i=0, i=1, i=2}. In CQual [17], which supports
references and therefore has a more specialized type system than ours, s3 would
be annotated with a constrained polymorphic type:

s3 : ∀c, c′. (ref(l), [l �→ int(c)]) → (ref(l), [l �→ int(c′)]) /
{(c = 0 ⇒ c′ = 2), (c = 1 ⇒ c′ = 2), (c = 2 ⇒ c′ = 2)}

where ref(l) is a singleton reference type, namely, the type of a reference to the
location l, and int(c) is a singleton integer type, namely, the type of the integer
constant c. Singleton types are not unusual and have also been used in the type
systems of languages such as Xanadu [47] and Vault [13] as well as in the type
systems of alias types [45] and refinement types [26].

There is a large body of work on bridging different approaches to static
analysis, most notably (i) on relating type systems and control-flow analysis for
higher-order functional languages, and (ii) on relating data-flow analysis and
model checking for first-order imperative languages.

Type Systems and Control-Flow Analysis. The Amadio-Cardelli type system [2]
with recursive types and subtyping has been shown to be equivalent to a certain
0-CFA-based safety analysis by Palsberg and O’Keefe [36] and to a certain form
of constrained types by Palsberg and Smith [37], thereby unifying three different
views of typing. Heintze [20] proves that four restrictions of 0-CFA are equivalent

384 M. Naik and J. Palsberg

to four type systems parameterized by recursive types and subtyping. Palsberg
shows that equality-based 0-CFA is equivalent to a type system with recursive
types and an unusual notion of subtyping [34]. Palsberg and Pavlopoulou [33]
and Amtoft and Turbak [3] show that a class of finitary polyvariant control-
flow analyses is equivalent to a type system with finitary polymorphism in the
form of union and intersection types. Mossin [28] presents a sound and complete
type-based flow analysis in that it predicts a redex if and only if there exists a
reduction sequence such that the redex will be reduced. Mossin’s approach uses
intersection types annotated with flow information; a related approach to flow
analysis has been presented by Banerjee [5].

Data-Flow Analysis and Model Checking. Schmidt and Steffen [42, 41, 40] relate
data-flow analysis and model checking for first-order imperative languages. They
show that the information computed by classical iterative data-flow analyses is
the same as that obtained by model checking certain modal mu-calculus formu-
lae on the program’s trace-based abstract interpretation (a.i.), an operational-
semantics-based representation of the program’s a.i. as a computation tree of
traces.

7 Conclusions

We have presented a type system that is equivalent to a model checker for verify-
ing temporal safety properties of imperative programs. Our result highlights the
essence of the relationship between type systems and model checking, provides a
methodology for studying their relative expressiveness, is a step towards sharing
results between them, and motivates synergistic program analyses that can gain
the advantages of both approaches without suffering the drawbacks of either.

Two limitations of our current work are that our language lacks features such
as higher-order functions, objects, and concurrency, and the type information
extracted from the model constructed by our model checker may not be suitable
for human reasoning. We intend to explore these issues in the context of specific
verification problems. For instance, see [1] for an approach that infers lock types
from executions of multithreaded Java programs in the context of verifying race-
freedom.

Acknowledgments

We originally proved our equivalence result in the setting of the deadline analysis
problem for the interrupt calculus. That result can be found in the first author’s
Master’s thesis [29]. We thank the many people who suggested that we prove
the result in a more conventional setting such as the one in this paper. The
proof technique remains essentially the same. We would also like to thank Alex
Aiken and Jakob Rehof for useful discussions and the anonymous reviewers for
insightful comments. We were supported by a National Science Foundation ITR
Award number 0112628.

A Type System Equivalent to a Model Checker 385

References

1. R. Agarwal and S. D. Stoller. Type inference for parameterized race-free java. In
Proceedings of VMCAI’04, pages 149–160, January 2004.

2. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM TOPLAS,
15(4):575–631, 1993.

3. Torben Amtoft and Franklyn Turbak. Faithful translations between polyvariant
flows and polymorphic types. In Proceedings of ESOP’00, pages 26–40, 2000.

4. Thomas Ball and Sriram Rajamani. The SLAM project: Debugging system soft-
ware via static analysis. In Proceedings of POPL’02, pages 1–3, 2002.

5. Anindya Banerjee. A modular, polyvariant and type-based closure analysis. In
Proceedings of ICFP’97, pages 1–10, 1997.

6. M. Beaven and R. Stansifer. Explaining type errors in polymorphic languages.
ACM LOPLAS, 2(1-4):17–30, 1993.

7. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proceedings of ICSE’03, pages 385–395, May 2003.

8. Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model
checking message-passing programs. In Proceedings of POPL’02, pages 45–57,
2002.

9. Olaf Chitil. Compositional explanation of types and algorithmic debugging of type
errors. In Proceedings of ICFP’01, pages 193–204, 2001.

10. Patrick Cousot. Types as abstract interpretations. In Proceedings of POPL’97,
pages 316–331, 1997.

11. Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In Proceed-
ings of POPL’00, pages 12–25, 2000.

12. M. Debbabi, A. Benzakour, and K. Ktari. A synergy between model-checking
and type inference for the verification of value-passing higher-order processes. In
Proceedings of AMAST’98, pages 214–230, 1999.

13. Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-level
software. In Proceedings of PLDI’01, pages 59–69, 2001.

14. Dominic Duggan and Frederick Bent. Explaining type inference. Science of Com-
puter Programming, 27(1):37–83, 1996.

15. Cormac Flanagan and Stephen N. Freund. Type inference against races. In Pro-
ceedings of SAS’04, 2004.

16. Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type inference for
atomicity. In Proceedings of TLDI’05, January 2005.

17. Jeffrey S. Foster, Tachio Terauchi, and Alexander Aiken. Flow-sensitive type qual-
ifiers. In Proceedings of PLDI’02, pages 1–12, 2002.

18. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proceed-
ings of CAV’97, pages 72–83, 1997.

19. Christian Haack and Joe B. Wells. Type error slicing in implicitly typed higher-
order languages. In Proceedings of ESOP’03, pages 284–301, 2003.

20. Nevin Heintze. Control-flow analysis and type systems. In Proceedings of SAS’95,
pages 189–206, September 1995.

21. T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In Proceedings of CAV’02, pages 526–538,
2002.

22. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
Blast. In Proceedings of SPIN’03, pages 235–239, 2003.

23. Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Proceedings of
POPL’02, pages 331–342, 2002.

386 M. Naik and J. Palsberg

24. G. F. Johnson and J. A. Walz. A maximum flow approach to anomaly isolation
in unification-based incremental type inference. In Proceedings of POPL’86, pages
44–57, 1986.

25. Di Ma. Bounding the Stack Size of Interrupt-Driven Programs. PhD thesis, Purdue
University, 2004.

26. Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of
type refinements. In Proceedings of ICFP’03, 2003.

27. Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17:348–375, 1978.

28. C. Mossin. Exact flow analysis. In Proceedings of SAS’97, pages 250–264, 1997.
29. Mayur Naik. A type system equivalent to a model checker. Master’s thesis, Purdue

University, 2004.
30. Mayur Naik and Jens Palsberg. A type system equivalent to a model

checker. In Proceedings of ESOP’05, 2005. Full version with proofs available at
http://www.cs.stanford.edu/~mhn/pubs/esop05.html.

31. K. S. Namjoshi. Certifying model checkers. In Proceedings of CAV’01, pages 2–12,
2001.

32. K. S. Namjoshi. Lifting temporal proofs through abstractions. In Proceedings of
VMCAI’03, pages 174–188, 2003.

33. J. Palsberg and C. Pavlopoulou. From polyvariant flow information to intersection
and union types. Journal of Functional Programming, 11(3):263–317, May 2001.

34. Jens Palsberg. Equality-based flow analysis versus recursive types. ACM TOPLAS,
20(6):1251–1264, 1998.

35. Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of
FTRTFT’02, pages 291–310, September 2002.

36. Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow analysis.
ACM TOPLAS, 17(4):576–599, July 1995.

37. Jens Palsberg and Scott Smith. Constrained types and their expressiveness. ACM
TOPLAS, 18(5):519–527, September 1996.

38. Doron Peled, Amir Pnueli, and Lenore D. Zuck. From falsification to verification.
In Proceedings of FSTTCS’01, pages 292–304, 2001.

39. Doron Peled and Lenore D. Zuck. From model checking to a temporal proof. In
Proceedings of SPIN’01, pages 1–14, 2001.

40. David Schmidt and Bernhard Steffen. Program analysis as model checking of
abstract interpretations. In Proceedings of SAS’98, pages 351–380, 1998.

41. David A. Schmidt. Data flow analysis is model checking of abstract interpretations.
In Proceedings of POPL’98, pages 38–48, 1998.

42. Bernhard Steffen. Data flow analysis as model checking. In Proceedings of
TACS’91, Theoretical Aspects of Computer Science, pages 346–364, 1991.

43. Li Tan and Rance Cleaveland. Evidence-based model checking. In Proceedings of
CAV’02, pages 455–470, 2002.

44. Frank Tip and T. B. Dinesh. A slicing-based approach for locating type errors.
ACM TOSEM, 10(1):5–55, 2001.

45. David Walker and Greg Morrisett. Alias types for recursive data structures. In
Proceedings of TIC’00, pages 177–206, 2001.

46. Mitchell Wand. Finding the source of type errors. In Proceedings of POPL’86,
pages 38–43, 1986.

47. Hongwei Xi. Imperative programming with dependent types. In Proceedings of
LICS’00, pages 375–387, 2000.

A Type System Equivalent to a Model Checker 387

Appendix

Lemma 6. (Progress) If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

Proof. By induction on the structure of s. There are 6 cases depending upon
the form of s. (In cases (1), (2), (5), and (6), we do not use the hypothesis that
〈s, ωm〉 is well-typed.)

1. s = p. Immediate from rule (1) and the fact that ∀i ∈ Ω : δp(i) �= ∅.
2. s = assume(e). Immediate from rules (2) and (3).
3. s = assert(e). From 〈s, ωm〉 is well-typed and rule (12), we have s :∧

i∈A(ωi → ∨
j∈Bi

ωj) and m ∈ A. From s :
∧

i∈A(ωi → ∨
j∈Bi

ωj) and
rule (15), we have A ⊆ δe. From m ∈ A and A ⊆ δe, we have m ∈ δe. From
m ∈ δe and rule (4), we have 〈s, ωm〉 ↪→ ωm, whence 〈s, ωm〉 is not stuck.

4. s = s1; s2. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi →∨
j∈Bi

ωj) and m ∈ A. From s :
∧

i∈A(ωi → ∨
j∈Bi

ωj) and rule (16), we
have s1 :

∧
i∈A′(ωi → ∨

j∈B′
i
ωj) and A ⊆ A′. From m ∈ A and A ⊆ A′, we

have m ∈ A′. From s1 :
∧

i∈A′(ωi → ∨
j∈B′

i
ωj) and m ∈ A′ and rule (12), we

have 〈s1, ωm〉 is well-typed. From 〈s1, ωm〉 is well-typed and the induction
hypothesis, we have 〈s1, ωm〉 is not stuck. From 〈s1, ωm〉 is not stuck, we
have ∃a : 〈s1, ωm〉 ↪→ a. There are 3 cases depending upon the form of a. In
each case, we will prove that 〈s, ωm〉 is not stuck.
– a = ω′. From rule (5), we have 〈s, ωm〉 ↪→ 〈s2, ω

′〉.
– a = error. From rule (6), we have 〈s, ωm〉 ↪→ error.
– a = 〈s′

1, ω
′〉. From rule (7), we have 〈s, ωm〉 ↪→ 〈s′

1; s2, ω
′〉.

5. s = if (∗) then s1 else s2. Immediate from either of rules (8) and (9).
6. s = while (∗) do s′. Immediate from either of rules (10) and (11).

Lemma 7. If s :
∧

i∈C(ωi → ∨
j∈Di

ωj) and m ∈ C and 〈s, ωm〉 ↪→ 〈s′, ωn〉 then
s′ :

∧
i∈E(ωi → ∨

j∈Fi
ωj) and n ∈ E and Fn ⊆ Dm.

Proof. See technical report [30].

Lemma 8. (Single-step Type Preservation) If 〈s, ωm〉 is well-typed and
〈s, ωm〉 ↪→ 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi → ∨
j∈Bi

ωj)
and m ∈ A. From s :

∧
i∈A(ωi → ∨

j∈Bi
ωj) and m ∈ A and 〈s, ωm〉 ↪→ 〈s′, ωn〉

and lemma (7), we have s′ :
∧

i∈A′(ωi → ∨
j∈B′

i
ωj) and n ∈ A′. From s′ :∧

i∈A′(ωi → ∨
j∈B′

i
ωj) and n ∈ A′ and rule (12), we have 〈s′, ωn〉 is well-typed.

Lemma 9. (Multi-step Type Preservation) If 〈s, ωm〉 is well-typed and
〈s, ωm〉 ↪→t 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. By induction on t (using lemma (8)).

388 M. Naik and J. Palsberg

Lemma 10. We have:

As ⊆
⎧⎨
⎩

As1 if s = s1; s2
As1 ∩ As2 if s = if (∗) then s1 else s2

As′
if s = while (∗) do s′

Proof. See technical report [30].

Lemma 11. If s = s1; s2 then
⋃

i∈As Bs1,i ⊆ As2 . If s = while (∗) do s′ then⋃
i∈As Bs′,i ⊆ As.

Proof. See technical report [30].

Lemma 12. (Typability) s :
∧

i∈As(ωi → ∨
j∈Bs,i ωj).

Proof. By induction on the structure of s. There are 6 cases depending upon the
form of s:

– s = p. From defn. (1) and rule (1), we have As = Ω. From defn. (2), we have
∀i ∈ Ω : Bs,i = δp(i). From As = Ω and ∀i ∈ As : Bs,i = δp(i) and rule
(13), we have s :

∧
i∈As(ωi → ∨

j∈Bs,i ωj).
– s = assume(e). From defn. (1) and rules (2) and (3), we have As = Ω. From

defn. (2), we have ∀i ∈ δe : Bs,i = {i} and ∀i /∈ δe : Bs,i = ∅. From As = Ω
and ∀i ∈ δe : Bs,i = {i} and ∀i /∈ δe : Bs,i = ∅ and rule (14), we have
s :

∧
i∈As(ωi → ∨

j∈Bs,i ωj).
– s = assert(e). From defn. (1) and rule (4), we have As = δe. From defn.

(2), we have ∀i ∈ δe : Bs,i = {i}. From As = δe and ∀i ∈ As : Bs,i = {i}
and rule (15), we have s :

∧
i∈As(ωi → ∨

j∈Bs,i ωj).
– s = s1; s2. From the induction hypothesis, we have s1 :

∧
i∈As1 (ωi →∨

j∈Bs1,i ωj). and s2 :
∧

i∈As2 (ωi → ∨
j∈Bs2,i ωj). From lemma (10), we have

As ⊆ As1 . From lemma (11), we have
⋃

i∈As Bs1,i ⊆ As2 . From defn. (2),
we have Bs,i =

⋃ { Bs2,j | j ∈ Bs1,i }. From s1 :
∧

i∈As1 (ωi → ∨
j∈Bs1,i ωj)

and s2 :
∧

i∈As2 (ωi → ∨
j∈Bs2,i ωj) and As ⊆ As1 and

⋃
i∈As Bs1,i ⊆ As2 and

Bs,i =
⋃{Bs2,j |j ∈ Bs1,i} and rule (16), we have s :

∧
i∈As(ωi → ∨

j∈Bs,i ωj).
– s = if (∗) then s1 else s2. From the induction hypothesis, we have s1 :∧

i∈As1 (ωi → ∨
j∈Bs1,i ωj) and s2 :

∧
i∈As(ωi → ∨

j∈Bs2,i ωj). From lemma
(10), we have As ⊆ As1 and As ⊆ As2 . From defn. (2), we have Bs,i = Bs1,i ∪
Bs2,i. From s1 :

∧
i∈As(ωi → ∨

j∈Bs1,i ωj) and s2 :
∧

i∈As(ωi → ∨
j∈Bs2,i ωj)

and As ⊆ As1 and As ⊆ As2 and Bs,i = Bs1,i ∪ Bs2,i and rule (17), we have
s :

∧
i∈As(ωi → ∨

j∈Bs,i ωj).
– s = while (∗) do s′. From the induction hypothesis, we have s′ :

∧
i∈As′ (ωi →∨

j∈Bs′,i ωj). From lemma (10), we have As ⊆ As′
. From lemma (11), we have⋃

i∈As Bs′,i ⊆ As. From defn. (2), we have Bs,i = µX.({i} ∪ {Bs′,j | j ∈ X}).
From s′ :

∧
i∈As(ωi → ∨

j∈Bs′,i ωj) and As ⊆ As′
and

⋃
i∈As Bs′,i ⊆ As and

Bs,i = µX.({i} ∪ {Bs′,j | j ∈ X}) and rule (18), we have s :
∧

i∈As(ωi →∨
j∈Bs,i ωj).

	Introduction
	Background
	Our Result
	Proof Architecture
	Rest of the Paper

	Model Checker
	Type System
	Equivalence
	Examples
	Related Work
	Conclusions
	References

