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Abstract
Mobile applications are becoming increasingly ubiquitous
and provide ever richer functionality on mobile devices. At
the same time, such devices often enjoy strong connectiv-
ity with more powerful machines ranging from laptops and
desktops to commercial clouds. This paper presents the de-
sign and implementation of CloneCloud, a system that auto-
matically transforms mobile applications to benefit from the
cloud. The system is a flexible application partitioner and ex-
ecution runtime that enables unmodified mobile applications
running in an application-level virtual machine to seamlessly
off-load part of their execution from mobile devices onto de-
vice clones operating in a computational cloud. CloneCloud
uses a combination of static analysis and dynamic profiling
to partition applications automatically at a fine granularity
while optimizing execution time and energy use for a target
computation and communication environment. At runtime,
the application partitioning is effected by migrating a thread
from the mobile device at a chosen point to the clone in the
cloud, executing there for the remainder of the partition, and
re-integrating the migrated thread back to the mobile device.
Our evaluation shows that CloneCloud can adapt application
partitioning to different environments, and can help some ap-
plications achieve as much as a 20x execution speed-up and
a 20-fold decrease of energy spent on the mobile device.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Client/server

General Terms Algorithms, Design, Experimentation, Per-
formance
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1. Introduction
Mobile cloud computing is the next big thing. Recent mar-
ket research predicts that by the end of 2014 mobile cloud
applications will deliver annual revenues of 20 billion dol-
lars [Beccue 2009]. Although it is hard to validate precise
predictions, this is hardly implausible: mobile devices as
simple as phones and as complex as mobile Internet de-
vices with various network connections, strong connectiv-
ity especially in developed areas, camera(s), GPS, and other
sensors are the current computing wave, competing heav-
ily with desktops and laptops for market and popularity.
Connectivity offers immediate access to available comput-
ing, storage, and communications on commercial clouds,
at nearby wireless hot-spots equipped with computational
resources [Satyanarayanan 2009], or at the user’s PC and
plugged-in laptop.

This abundance of cloud resources and the mobile oppor-
tunity to use them is met by the blinding variety of flash-
popular applications in application stores by Apple, Google,
Microsoft, and others. Now mobile users look up songs by
audio samples; play games; capture, edit, and upload video;
analyze, index, and aggregate their mobile photo collections;
analyze their finances; and manage their personal health and
wellness. Also, new rich media, mobile augmented reality,
and data analytics applications change how mobile users
remember, experience, and understand the world around
them. Such applications recruit increasing amounts of com-
putation, storage, and communications from a constrained
supply on mobile devices—certainly compared to tethered,
wall-socket-powered devices like desktops and laptops—
and place demands on an extremely limited supply of en-
ergy.

Yet bringing a demanding mobile application to needed
cloud resources tends to be inflexible: an application is either
written as a monolithic process, cramming all it needs to do
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Figure 1. CloneCloud system model. CloneCloud trans-
forms a single-machine execution (mobile device computa-
tion) into a distributed execution (mobile device and cloud
computation) automatically.

on to the mobile device; or it is split in the traditional client-
server paradigm, pushing most computation to the remote
server; or it is perhaps tailored to match an expected com-
bination of client (e.g., given browser on particular phone
platform), environment (a carrier’s expected network condi-
tions), and service. But what might be the right split for a
low-end mobile device with good connectivity may be the
wrong split for a high-end mobile device with intermittent
connectivity. Often the choice is unknown to application de-
velopers ahead of time, or the possible configurations are too
numerous to customize for all of them.

To address this problem, in this paper we realize our
CloneCloud vision [Chun 2009] of a flexible architecture
for the seamless use of ambient computation to augment
mobile device applications, making them fast and energy-
efficient. CloneCloud boosts unmodified mobile applications
by off-loading the right portion of their execution onto de-
vice clones operating in a computational cloud1. Conceptu-
ally, our system automatically transforms a single-machine
execution (e.g., computation on a smartphone) into a dis-
tributed execution optimized for the network connection
to the cloud, the processing capabilities of the device and
cloud, and the application’s computing patterns (Figure 1).

The underlying motivation for CloneCloud lies in the fol-
lowing intuition: as long as execution on the cloud is signif-
icantly faster than execution on the mobile device (or more
reliable, more secure, etc.), paying the cost for sending the
relevant data and code from the device to the cloud and back
may be worth it. Unlike partitioning a service statically by
design between client and server portions, CloneCloud late-
binds this design decision. In practice, the partitioning de-
cision may be more fine-grained than a yes/no answer (i.e.,
it may result in carving off different amounts of the original
application for cloud execution), depending on the expected
workload and execution conditions (CPU speeds, network
performance). A fundamental design goal for CloneCloud is
to allow such fine-grained flexibility on what to run where.

1 Throughout this paper, we use the term “cloud” in a broad sense to include
diverse ambient computational resources discussed above.
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Figure 2. The CloneCloud prototype architecture.

Another design goal for CloneCloud is to take the pro-
grammer out of the business of application partitioning. The
kinds of applications on mobile platforms that are featured
on application stores and gain flash popularity tend to be
low-margin products, whose developers have little incentive
to optimize manually for different combinations of architec-
tures, network conditions, battery lives, and hosting infras-
tructures. Consequently, CloneCloud aims to make applica-
tion partitioning automatic and seamless.

Our work in this paper applies primarily to application-
layer virtual machines (VMs), such as the Java VM,
DalvikVM from the Android Platform, and Mi-
crosoft’s .NET. We choose application-layer VMs since
they are widely used in mobile platforms. In addition,
the application-layer VM model has the relative ease of
manipulating application executables and migrating pieces
thereof to computing devices of diverging architectures,
even different instruction set architectures (e.g., ARM-based
smartphones and x86-based servers).

The CloneCloud prototype meets all design goals men-
tioned above, by rewriting an unmodified application exe-
cutable. While the modified executable is running, at auto-
matically chosen points individual threads migrate from the
mobile device to a device clone in a cloud; remaining func-
tionality on the mobile device keeps executing, but blocks if
it attempts to access migrated state, thereby exhibiting op-
portunistic but very conservative concurrency. The migrated
thread executes on the clone, possibly accessing native fea-
tures of the hosting platform such as the fast CPU, network,
hardware accelerators, storage, etc. Eventually, the thread re-
turns back to the mobile device, along with remotely created
state, which it merges back into the original process. The
choice of where to migrate is made by a partitioning compo-
nent, which uses static analysis to discover constraints on
possible migration points, and dynamic profiling to build
a cost model for execution and migration. A mathematical
optimizer chooses migration points that optimize objective
(such as total execution time or mobile-device energy con-
sumption) given the application and the cost model. Finally,
the run-time system chooses what partition to use. Figure 2
shows the high-level architecture of our prototype.

The paradigm of opportunistic use of ambient resources
is not new [Balan 2002]; much research has attacked appli-



cation partitioning and migration in the past (see Section 7).
CloneCloud is built upon existing technologies, but it com-
bines and augments them in a novel way. We summarize our
contributions here as follows.

• Unlike traditional suspend-migrate-resume mecha-
nisms [Satyanarayanan 2005] for application migration,
the CloneCloud migrator operates at thread granularity,
an essential consideration for mobile applications, which
tend to have features that must remain at the mobile
device, such as those accessing the camera or managing
the user interface.

• Unlike past application-layer VM migrators [Aridor
1999, Zhu 2002], the CloneCloud migrator allows native
system operations to execute both at the mobile device
and at its clones in the cloud, harnessing not only raw
CPU cloud power, but also system facilities or special-
ized hardware when the underlying library and OS are
implemented to exploit them.

• Similar to MAUI [Cuervo 2010], the CloneCloud par-
titioner automatically identifies costs through static and
dynamic code analysis and runs an optimizer to solve par-
titioning problems, but we go a step further by not asking
for the programmer’s help (e.g., source annotations).

• We present the design, implementation, and evaluation
of an operational system that combines the features in
widely-used Android platforms. CloneCloud can achieve
up to 20x speedup and 20x less energy consumption of
smartphone applications we tested.

In what follows, we first give some brief background
on application-layer VMs (Section 2). We then present the
design of CloneCloud’s partitioning components (Section 3)
and its distributed execution mechanism (Section 4). We
describe our implementation (Section 5) and experimental
evaluation of the prototype (Section 6). We survey related
work in Section 7, discuss limitations and future work in
Section 8, and conclude in Section 9.

2. Background: Application VMs
An application-level VM is an abstract computing machine
that provides hardware and operating system independence.
Its instruction sets are platform-independent bytecodes; an
executable is a blob of bytecodes. The VM runtime exe-
cutes bytecodes of methods with threads. There is typically
a separation between the virtual portion of an execution and
the native portion; the former is only expressed in terms of
objects directly visible to the bytecode, while the latter in-
cludes management machinery for the virtual machine, data
and computation invoked on behalf of a virtual computation,
as well as the process-level data of the OS process contain-
ing the VM. Interfacing between the virtual and the native
portion happens via native interface frameworks.
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Figure 3. Partitioning analysis framework.

Runtime memory is split between VM-wide and per-
thread areas. The Method Area, which contains the types of
the executing program and libraries as well as static vari-
able contents, and the Heap, which holds all dynamically
allocated data, are VM-wide. Each thread has its own Vir-
tual Stack (stack frames of the virtual hardware), the Virtual
Registers (e.g., the program counter), and the Native Stack
(containing any native execution frames of a thread, if it has
invoked native functions). Most computation, data structure
manipulation, and memory management are done within the
abstract machine. However, external processing such as file
I/O, networking, using local hardware such as sensors, are
done via APIs that punch through the abstract machine into
the process’s system call interface.

3. Partitioning
The partitioning mechanism in CloneCloud is off-line, and
aims to pick which parts of an application’s execution to re-
tain on the mobile device and which to migrate to the cloud.
Any application targeting the application VM platform may
be partitioned; unlike prior approaches, including the re-
cent MAUI project [Cuervo 2010], the programmer need not
write the application in a special idiom or annotate it in a
non-standard way, and the source code is not needed. The
output of the partitioning mechanism is a partition, a choice
of execution points where the application migrates part of its
execution and state between the device and a clone. Given a
set of execution conditions (we currently consider network
characteristics, CPU speeds, and energy consumption), the
partitioning mechanism yields a partition that optimizes for
total execution time or energy expended at the mobile de-
vice. The partitioning mechanism may be run multiple times
for different execution conditions and objective functions,
resulting in a database of partitions. At runtime, the dis-
tributed execution mechanism (Section 4) picks a partition
from the database and implements it via a small and fast set
of modifications of the executable before invocation.

Partitioning of an application operates according to the
conceptual workflow of Figure 3. Our partitioning frame-
work combines static program analysis with dynamic pro-
gram profiling to produce a partition.



class C {
void a () {
if () {b(); c();}
}
void b() {
} // lightweight 
void c() {
} // expensive

}
void main () {
C c; c.a();

}

(a) program (b) static control-
flow graph
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graph
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Figure 4. An example of a program, its corresponding static
control-flow graph, and a partition.

The Static Analyzer identifies legal partitions of the ap-
plication executable, according to a set of constraints (Sec-
tion 3.1). Constraints codify the needs of the distributed ex-
ecution engine, as well as the usage model. The Dynamic
Profiler (Section 3.2) profiles the input executable on dif-
ferent platforms (the mobile device and on the cloud clone)
with a set of inputs, and returns a set of profiled executions.
Profiled executions are used to compose a cost model for the
application under different partitions. Finally, the Optimiza-
tion Solver finds a legal partition among those enabled by the
static analyzer that minimizes an objective function, using
the cost model derived by the profiler (Section 3.3). The re-
sulting partition is stored as a configuration file. At runtime,
the chosen partition drives the execution of the application.

3.1 Static Analyzer
The partitioner uses static analysis to identify legal choices
for placing migration and re-integration points in the code. In
principle, these points could be placed anywhere in the code,
but we reduce the available choices to make the optimization
problem tractable. In particular, we restrict migration and re-
integration points to method entry and exit points, respec-
tively. We make two additional restrictions for simplicity.
First, we only allow migration at the boundaries of applica-
tion methods, not core-system library methods, which sim-
plifies the implementation of a partition at runtime. Second,
we only allow migration at VM-layer method boundaries,
not native method boundaries, since the techniques required
to migrate partial execution state differ vastly for the two
types of methods. Note, however, that although we disallow
migration while already in native execution, we do allow mi-
grated methods to invoke native ones.

Figure 4 shows an example of a program, relevant parts
of its static control-flow graph, and a particular legal parti-
tion of the program. Class C has three methods. Method a()
calls method b(), which performs lightweight processing,
followed by method c(), which performs expensive pro-
cessing. The static control-flow graph approximates control
flow in the program (inferring exact control flow is undecid-
able as program reachability is undecidable). The approxi-

mation is conservative in that if an execution of the program
follows a certain path then that path exists in the graph (but
the converse typically does not hold). In the depicted static
control-flow graph, only entry and exit nodes of methods are
shown, labeled as <class name>.<method name>.<entry |
exit>. A possible partition as shown in Figure 4(c) runs the
body of method c() on the clone, and the rest of the program
on the mobile device. As described above, method c() may
not be a system library or a native method, but may itself
invoke system libraries or native methods.

3.1.1 Constraints
We next describe three properties of any legal partition, as
required by the migration component, and explain how we
use static analysis to obtain constraints that express these
properties.

PROPERTY 1. Methods that access specific features of a ma-
chine must be pinned to the machine.

If a method uses a local resource such as the location service
(e.g., GPS) or sensor inputs (e.g., microphones) in a mobile
device, the method must be executed on the mobile device.
This primarily concerns native methods, but also the main
method of a program. The analysis marks the declaration
of such methods with a special annotation M—for Mobile
device. We manually identify such methods in the VM’s API
(e.g., VM API methods explicitly referring to the camera);
this is done once for a given platform and is not repeated for
each application. We also always mark the main method of
a program. We refer to methods marked with M as the VM

method set.

PROPERTY 2. Methods that share native state must be col-
located at the same machine.

An application may have native methods that create and ac-
cess state below the VM. Native methods may share native
state. Such methods must be collocated at the same ma-
chine as our migration component does not migrate native
state (Section 4.1). For example, when an image processing
class has initialize, detect, fetchresult methods
that access native state, they need to be collocated at the
same machine. To avoid a manual-annotation burden, native
state annotations are inferred automatically by the follow-
ing simple approximation, which works well in practice: we
assign a unique annotation NatC to all native methods de-
clared in the same class C; the set VNatC

contains all meth-
ods with that annotation.

PROPERTY 3. Prevent nested migration.

With one phone and one clone, this implies that there should
be no nested suspends and no nested resumes. Once a pro-
gram is suspended for migration at the entry point of a
method, the program should not be suspended again without
a resume, i.e., migration and re-integration points must be



executed alternately. To enforce this property, the static anal-
ysis builds the static control-flow graph of an application,
capturing the caller-callee method relation; it exports this as
two relations, DC(m1, m2), read as “method m1 Directly
Calls method m2,” and TC(m1, m2) read as “method m1

T ransitively Calls method m2,” which is the transitive clo-
sure of DC. For the example in Figure 4, this ensures that if
partitioning points are placed in a(), they are not placed in
b() or c(). The remaining legal partitions place migration
points at at b(), at c(), or at both b() and c().

3.2 Dynamic Profiler
The profiler collects the data that will be used to construct
a cost model for the application under different execution
settings. The cost metric can vary, but our prototype uses
execution time and energy consumed at the mobile device.

The profiler is invoked on multiple executions of the ap-
plication, each using a randomly chosen set of input data
(e.g., command-line arguments and user-interface events),
and each executed once on the mobile device and once on
the clone in the cloud. The profiler outputs a set S of exe-
cutions, and for each execution a profile tree T and T ′, from
the mobile device and the clone, respectively. We note that
random inputs may not explore all relevant execution paths
of the application. In our future work, we hope to explore
symbolic-execution-based techniques for high-coverage in-
put generation [Cadar 2008].

A profile tree is a compact representation of an execution
on a single platform. It is a tree with one node for each
method invocation in the execution; it is rooted at the starting
(user-defined) method invocation of the application (e.g.,
main). Specific method calls in the execution are represented
as edges from the node of the caller method invocation
(parent) to the nodes of the callees (children); edge order
is not important. Each node is annotated with the cost of
its particular invocation in the cost metric (execution time
in our case). In addition to its called-method children, every
non-leaf node also has a leaf child called its residual node.
The residual node i′ for node i represents the residual cost
of invocation i that is not due to the calls invoked within
i; in other words, node i′ represents the cost of running the
body of code excluding the costs of the methods called by it.
Finally, each edge is annotated with the state size at the time
of invocation of the child node, plus the state size at the end
of that invocation; this would be the amount of data that the
migrator (Section 4.1) would need to capture and transmit
in both directions, if the edge were to be a migration point.
Edges between a node and its residual child have no cost.

Figure 5 is an example of an execution trace and its
corresponding profile tree. a is called twice in main, one
a call invoking b and c, and one a call invoking no other
method. A tree node on the right holds the execution time
of the corresponding method in the trace (the length of
the square bracket on the left). main’ and a’ are residual
nodes, and they hold the difference between the value of
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Figure 5. An example of an execution trace (a) and its
corresponding profile tree (b). Edge costs are not shown.

their parent node and the sum of their sibling nodes. For
example, node main’ holds the value T [main′] ≡ t3 − t2 =
(t4 − t1)− ((t4 − t3) + (t2 − t1)).

To fill in profile trees, we temporarily instrument
application-method entry and exit points during each profile
run on each platform (recall that system-library and native
methods are not valid partitioning points, so we do not in-
strument them). For our execution-time cost metric, we col-
lect timings at method entry and exit points, which we pro-
cess to fill in tree node annotations. We compute migration
costs (edge weights) by simulating migration at each pro-
filed method: we perform the suspend-and-capture operation
of the migrator (Section 4.1) and measure the captured state
size, both when invoking the child node and when returning
from it; we set the annotation of the parent edge TE[i] of
invocation i with that value. Recall that for every execution
E, we capture two profile trees T and T ′, one per platform
with different annotations.

For each invocation i in profiling execution E, we define a
computation cost Cc(i, l) and a migration cost Cs(i), where
l is the location of the invocation. We start with execution
time cost. We fill in Cc(i, l) from the corresponding profile
tree collected at location l (if l = 0, the location is the mobile
device and is filled from tree T , and if l = 1, the location
is the clone and is filled from tree T ′). If i is a leaf profile
tree node, we set Cc(i, l) to be the annotation of that node
(e.g., Cc(i, 0) ≡ T [i]); otherwise, we set it to the annotation
of the residual node i′. We fill Cs(i) as the cost of making
invocation i a migrant invocation. This cost is the sum of a
suspend/resume cost and a transfer cost. The former is the
time required to suspend a thread and resume a thread. The
latter is a volume-dependent cost, the time it takes to capture,
serialize, transmit, deserialize, and reinstantiate state of a
particular size (assuming for simplicity all objects have the
same such cost per byte). We precompute this per-byte cost2,
and use the edge annotations from the mobile-device profile
tree to calculate the cost.

2 One could also estimate this per-byte cost from memory, processor, and
storage speeds, as well as network latency and bandwidth, but we took the
simpler approach of just measuring it.



For energy consumption, we use a simple model that
appears consistent with the kinds of energy measurements
we can perform with off-board equipment (the Monsoon
power monitor [Mon], in our setup). Specifically, we use a
model that maps three system variables to a power level.
We consider CPU activity (processing/idle), display state
(on/off), and network state (transmitting or receiving/idle),
and translate them to a power draw via a function P from
〈CPU ,Scr ,Net〉 triples to a power value. We estimate
function P experimentally, and use it to construct two cost
models, one where screen is on, and one where screen is
off, as follows. For the cost model with the screen on, we
set all Cc(i, 0) ≡ P (CPUOn,ScrOn,NetIdle)× T [i], i.e.,
the execution time at the device at power levels consistent
with high CPU utilization, display on, but not network ac-
tivity. We set all Cc(i, 1) ≡ P (CPUIdle,ScrOn,NetIdle),
i.e., the execution time at the clone, but at power levels con-
sistent with idle CPU at the device; recall that we do not
care about energy at the clone, but about energy expended at
the mobile device while the clone is processing. Finally, we
set all Cs(i) from the execution-time model Cs(i)’s above,
which hold the time it takes to migrate for an invocation,
multiplied by power P (CPUOn,ScrOn,NetOn). We note
that our energy consumption model is a coarse starting point,
with some noise, especially for very close decisions to mi-
grate or not (see Section 6).

3.3 Optimization Solver
The purpose of our optimizer is to pick which application
methods to migrate to the clone from the mobile device, so as
to minimize the expected cost of the partitioned application.
Given a particular execution E and its two profile trees T on
the mobile device and T ′ on the clone, one might intuitively
picture this task as optimally replacing annotations in T with
those in T ′, so as to minimize the total node and weight
cost of the hybrid profile tree. Our static analysis dictates
the legal ways to fetch annotations from T ′ into T , and
our dynamic profiling dictates the actual trees T and T ′.
We do not differentiate among different executions E in the
execution set S; we consider them all equiprobable, although
one might assign non-uniform frequencies in practice to
match a particular expected workload.

More specifically, the output of our optimizer is a value
assignment to binary decision variables R(m), where m is
every method in the application. If the optimizer chooses
R(m) = 1 then the partitioner will place a migration point
at the entry into the method, and a re-integration point at the
exit from the method. If the optimizer chooses R(m) = 0,
method m is unmodified in the application binary. For sim-
plicity and to constrain the optimization problem, our mi-
gration strategy chooses to migrate or not migrate all invo-
cations of a method. Despite its simplicity, this conservative
strategy provides us with undeniable benefits (Section 6); we
leave further refining differentiations depending on calling
stack, method arguments, etc., to future work.

Not all partitioning choices for R(.) are legal (Sec-
tion 3.1.1). To express these constraints in the optimization
problem, we define an auxiliary decision variable L(m) in-
dicating the location of every method m, and three relations
I , as well as DC and TC computed during static analysis.
I(i, m) is read as “i is an invocation of method m,” and is
trivially defined from the profile runs. Whereas DC and TC
are computed once for each application, I is updated with
new invocations only when the set S of profiling executions
changes.

Using the decision variables R(.), the auxiliary decision
variables L(.), the method sets VM and VNatC

for all classes
C defined during static analysis, and the relations I , DC and
TC from above, we formulate the optimization constraints
as follows:

L(m1) 6= L(m2), ∀m1, m2 : DC (m1, m2) = 1

∧R(m2) = 1 (1)

L(m) = 0, ∀m ∈ VM (2)

L(m1) = L(m2), ∀m1, m2, C : m1, m2 ∈ VNatC
(3)

R(m2) = 0, ∀m1, m2 : TC (m1, m2) = 1

∧R(m1) = 1 (4)

Constraint 1 is a soundness constraint, and requires that if a
method causes migration to happen, it cannot be collocated
with its callers. The remaining three correspond to the three
properties defined in the static analysis. Constraint 2 requires
that all methods pinned at the mobile device run on the mo-
bile device (Property 1). Constraint 3 requires that meth-
ods dependent on the native state of the same class C are
collocated, at either location (Property 2). And constraint 4
requires that all methods transitively called by a migrated
method cannot be themselves migrated (Property 3).

The cost of a (legal) partition R(.) of execution E is
defined as follows, in terms of the auxiliary variables L(.),
the relation I and the cost variables Cc and Cs from the
dynamic profiler:

C(E) = Comp(E) + Migr(E)

Comp(E) =
∑

i∈E,m

[(1− L(m))I(i, m)Cc(i, 0)

+L(m)I(i, m)Cc(i, 1)]

Migr(E) =
∑

i∈E,m

R(m)I(i, m)Cs(i)

Comp(E) is the computation cost of the partitioned exe-
cution E and Migr(E) is its migration cost. For every in-
vocation i ∈ E, the computation cost takes its value from
the mobile-device cost variables Cc(i, 0), if the method m
being invoked is to run on the mobile device, or from the
clone variables Cc(i, 1) otherwise. The migration cost sums
the individual migration costs Cs(i) of only those invoca-
tions i whose methods are migration points. Finally, the



optimization objective is to choose R() so as to minimize∑
E∈S C(E). We use a standard integer linear program-

ming (ILP) solver to solve this optimization problem with
the above constraints. One can extend our optimization for-
mulation to include a constraint limiting total energy con-
sumption while optimizing total execution time or one lim-
iting execution time while optimizing energy consumption.

4. Distributed Execution
The purpose of the distributed execution mechanism in
CloneCloud is to implement a specific partition of an ap-
plication process running inside an application-layer virtual
machine, as determined during partitioning (Section 3).

The life-cycle of a partitioned application is as follows.
When the user attempts to launch a partitioned application,
current execution conditions (availability of cloud resources
and network link characteristics between the mobile device
and the cloud) are looked up in a database of pre-computed
partitions. The lookup result is a partition configuration
file. The application binary loads the partition and instru-
ments the chosen methods with migration and re-integration
points—special VM instructions in our prototype. When ex-
ecution of the process on the mobile device reaches a migra-
tion point, the executing thread is suspended and its state (in-
cluding virtual state, program counter, registers, and stack)
is packaged and shipped to a synchronized clone. There, the
thread state is instantiated into a new thread with the same
stack and reachable heap objects, and then resumed. When
the migrated thread reaches a re-integration point, it is sim-
ilarly suspended and packaged as before, and then shipped
back to the mobile device. Finally, the returned packaged
thread is merged into the state of the original process.

CloneCloud migration operates at the granularity of a
thread. This allows a multi-threaded process (e.g., a process
with a UI thread and a worker thread) running on the phone
to off-load functionality, one thread-at-a-time. For example,
a process with a UI thread and a worker thread can migrate
the functionality of the worker thread. The UI thread contin-
ues processing, unless it attempts to access migrated state, in
which case it blocks until the offloaded thread comes back.
Note that the current CloneCloud system does not support
a distributed shared memory (DSM) model; when there are
two worker threads that share the same state, they cannot
be offloaded at the same time. CloneCloud enables threads,
local and migrated, to use—but not migrate—native, non-
virtualized features of the platform on which they operate:
this includes the network and natively implemented API
functionality (such as expensive-to-virtualize image pro-
cessing routines), etc. Furthermore, when the underlying li-
brary and OS are designed to exploit unvirtualized hardware
accelerators such as GPUs and cryptographic accelerators,
the system seamlessly gain benefits from these special fea-
tures. In contrast, most prior work providing application-
layer virtual-machine migration keeps native features and

functionality exclusively on the original platform, only per-
mitting the off-loading of pure, virtualized computation.

These two unique features of CloneCloud, thread-
granularity migration and native-everywhere operation, en-
able interesting execution models. For example, a mobile ap-
plication can retain its user interface threads running and in-
teracting with the user, while off-loading worker threads to
the cloud if this is beneficial. This would have been impos-
sible with monolithic process or VM suspend-resume mi-
gration, since the user would have to migrate to the cloud
along with the code. Similarly, a mobile application can mi-
grate a thread that performs heavy 3D rendering operations
to a clone with GPUs, without having to modify the origi-
nal application source; this would have been impossible to
do seamlessly if only migration of virtualized computation
were allowed.

CloneCloud migration is effected via three distinct com-
ponents: (a) a per-process migrator thread that assists a pro-
cess with suspending, packaging, resuming, and merging
thread state, (b) a per-node node manager that handles node-
to-node communication of packaged threads, clone image
synchronization and provisioning; and (c) a simple partition
database that determines what partition to use.

The migrator functionality manipulates internal state
of the application-layer virtual machine; consequently we
chose to place it within the same address space as the
VM, simplifying the procedure significantly. A manager,
in contrast, makes more sense as a per-node component
shared by multiple applications, for several reasons. First,
it enables application-unspecific node maintenance, includ-
ing file-system synchronization between the device and
the cloud. Second, it amortizes the cost of communicat-
ing with the cloud over a single, possibly authenticated
and encrypted, transport channel. Finally, it paves the way
for future optimizations such as chunk-based or similarity-
enhanced data transfer [Muthitacharoen 2001, Tolia 2006].
Our current prototype has a simple configuration interface
that allows the user to manually pick out a partition from the
database, and to choose new configurations to partition for.
We next delve more deeply into the design of the distributed
execution facilities in CloneCloud.

4.1 Suspend and Capture
Upon reaching a migration point, the job of the thread mi-
grator is to suspend a migrant thread, collect all of its state,
and pass that state to the node manager for data transfer. The
thread migrator is a native thread, operating within the same
address space as the migrant thread, but outside the virtual
machine. As such, the migrator has the ability to view and
manipulate both native process state and virtualized state.

To capture thread state, the migrator must collect several
distinct data sets: execution stack frames and relevant data
objects in the process heap, and register contents at the
migration point. Virtualized stack frames—each containing
register contents and local object types and contents—are
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readily accessible, since they are maintained by the VM
management software. Starting with local data objects in
the collected stack frames, the migrator recursively follows
references to identify all relevant heap objects, in a manner
similar to any mark-and-sweep garbage collector. For each
relevant heap object, the migrator stores its field values, as
well as relevant static class fields.

Captured state must be conditioned for transfer to be
portable to adapt to different instruction set architectures
(e.g., ARM and x86 architectures). First, object field val-
ues are stored in network byte order to allow for incom-
patibilities between different processor architectures. Sec-
ond, whereas typically a stack frame contains a local na-
tive pointer to the particular class method it executes (which
is not portable across address spaces or processor architec-
tures), we store instead the class name and method name,
which are portable.

In our prototype, state that is captured and migrated to
the clone is marked in the phone VM. Remaining threads
continue processing, unless they attempt to access such
marked (migrated state), in which case they block until
the off-loaded thread returns. This reduces the concurrency
of some applications, making our current prototype better
suited to applications with loosely-coupled threads. A dis-
tributed memory synchronization mechanism may alleviate
this shortcoming, but we have yet to study the implications
of the additional complexity involved.

4.2 Resume and Merge
As soon as the captured thread state is transferred to the tar-
get clone device, the node manager passes it to the migra-
tor of a freshly allocated process. To resume that migrant
thread, the migrator overlays the thread context over the
fresh address space, essentially reversing the capture pro-
cess described in Section 4.1. The executable text is loaded
(it can be found under the same filename in the synchro-
nized file system of the clone). Then all captured classes and
object instances are allocated in the virtual machine’s heap,
updating static and instance field contents with those from
the captured context. As soon as the address space contains

all the data relevant to the migrant thread, the thread itself is
created, given the stack frames from the capture, the register
contents are filled to match the state of the original thread at
the migration point in the mobile device, and the thread is
marked as runnable to resume execution.

As described above, the cloned thread will eventually
reach a reintegration point in its executable, signaling that
it should migrate back to the mobile device. Reintegration is
almost identical conceptually to the original migration: the
clone’s migrator captures and packages the thread state, the
node manager transfers the capture back to the mobile de-
vice, and the migrator in the original process is given the
capture for resumption. There is, however, a subtle differ-
ence in this reverse migration direction. Whereas in the for-
ward direction—from mobile device to clone—a captured
thread context is used to create a new thread from scratch,
in the reverse direction—from clone to mobile device—the
context must update the original thread state to match the
changes effected at the clone. We call this a state merge.

A successful design for merging states in such a fashion
depends on our ability to map objects at the original ad-
dress space to the objects they “became” at the cloned ad-
dress space; object references themselves are not sufficient
in that respect, since in most application-layer VMs, refer-
ences are implemented as native memory addresses, which
look different in different processes, across different devices
and possibly architectures, and tend to be reused over time
for different objects.

Our solution is an object mapping table, which is only
used during state capture and reinstantiation in either direc-
tion, and only stored while a thread is executing at a clone.
We instrument the VM to assign a per-VM unique object
ID to each data object created within the VM, using a local
monotonically increasing counter. For clarity, we call the ID
at the mobile device MID and at the clone CID. Once migra-
tion is initiated at the mobile device, a mapping table is first
created for captured objects, filling for each the MID but leav-
ing the CID null; this indicates that the object has no clone
counterpart yet. After instantiation at the clone, the clone
recreates all the objects with null CIDs, assigning valid fresh
CIDs to them, and remembers the local object address corre-
sponding to each mapping entry. At this point, all migrated
objects have valid mappings.

During migration in the reverse direction, objects that
came from the original thread are captured and keep their
valid mapping. Newly created objects at the clone have the
locally assigned ID placed in their CID, but get a null MID.
Objects from the original thread that may have been deleted
at the clone are ignored and no mapping is sent back for
them. During the merge back at the mobile device, we know
which objects should be freshly created (those with null
MIDs) and which objects should be overwritten with the con-
tents fetched back from the clone (those with non-null MIDs).
“Orphaned” objects that were migrated out but died at the



m
igration

re
in
te
gr
at
io
n New 

objects

GC
�
ed

(2) Clone

Reference MID CID

0x21 1 11

0x22 2 12

0x23 3 13

0x24 null 14

0x22 null 15

(1) Mobile Phone

Reference MID CID

0x01 1 null

0x02 2 null

0x03 3 null

(3) Mobile Phone

Reference MID CID

0x01 1 11

0x02 2 12

0x03 3 13

0x04 4 14

0x05 5 15

Figure 7. Object mapping example.

clone become disconnected from the thread object roots and
are garbage-collected subsequently. Note that the mapping
table is constructed and used only during capture and reinte-
gration, not during normal memory operations either at the
mobile device or at the clone.

Figure 7 shows an example scenario demonstrating the
use of object mapping. During initial migration, objects at
addresses 0x01, 0x02, and 0x03 are captured. The migra-
tor creates the mapping table with three entries, one for
each object, with the local ID of each object—1, 2, and 3,
respectively—in MID, and null CIDs. At the clone, the map-
ping table is stored, updating each entry with the local ad-
dress of each object (0x21, 0x22, and 0x23, respectively).
When the thread is about to return back to the mobile de-
vice, new entries are created in the table for captured objects
whose IDs are not already in the CID column (objects with
IDs 14 and 15). Entries in the table whose CID does not ap-
pear in captured objects are deleted (the second entry in the
figure). Remaining entries belong to objects that came from
the original thread and are also going back (those with CID
11 and 13). Note that memory address 0x22 was reused at
the clone after the original object was destroyed, but the ob-
ject has a different ID from the original object, allowing the
migrator to differentiate between the two. Back at the mo-
bile device, new objects are created for entries with null MIDs
(bottom two entries), objects with non-null MIDs are updated
with the returned state (first and third entries), and one object
(with local address 0x02) is left to be garbage-collected.

We use object mappings for a subtly different purpose, as
well. Because new processes are forked as copies of a “tem-
plate” process —the Zygote, in the Android nomenclature—
and because that template exists in all booted instances of
the Android platform, we can avoid transmitting unchanged
system heap objects. However, whereas application objects
can be named at the time of creation, Zygote objects are
created concurrently defying consistent naming. To address
the challenge, we name each system object according to its
class name and invocation sequence among all objects of that
class—this assumes that objects from each class are con-

structed in the same order at Zygote processes on different
platforms, an assumption that holds true in all Zygote in-
stances we have seen so far.

5. Implementation
We implemented our prototype of CloneCloud partition-
ing and migration on the cupcake branch of the Android
OS [AOS]. We tested our system on the Android Dev Phone
1 [ADP] (an unlocked HTC G1 device) equipped with both
WiFi and 3G connections, and on clones running within the
Android x86 virtual machine. Clones execute on a server
with a 3.0GHz Xeon CPU, running VMware ESX 4.1, con-
nected to the Internet through a layer-3 firewall. We modified
the Dalvik VM (Android’s application-level, register-based
VM, principally targeted by a Java compiler front-end) [Dal]
for dynamic profiling and migration. These modifications
comprised approximately 8,000 lines of C code.

We implemented our static analysis on Java bytecode us-
ing JChord [JCh]. We modified JChord to support root meth-
ods of analysis that are different from main. We modified
Dalvik VM tracing to efficiently trace execution and migra-
tion cost and to trace only application methods in which we
are interested. To profile energy consumption of the phone,
we connected the Monsoon power monitor [Mon], to the
phone, measured the current drawn from the phone at a
5KHz frequency, and computed power consumption from
the current and the voltage we set. We use lp solve [lps] to
solve the optimization problem for each execution environ-
ment.

The migrator uses Dalvik VM’s thread suspension, a
mechanism common in other application VMs. Threads are
only suspended at bytecode instruction boundaries. We cap-
ture and represent execution state with a modified version
of hprof [HPR]. We extend the format to also store thread
stacks and class file paths, as well as store CIDs and MIDs
to each object; we modified object creation and destruction
in DalvikVM to assign those IDs. The object mapping table
is a separate hash table inside the Dalvik VM, created only
when migration begins, and destroyed after reintegration.

Migration is initiated and terminated in the modified ap-
plication via two new system operations: ccStart() and
ccStop(), respectively. The application thread calling these
operations notifies the migrator thread inside Dalvik, and
suspends itself. Once the migrator thread gains control, it
checks with the loaded partition if it should migrate, and if
so handles the rest.

6. Evaluation
To evaluate our prototype, we implemented three applica-
tions. We ran those applications either on a phone—a status
quo, monolithic execution—or by optimally partitioning for
two settings: one with WiFi connectivity and one with 3G.

We implemented a virus scanner, image search, and
privacy-preserving targeted advertising; we briefly describe
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Figure 8. Mean execution times of virus scanning (VS), image search (IS), and behavior profiling (BP) applications with
standard deviation error bars, three input sizes for each. For each application and input size, the data shown include execution
time at the phone alone, that of CloneCloud with WiFi (CC-WiFi), and that of CloneCloud with 3G (CC-3G). The partition
choice is annotated with M for “monolithic” and O for “off-loaded,” also indicating the relative improvement from the phone-
alone execution.

Application Input Phone Exec. Clone Exec.
Size (sec) (sec)

Mean (std) Mean (std)
VS 100KB 6.1 (0.32) 0.2 (0.01)

1MB 59.3 (1.49) 2.2 (0.01)
10MB 579.5 (20.76) 22.5 (0.08)

IS 1 img 22.1 (0.26) 0.9 (0.07)
10 img 212.8 (0.44) 8.0 (0.03)

100 img 2122.1 (1.27) 79.2 (0.44)
BP depth 3 3.3 (0.10) 0.2 (0.01)

depth 4 52.1 (1.45) 1.8 (0.07)
depth 5 302.7 (3.76) 10.9 (0.19)

Table 1. Execution times of virus scanning (VS), image
search (IS), and behavior profiling (BP) applications, three
input sizes for each. For each application and input size, the
data shown include execution time at the phone alone and
execution time at the clone alone.

each next. The virus scanner scans the contents of the phone
file system against a library of 1000 virus signatures, one
file at a time. We vary the size of the file system between
100KB and 10 MB. The image search application finds all
faces in images stored on the phone, using a face-detection
library that returns the mid-point between the eyes, the dis-
tance in between, and the pose of detected faces. We only
use images smaller than 100KB, due to memory limitations

of the Android face-detection library. We vary the number
of images from 1 to 100. The privacy-preserving targeted-
advertising application uses behavioral tracking across web-
sites to infer the user’s preferences, and selects ads accord-
ing to a resulting model; by doing this tracking at the user’s
device, privacy can be protected (see Adnostic [Toubiana
2010]). We implement Adnostic’s web page categorization,
which maps a user’s keywords to one of the hierarchical
interest categories—down to nesting levels 3-5—from the
DMOZ open directory [dmo]. The application computes the
cosine similarity between user interest keywords and prede-
fined category keywords.

For these applications, the static analysis with JChord
took 23 seconds on average with sun jdk1.6.0 22 on a desk-
top machine; recall that this analysis need only be run once
per application. Generating an optimizer (ILP) script from
the profile trees, constraints and execution conditions, and
solving the optimization problem, takes less than one sec-
ond.

Table 1 shows the execution times of the applications at
the phone alone or at the clone alone. The clone execution
time is a lower-bound on execution time since, in practice, at
least some part of the application must run on the phone. The
difference between columns 3 and 4 captures the speedup
opportunity due to the disparity between phone and cloud
computation resources.



V
S

 0
 1
 2
 3
 4
 5
 6

Phone CC-WiFi CC-3GE
ne

rg
y 

co
ns

um
pt

io
n 

(J
) 100KB

M
1x

M
1x

 0

 10

 20

 30

 40

 50

Phone CC-WiFi CC-3G

1MB

O
1.7x

M
1x

 0

 100

 200

 300

 400

 500

Phone CC-WiFi CC-3G

10MB

O
12x

O
5.6x

IS

 0

 4

 8

 12

 16

 20

Phone CC-WiFi CC-3GE
ne

rg
y 

co
ns

um
pt

io
n 

(J
) 1 image

M
1x

M
1x

 0
 30
 60
 90

 120
 150
 180

Phone CC-WiFi CC-3G

10 images

O
4.4x

O
2.3x

 0
 300
 600
 900

 1200
 1500
 1800

Phone CC-WiFi CC-3G

100 images

O
20x

O
14x

B
P

 0

 0.5

 1

 1.5

 2

 2.5

Phone CC-WiFi CC-3GE
ne

rg
y 

co
ns

um
pt

io
n 

(J
) Depth 3

M
1x

M
1x

 0
 10
 20
 30
 40
 50
 60

Phone CC-WiFi CC-3G

Depth 4

O
2.0x

O
0.8x

 0

 50

 100

 150

 200

 250

Phone CC-WiFi CC-3G

Depth 5

O
8.8x

O
3.8x

Figure 9. Mean phone energy consumption of virus scanning (VS), image search (IS), and behavior profiling (BP) applications
with standard deviation error bars, three input sizes for each. For each application and input size, the data shown include
execution time at the phone alone, that of CloneCloud with WiFi (CC-WiFi), and that of CloneCloud with 3G (CC-3G). The
partition choice is annotated with M for “monolithic” and O for “off-loaded,” also indicating relative improvement over phone-
only execution.

Figures 8 and 9 shows execution times and phone en-
ergy consumption for the three applications, respectively. All
measurements are the average of five runs. Each graph shows
Phone, CloneCloud with WiFi (CC-WiFi), and CloneCloud
with 3G (CC-3G). CC-Wifi and CC-3G results are annotated
with the relative improvement and the partitioning choice,
whether the optimal partition was to run monolithically on
the phone (M) or to off-load to the cloud (O). In the experi-
ments, WiFi had latency of 69ms and bandwidth of 6.6Mbps,
and 3G had latency of 680ms, and bandwidth of 0.4Mbps.

CloneCloud chooses to keep local the smallest workloads
from each application, deciding to off-load 6 out of 9 ex-
periments with WiFi. With 3G, out of all 9 experiments,
CloneCloud chose to off-load 5 experiments. For off-loaded
cases, each application chooses to offload the function that
performs core computation from its worker thread: scanning
files for virus signature matching for VS, performing image
processing for IS, and computing similarities for BP. CC-
WiFi exhibits significant speed-ups and energy savings: 12x,
20x, and 10x speed-up, and 12x, 20x, and 9x less energy for
the largest workload of each of the three applications, with a
completely automatic modification of the application binary
without programmer input. A clear trend is that larger work-
loads benefit from off-loading more: this is due to amortiza-
tion of the migration cost over a larger computation at the
clone that receives a significant speedup.

A secondary trend is that energy consumption mostly fol-
lows execution time: unless the phone switches to a deep
sleep state while the application is off-loaded at the clone,
its energy expenditure is proportional to how long it is wait-
ing for a response. When the user runs a single application
at a time, deeper sleep of the phone may further increase ob-
served energy savings. We note that one exception is CC-3G,
where although execution time decreases, energy consump-
tion increases slightly for behavior profiling with depth 4.
We believe this is due to our coarse energy cost model, and
only occurs for close decisions. We hope to explore a finer-
grained energy cost model that better captures energy con-
sumption as future work.

CC-3G also exhibits 7x, 16x, and 5x speed-up, and 6x,
14x, and 4x less energy for the largest workload of each of
the three applications. Lower gains can be explained given
the overhead differences between WiFi and 3G networks.
As a result, whereas migration costs about 15-25 seconds
with WiFi, it shoots up to 40-50 seconds with 3G, due to the
greater latency and lower bandwidth. In both cases, migra-
tion costs include a network-unspecific thread-merge cost—
patching up references in the running address space from
the migrated thread—and the network-specific transmission
of the thread state. The former dominates the latter for WiFi,
but is dominated by the latter for 3G. Our current implemen-
tation uses the DEFLATE compression algorithm to reduce
the amount of data to send; we expect off-loading benefits



to improve with other optimizations targeting the network
overheads (in particular, 3G network overheads) such as re-
dundant transmission elimination.

7. Related Work
CloneCloud is built upon previous research done in auto-
matic partitioning, migration, and remote execution. Most
related is the recent work on MAUI [Cuervo 2010]. Simi-
lar to MAUI [Cuervo 2010], CloneCloud partitions applica-
tions using a framework that combines static program analy-
sis with dynamic program profiling and optimizes execution
time or energy consumption using an optimization solver.
For offloaded execution, MAUI performs method shipping
with relevant heap objects, but CloneCloud migrates spe-
cific threads with relevant execution state on demand and
can merge migrated state back to the original process.

Although MAUI and CloneCloud have similar work-
flows, a number of differences distinguish them. First, sup-
porting native method calls was an important design choice
we made, which increases its applicability. MAUI does
not support remotely executing virtualized methods call-
ing native functions (e.g., two methods that share native
state). Second, CloneCloud requires little programmer help,
whereas MAUI requires programmers to annotate methods
as REMOTABLE. Third, MAUI does not focus on the details
of method shipping, whereas we present a detailed design for
state migration and merging, which is a major source of de-
sign challenges. Lastly, CloneCloud solves the optimization
problem asynchronously, whereas MAUI requires a solver to
be running at the server at runtime.

Further out, there is a much prior work on partitioning,
migration, and remote execution, which we summarize.

Partitioning We first summarize work on partitioning of
distributed systems. Coign [Hunt 1999] automatically parti-
tions a distributed application composed of Microsoft COM
components to reduce communication cost of partitioned
components. The application must be structured to use COM
components and partitioning points are coarse-grained COM
boundaries. Coign focuses on static partitioning, which
works better in a stable environment. Giurgiu [2009] takes
a similar approach for applications designed on top of distri-
bution middleware such as OSGi. Wishbone [Newton 2009]
and Pleiades [Kothari 2007] compile a central program into
multiple code pieces with stubs for communication. They
are primarily intended for sensor networks, and they re-
quire programs to be written in special languages (a stream-
processing language, and an extended version of C, respec-
tively). J-Orchestra [Tilevich 2002] creates partitioned appli-
cations automatically by a compiler that classifies anchored
unmodifiable, anchored modifiable, or mobile classes. Af-
ter the analysis, it rewrites all references into indirect ref-
erences (i.e., references to proxy objects) for a cluster of
machines, and places classes with location constraints (e.g.,
ones with native state constraints) to proper locations. Fi-

nally, for distributed execution of partitioned applications, it
relies on the RMI middleware. Chroma [Balan 2003] uses
tactics, application-specific knowledge for remote execution
in a high-level declarative form, for run-time partitioning.

There are also Java program partitioning systems for mo-
bile devices, whose limitation is that only Java classes with-
out native state can be placed remotely [Gu 2003, Messer
2002, Ou 2007]. The general approach is to partition Java
classes into groups using adapted MINCUT heuristic al-
gorithms to minimize the component interactions between
partitions. Also, different proposals consider different addi-
tional objectives such as memory, CPU, or bandwidth. Be-
sides disallowing native execution offloading, this previous
work does not consider partitioning constraints like our work
does, the granularity of partitioning is coarse since it is at
class level, and it focuses on static partitioning.

On a related front, Links [Cooper 2006], Hops [Serrano
2006], and UML-based Hilda [Yang 2006] aim to statically
partition a client-server program written in a high-level func-
tional language or a high-level declarative language into two
or three tiers. Yang [2007] examines partitioning of pro-
grams written in Hilda based on cost functions for optimiz-
ing user response time. Swift [Chong 2007] statically par-
titions a program written in the Jif programming language
into client-side and server-side computation. Its focus is to
achieve confidentiality and integrity of the partitioned pro-
gram with the help of security labels in the program anno-
tated by programmers.

Migration There has been previous work on supporting
migration in Java. MERPATI [Suezawa 2000] provides JVM
migration checkpointing the entire heap and all the thread
execution environments (call stack, local variables, operand
stacks) and resuming from a checkpoint. In addition, there
have been different approaches on distributed Java virtual
machines (DJVMs). They assume a cluster environment
where homogeneous machines are connected via fast inter-
connect, and try to provide a single system image to users.
One approach is to build a DJVM upon a cluster below
the JVM. Jessica [Ma 1999] and Java/DSM [Yu 1997] rely
on page-based distributed shared memory (DSM) systems
to solve distributed memory consistency problems. To ad-
dress the overhead of false sharing in page-based DSM, Jes-
sica2 [Zhu 2002] is an object-based solution. cJVM [Aridor
1999] modifies the JVM to support method shipping to re-
mote objects with proxy objects, creating threads remotely,
and supporting distributed stacks. Object migration systems
such as Emerald [Jul 1988] move objects to the sites run-
ning threads requesting to access the objects. In contrast,
CloneCloud migration chooses partial threads to offload,
moves only their relevant execution state (thread stack and
reachable heap objects), and supports merging between ex-
isting state and migrated execution state.

Remote execution Remote execution of resource-intensive
applications for resource-poor hardware is a well-known ap-



proach in mobile/pervasive computing. Most remote execu-
tion work carefully designs and pre-partitions applications
between local and remote execution. Typical remote exe-
cution systems run a simple visual, audio output routine
at the mobile device and computation-intensive jobs at a
remote server [Balan 2002, Flinn 2001; 1999, Fox 1996,
Rudenko 1998, Young 2001]. Rudenko [1998] and Flinn
[1999] explore saving power via remote execution. Cyber
foraging [Balan 2002; 2007] uses surrogates (untrusted and
unmanaged public machines) opportunistically to improve
the performance of mobile devices, similarly to data stag-
ing [Flinn 2003] and Slingshot [Su 2005]. In particular,
Slingshot creates a secondary replica of a home server at
nearby surrogates. ISR [Satyanarayanan 2005] provides the
ability to suspend on one machine and resume on another
machine by storing virtual machine (e.g., Xen) images in a
distributed storage system.

8. Discussion and Future Work
CloneCloud is limited in some respects by its inability to
migrate native state and to export unique native resources
remotely. Conceptually, if one were to migrate at a point
in the execution in which a thread is executing native code,
or has native heap state, the migrator would have to collect
such native context for transfer as well. However, the com-
plexity of capturing such information in a portable fashion
(and the complexity of integrating such captures after mi-
gration) is significantly higher, given processor architecture
differences, differences in file descriptors, etc. As a result,
CloneCloud focuses on migrating at execution points where
no native state (in the stack or the heap) need be collected
and migrated.

A related limitation is that CloneCloud does not virtual-
ize access to native resources that are not virtualized already
and are not available on the clone. For example, if a method
accesses a camera/GPS on the mobile device, CloneCloud
requires that method to remain pinned on the mobile device.
In contrast, networking hardware or an unvirtualized OS fa-
cility (e.g., Android’s image processing API) are available
on both the mobile device and the clone, so a method that
needs to access them need not be pinned. An alternative de-
sign would have been to permit migration of such methods,
but enable access to the unique native resource via some
RPC-like mechanism. We consider this alternative a com-
plementary point in the design space, and plan to pursue it in
conjunction with thread-granularity migration in the future.

The system presented in this paper allows only perfunc-
tory concurrency between the unmigrated threads and the
migrated thread; pre-existing state on the mobile device re-
mains unmodifiable until the migrant thread returns. As long
as local threads only read existing objects and modify only
newly created objects, they can operate in tandem with the
clone. Otherwise, they have to block. A promising direction,
whose benefits may or may not be borne out by the associ-

ated complexity, lies in extending this architecture to support
full concurrency between the mobile device and clones. To
achieve this, we need to add thread synchronization, heap
object synchronization, on-demand object paging to access
remote objects, etc.

While in this paper we assume that the environment in
which we run clone VMs is trusted, the future of roaming de-
vices that use clouds where they find them demands a more
careful approach. For instance, many have envisioned a fu-
ture in which public infrastructure machines such as public
kiosks [Garriss 2008] and digital signs are widely available
for running opportunistically off-loaded computations. We
plan to extend our basic system to check that the execution
done in the remote machine is trusted. Automatically refac-
toring computation around trusted features on the clone is an
interesting research question.

9. Conclusion
This paper takes a step towards seamlessly interfacing be-
tween the mobile and the cloud. Our system overcomes de-
sign and implementation challenges to achieve basic aug-
mented execution of mobile applications on the cloud, rep-
resenting the whole-sale transfer of control from the device
to the clone and back. We combine partitioning, migration
with merging, and on-demand instantiation of partitioning to
address these challenges. Our prototype delivers up to 20x
speedup and 20x energy reduction for the simple applica-
tions we tested, without programmer involvement, demon-
strating feasibility for the approach, and opening up a path
for a rich research agenda in hybrid mobile-cloud systems.
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