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ABSTRACT
We present an effective dynamic analysis for finding a broad
class of deadlocks, including the well-studied lock-only dead-
locks as well as the less-studied, but no less widespread or
insidious, deadlocks involving condition variables. Our anal-
ysis consists of two stages. In the first stage, our analysis
observes a multi-threaded program execution and generates
a simple multi-threaded program, called a trace program,
that only records operations observed during the execution
that are deemed relevant to finding deadlocks. Such op-
erations include lock acquire and release, wait and notify,
thread start and join, and change of values of user-identified
synchronization predicates associated with condition vari-
ables. In the second stage, our analysis uses an off-the-shelf
model checker to explore all possible thread interleavings of
the trace program and check if any of them deadlocks. A
key advantage of our technique is that it discards most of the
program logic which usually causes state-space explosion in
model checking, and retains only the relevant synchroniza-
tion logic in the trace program, which is sufficient for finding
deadlocks. We have implemented our analysis for Java, and
have applied it to twelve real-world multi-threaded Java pro-
grams. Our analysis is effective in practice, finding thirteen
previously known as well as four new deadlocks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Reliability, Verification

Keywords
deadlock detection, dynamic program analysis, concurrency

1. INTRODUCTION
A deadlock in a multi-threaded program is an unintended

condition in which one or more threads block forever waiting
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for a synchronization event that will never happen. Dead-
locks are a common problem in real-world multi-threaded
programs. For instance, 6,500/198,000 (∼ 3%) of the bug
reports in the bug database at http://bugs.sun.com for
Sun’s Java products involve the keyword “deadlock” [11].
Moreover, deadlocks often occur non-deterministically, un-
der very specific thread schedules, making them harder to
detect and reproduce using conventional testing approaches.
Finally, extending existing multi-threaded programs or fix-
ing other concurrency bugs like races often involves intro-
ducing new synchronization, which, in turn, can introduce
new deadlocks. Therefore, deadlock detection tools are im-
portant for developing and testing multi-threaded programs.

There is a large body of work on deadlock detection in
multi-threaded programs, including both dynamic analyses
[2, 3, 7, 8, 11] and static analyses [4, 5, 10, 14, 15, 18, 19].
Most of these approaches exclusively detect resource dead-
locks, a common kind of deadlock in which a set of threads
blocks forever because each thread in the set is waiting to
acquire a lock held by another thread in the set. Specifically,
these techniques check if the program follows a common id-
iom, namely, that there is no cycle in the lock-order graph
consisting of nodes corresponding to each lock and edges
from l1 to l2 where lock l2 could be acquired by a thread
while holding lock l1. Dynamic analyses predict violations
of this idiom by analyzing multi-threaded executions of the
program that do not necessarily deadlock, whereas static
analyses do so by analyzing the source code or an interme-
diate representation of the source code of the program.

However, deadlocks besides resource deadlocks, namely
communication deadlocks that result from incorrect use of
condition variables (i.e. wait-notify synchronization), as well
as deadlocks resulting from unintended interaction between
locks and condition variables, are no less widespread or in-
sidious than resource deadlocks. From the user perspective,
deadlocks are harmful regardless of the reason that causes
the involved set of threads to block forever. Yet, in the ex-
tensive literature on deadlock detection only little work (e.g.
[1, 10]) addresses communication deadlocks.

We initially set out to devise a dynamic analysis to predict
communication deadlocks by checking an idiom analogous to
that for resource deadlocks. However, after studying a large
number of communication deadlocks in real-world programs,
we realized that there is no single idiom that programmers
follow when writing code using condition variables. There-
fore, any such dynamic analysis based on checking idioms
would give many false positives and false negatives. The
study also suggested that finding communication deadlocks



is a hard problem as a communication deadlock can be non-
trivially dependent on aspects of the underlying synchro-
nization logic that vary from program to program.

In this paper, we present a novel dynamic analysis, called
CheckMate, to predict a broad class of deadlocks subsum-
ing resource deadlocks, communication deadlocks, and dead-
locks involving both locks and condition variables. Check-
Mate, instead of checking conformance to a particular id-
iom, creates a simple multi-threaded program, called a trace
program, by observing an execution of the original program,
and model checks the trace program to discover potential
deadlocks. The trace program for a given multi-threaded
execution creates an explicit thread for each dynamic thread
created by the execution. The code for each thread in the
trace program consists of the sequence of lock acquires and
releases, wait and notify calls, and thread start and join
calls by the corresponding thread in the original execution.
However, this is not enough: the state of the synchroniza-
tion predicates associated with condition variables must also
be tracked and checked. In the trace programs these syn-
chronization predicates are represented as boolean variables
with explicit assignments where the original program per-
formed an assignment that caused the predicate’s value to
change, and explicit checks before uses of wait and notify.
All other operations performed by a thread in the original
execution, such as method calls, assignments, and expres-
sion evaluations, are not incorporated in the trace program.
In summary, a trace program captures the dynamic syn-
chronization pattern exhibited by the original program ex-
ecution. CheckMate then model checks, i.e. explores all
interleavings of, the trace program and checks if it could
deadlock. If a deadlock is discovered, CheckMate maps
the interleaving back to the original program, and reports it
as a potential deadlock in the original program.

CheckMate analyzes Java programs, but Java does not
make synchronization predicates explicit: any predicate
could be the synchronization predicate for a condition vari-
able, making it difficult to automatically identify them. Syn-
chronization predicates could be inferred statically; however,
we do not focus on such analysis in this paper. Instead,
CheckMate requires that programmers identify synchro-
nization predicates using a lightweight annotation mecha-
nism (Section 4.1). CheckMate uses these annotations to
observe all changes to values of synchronization predicates.
Note that manual annotations are not necessary if the lan-
guage makes synchronization predicates explicit.

In summary, the key contributions of CheckMate are:

• A key insight underlying our approach is that model
checking applied to the trace program is much more
likely to scale than if it were applied to the original
program. This is because the trace program discards
all data operations and computations performed by the
program and only retains operations that are deemed
relevant to finding deadlocks, namely synchronization
operations and changes to values of synchronization
predicates. Moreover, it is generated by observing a
single finite execution of the original program. There-
fore, a trace program has a much smaller (and finite)
state space than the original program and is more
tractable to model check.

• A key benefit of our approach is that it can find any
kind of deadlock irrespective of whether the program
follows a recommended idiom or not.

• Another benefit of our model checking-based approach
over idiom checking-based approaches is that our ap-
proach provides detailed counterexamples explaining
the deadlocks it reports—a feature we have found par-
ticularly useful for debugging communication dead-
lock.
• We believe that our idea of capturing the essential syn-

chronization skeleton of a program execution using a
trace program is novel, and could be applied to dis-
cover other kinds of concurrency bugs, although such
applications might need to extend a trace program
with more kinds of operations.

Our analysis is not sound because a deadlock in the trace
program may not be feasible in the original program. Our
analysis is also not complete as we construct the trace pro-
gram by observing a single execution. Note that this is true
of most predictive dynamic analyses such as Eraser [16] and
Goodlock [8]. However, we have found our analysis to be
effective in practice. We have implemented it and applied
it to twelve real-world multi-threaded Java benchmarks. It
has low run-time overhead, and generates trace programs
that are model checked efficiently using Java PathFinder
(JPF) [17, 9], an explicit state model checker for Java byte-
code. It also has low false positive and false negative rates,
and detects thirteen previously known as well as four new
deadlocks in our benchmarks.

2. RATIONALE
In this section, we explain the rationale behind our ap-

proach after describing the recommended usage pattern for
condition variables.

Recommended Usage
Figure 1 shows the recommended pattern for using condition
variables in Java.1 The condition variable in the figure is
associated with a synchronization predicate b (e.g. “FIFO
X is non-empty”). Any code like F1 that requires b to be
true (e.g. “dequeuing an element from FIFO X”) must hold
the condition variable’s lock l, and repeatedly wait (l.wait())
on the condition variable until b is true. Any code F2 that
might make b true (e.g. “enqueue an element in FIFO X”)
must make these modifications while holding the condition
variable’s lock l, and must notify all threads that might be
waiting for b to become true (l.notifyAll()). After a waiting
thread wakes up, it should again check to see if b indeed
holds for two reasons. First, the notifying thread (F2) may
notify when b is not necessarily true. Second, some other
thread may have invalidated b before the woken thread was
able to acquire lock l.

Our Initial Effort
We devised a dynamic analysis to predict communication
deadlocks using thread interleavings that did not exhibit
the deadlocks. We checked to see if all condition variables
used in such interleavings followed the recommended usage
pattern shown in Figure 1. Consider the real-world code
fragment in Figure 2. Any of its interleavings violates two
aspects of that pattern: first, thread 1 uses an if instead of
a while to check predicate b, and secondly, neither thread

1Strictly speaking, Java uses monitors that combine a lock
and a condition variable. We use lock and condition variable
to clarify to which aspect of a monitor we are referring;
this also makes clearer how CheckMate would apply to
languages with separate locks and condition variables.



// F1 // F2
synch (l) { synch (l) {

while (!b) <change in value
l.wait(); of b that could

<do something that make b true >
requires b = true > l.notifyAll ();

} }

Figure 1: Recommended condition variable usage.
We use synch to abbreviate synchronized.

// Thread 1 // Thread 2
i f (!b)

b = true;
synch (l)

l.notifyAll ();
synch (l)

l.wait();

Figure 2: Deadlock due to missed notification.

accesses b in the same synchronized block as the one con-
taining l.wait() or l.notifyAll(). The analysis we devised
thus reports a possible deadlock in this code fragment re-
gardless of the interleaving it observes. Indeed, the shown
interleaving of this code fragment exhibits a deadlock. In
this interleaving, thread 1 first finds that boolean b is false.
Thread 2 then sets b to true, notifies all threads in the wait
set of l (i.e. the threads that are waiting on l), and re-
leases l. The wait set of l, however, is empty; in particular,
thread 1 is not (yet) waiting on l. Finally, thread 1 resumes
and waits on l, assuming incorrectly that b is still false, and
blocks forever as thread 2—the only thread that could have
notified it—has already sent a notification and terminated.
This is a classic kind of communication deadlock called a
missed notification in Java.

Limitations of Pattern Enforcement
We found pattern-based enforcement to be of limited value,
for two reasons. First, programmers often optimize the rec-
ommended pattern based on their knowledge about the code.
For instance, if the synchronization predicate b is always true
when a thread is woken up, then the thread may not need
to check b again, i.e. the while in F1 can be an if. Or, if a
number of threads are woken up by a notifying thread, but
the first thread that acquires lock l always falsifies the predi-
cate b, then waking up the other threads is pointless. In this
case, the notifying thread (F2) can use notify to wake a
single thread. A real-world example violating the pattern is
found in lucene (version 2.3.0), a text search engine library
by Apache: in some cases, a thread may change the value of a
synchronization predicate in one synchronized block and in-
voke notifyAll() in another synchronized block. Although
the notification happens in a different synchronized block,
it always follows the change in value of the predicate, and
hence there is no deadlock because of this invariant which
the recommended usage pattern does not capture.

Second, code that respects the pattern can still deadlock
because of interactions between other locks and condition
variables. Consider the code in Figure 3 (based on a real ex-
ample): the locks follow the cycle-free lock-order graph id-
iom for avoiding resource deadlocks, and the condition vari-
ables follow the recommended usage pattern in Figure 1 for
avoiding communication deadlocks, yet their combined use
causes a deadlock, exhibited by the shown interleaving. This
code fragment can occur because a library uses the condition
variable involving lock l2, and an application calls into the

// Thread 1 // Thread 2
synch (l1)

synch (l2)
while (!b)

l2.wait();
synch (l1)

synch (l2)
l2.notifyAll ();

Figure 3: Deadlock involving both locks and condi-
tion variables.

library while holding its own lock l1. In fact, this pattern
occurs frequently enough in practice that FindBugs, a popu-
lar static bug-finding tool for Java that checks common bug
patterns, reports that calls to wait() with two locks held
may cause a deadlock [10].

In summary, we could not find an idiom for accurately pre-
dicting all deadlocks by observing interleavings that did not
exhibit them. This motivated us to devise an analysis that
uses a model checker to explore all possible interleavings.
Model checking is difficult to scale to large programs. We
chose to strike a trade-off between scalability, completeness,
and soundness by model checking a trace program obtained
from a single execution of the given program. In doing so,
we sacrifice both completeness and soundness, but our anal-
ysis scales to large programs. This is not only because the
trace program is generated from a single finite execution of
the given program, but also because it only records opera-
tions that we deem are relevant to finding the above kinds of
deadlocks. Not only does our analysis find both deadlocks
discussed above, it does not report a false deadlock for the
correct usage of notification in lucene described above.

3. OVERVIEW
In this section, we illustrate our analysis using the exam-

ple Java program in Figure 4. Class MyBuffer is intended to
implement a thread-safe bounded buffer that allows a pro-
ducer thread to add elements to the buffer and a consumer
thread to remove elements from it. List buf represents the
buffer, cursize denotes the current number of elements in
the buffer, and maxsize denotes the maximum number of
elements allowed in the buffer at any instant. Ignore the
underlined field condition and all operations on it for now.
The program uses a condition variable with two associated
synchronization predicates to synchronize the producer and
consumer threads. The first predicate checks that the buffer
is full (method isFull()), and the second that the buffer is
empty (method isEmpty()).

A producer thread adds elements to the buffer using the
put() method. If the buffer is full, it waits until it gets
notified by a consumer thread. After adding an element
to the buffer, it notifies any consumer thread that may be
waiting for elements to be available in the buffer. Likewise, a
consumer thread removes elements from the buffer using the
get() method. If the buffer is empty, it waits until it gets
notified by a producer thread. After removing an element
from the buffer, if the buffer was full, it notifies any producer
thread that may be waiting for space to be available in the
buffer. Finally, the resize() method allows changing the
maximum number of elements allowed in the buffer.

The main() method creates a MyBuffer object bf with
a maxsize of 1. It also creates and spawns three threads
that execute in parallel: a producer thread p that adds two
integer elements to bf, a consumer thread c that removes



an element from bf, and a third thread r that resizes bf to
have a maxsize of 10.

1 public c lass MyBuffer {
2 private List buf = new ArrayList ();
3 private int cursize = 0, maxsize;
4 private ConditionAnnotation condition =
5 new ConditionAnnotation( this ) {
6 public boolean isConditionTrue () {
7 return (( MyBuffer) o).isFull ();
8 }
9 };
10 public MyBuffer( int max) {
11 maxsize = max;
12 }
13 public synch void put(Object elem) {
14 condition.waitBegin( this );
15 while (isFull ())
16 wait();
17 condition.waitEnd ();
18 buf.add(elem);
19 cursize ++;
20 notify ();
21 }
22 public Object get() {
23 Object elem;
24 synch ( this ) {
25 while (isEmpty ())
26 wait();
27 elem = buf.remove (0);
28 }
29 synch ( this ) {
30 condition.notifyBegin( this );
31 i f (isFull ()) {
32 cursize --;
33 notify ();
34 } else
35 cursize --;
36 condition.notifyEnd ();
37 }
38 return elem;
39 }
40 public synch void resize( int max) {
41 maxsize = max;
42 }
43 public synch boolean isFull () {
44 return (cursize >= maxsize);
45 }
46 public synch boolean isEmpty () {
47 return (cursize == 0);
48 }
49 public stat ic void main(String [] args) {
50 f ina l MyBuffer bf = new MyBuffer (1);
51 Thread p = (new Thread () {
52 public void run() {
53 for ( int i = 0; i < 2; i++)
54 bf.put(new Integer(i));
55 }
56 }).start();
57 Thread r = (new Thread () {
58 public void run() { bf.resize (10); }
59 }).start();
60 Thread c = (new Thread () {
61 public void run() { bf.get(); }
62 }).start();
63 }
64 }

Figure 4: Example with a communication deadlock.

Suppose we execute the program, and the three threads
spawned by the main thread interleave as shown in Figure 5.
In this interleaving, thread p first puts integer 0 into bf.
Since the maxsize of bf is 1, bf is now full. But before p

puts another integer into bf, thread r changes the maxsize

of bf to 10. Thus, bf is not full any more. Thread p then
puts integer 1 into bf. Finally, thread c removes integer
0 from bf. Note that neither of the two wait()’s in the
program is executed in this interleaving. However, there is
another interleaving of threads p, r, and c that deadlocks.
This interleaving is shown in Figure 6. Thread p puts integer
0 into bf. Since the maxsize of bf is 1, bf gets full. When p

tries to put another integer into bf, it executes the wait() in
the put() method and blocks. Thread r then increases the
maxsize of bf, and thus, bf is not full any more. Thread c

then removes integer 0 from bf. Since bf is not full any more
(as thread r grew its capacity), it does not notify thread p.
Thus, p blocks forever.

Our analysis can predict the deadlock from the interleav-
ing in Figure 5, although that interleaving does not exhibit
the deadlock, and does not even execute any wait(). For
this purpose, our analysis records three kinds of information
during the execution of that interleaving. First, it records
synchronization events that occur during the execution, like
lock acquires and releases, calls to wait() and notify(), and
calls to start() and join() threads. Secondly, it records
changes to the value of any predicate associated with a con-
dition variable during the execution. Since Java has no
explicit synchronization predicates associated with condi-
tion variables, our analysis requires the user to explicitly
identify each such predicate by defining an instance of class
ConditionAnnotation (shown in Figure 8). In our example
in Figure 4, there are two condition variables in class My-

Buffer, one for predicate isFull(), and the other for pred-
icate isEmpty(). We manually annotate the MyBuffer class
with the underlined field condition defined on lines 4-9 to
identify predicate isFull(). This field holds a Conditio-

nAnnotation object that defines a method isCondition-

True() that can determine in any program state whether
that predicate is true. Our analysis uses this method to de-
termine if each write in the observed execution changes the
value of predicate isFull(). We provide a similar annota-
tion (not shown for brevity) for predicate isEmpty(). Note
that our annotations are very simple to add if we know the
implicit synchronization predicates associated with condi-
tion variables. These annotations can also be inferred auto-
matically using static analysis, but we leave that to future
work.

Thirdly, our analysis also records each wait() and no-

tify() event that did not occur during the observed ex-
ecution because the condition under which it would have
occurred was false in that execution. Our analysis again
relies on manual annotations for this purpose, this time in
the form of calls to pre-defined methods waitBegin(), wait-
End(), notifyBegin(), and notifyEnd() on the Conditio-

nAnnotation object corresponding to the predicate associ-
ated with the condition. The annotations on lines 14 and 17
denote that the execution of wait() in the put() method
depends on the value of predicate isFull(). During execu-
tion, even if this predicate is false, these annotations enable
our analysis to record that had it been true, the wait()

would have executed. Likewise, the annotations on lines 30
and 36 denote that the execution of notify() in the get()

method depends on the value of predicate isFull(). Simi-
lar annotations (not shown for brevity) are added to handle
the use of the isEmpty() predicate.

Our analysis generates the Java program shown in Fig-



// Thread p // Thread r // Thread c
bf.put(0)

bf.resize (10)
bf.put(1)

bf.get()

Figure 5: Non-deadlocking interleaving for Figure 4.

// Thread p // Thread r // Thread c
bf.put(0)
bf.put(1)

bf.resize (10)
bf.get()

Figure 6: Deadlocked interleaving for Figure 4.

1 public c lass TraceProgram {
2 stat ic Object bf = new Object ();
3 stat ic boolean isFull;
4 stat ic Thread main = new Thread () {
5 public void run() {
6 isFull = f a l se ;
7 p.start();
8 r.start();
9 c.start();
10 }
11 };
12 stat ic Thread p = new Thread () {
13 public void run() {
14 synch (bf) { // enter bf.put(0)
15 i f (isFull) {
16 synch (bf) { bf.wait(); }
17 }
18 isFull = true;
19 bf.notify ();
20 } // leave bf.put(0)
21 synch (bf) { // enter bf.put(1)
22 i f (isFull) {
23 synch (bf) { bf.wait(); }
24 }
25 bf.notify ();
26 } // leave bf.put(1)
27 }
28 };
29 stat ic Thread r = new Thread () {
30 public void run() {
31 synch (bf) { // enter bf.resize (10)
32 isFull = f a l se ;
33 } // leave bf.resize (10)
34 }
35 };
36 stat ic Thread c = new Thread () {
37 public void run() {
38 synch (bf) { // enter bf.get()
39 i f (isFull) {
40 synch (bf) { bf.notify (); }
41 }
42 } // leave bf.get()
43 }
44 };
45 public stat ic void main(String [] args) {
46 main.start();
47 }
48 }

Figure 7: Trace program generated by observing the
execution of the interleaving in Figure 5 of the ex-
ample in Figure 4.

ure 7, which we call a trace program, by observing the exe-
cution of the interleaving in Figure 5 and with the help of
the above annotations. Note that the trace program has
excluded all the complex control structure (e.g. the for

loop and method calls) and memory updates (e.g. changes
in cursize and buf) and has retained the necessary syn-
chronization operations that happened during the execution.
This simple trace program without the complicated program
logic of the original program is much more efficient to model
check.

In the trace program, we have used descriptive identifier
names and comments to help relate it to the original pro-
gram. Such comments and identifier names help our analysis
to map any error trace in the trace program to the origi-
nal program, which could be used for debugging. The fact
that our analysis can generate an informative error trace in
the original program is a key advantage of our technique
over other predictive dynamic analysis techniques. In the
trace program, bf denotes the instance of MyBuffer created
during the observed execution. Note that we make bf of
type Object, instead of type MyBuffer, because we do not
need to worry about the program logic in the trace pro-
gram. isFull denotes predicate bf.isFull() upon which
the wait() in the put() method and notify() in the get()

method are control-dependent. The main thread main ini-
tializes isFull to false, and starts threads p, r, and c as
in the observed execution. Note that although the wait()

in the put() method is not executed in either of the two
calls to bf.put() by thread p in that execution, the run()

method of thread p in the trace program records that this
wait() would have been executed in either call had isFull

been true. Also, isFull is set to true on line 18 since the
buffer becomes full after thread p puts the first integer 0
into it. Thread r is the thread that resizes the buffer and
increases its maxsize. The run() method of thread r sets
isFull to false on line 32 since the buffer is no longer full
after its maxsize has been increased. Finally, although the
notify() in the get() method is not executed in the call to
bf.get() by thread c in the observed execution, the run()

method of thread c in the trace program records that the
notify() would have been executed had isFull been true.
Thus, the trace program captures all synchronization events
in the observed execution, any writes in that execution that
change the value of any annotated predicate associated with
a condition variable, as well as any annotated wait()’s and
notify()’s that did not occur in that execution but could
have occurred in a different execution. All other operations
in the observed execution of the original program are not
deemed relevant to finding deadlocks.

There exists an interleaving of the threads in this trace
program that corresponds to the interleaving in Figure 6
that exhibits the deadlock. In this interleaving of the trace
program, p executes its run() method till the wait() on line
23, where it gets blocked. Then, r completely executes its
run() method and exits. Thereafter, c executes its run()

method, but does not notify p because isFull is false. Thus,
p blocks forever waiting to be notified by c. Our analysis
uses an off-the-shelf model checker to explore all possible
interleavings of the trace program and check if any of them
deadlocks. In the process of model checking, it encounters
this interleaving, and thus finds the deadlock in the original
program.

4. ALGORITHM
In this section, we present our deadlock detection algo-

rithm. We first describe the annotations our algorithm re-
quires (Section 4.1). We then formalize the execution of a
concurrent system that includes the operations that our al-



gorithm deems relevant to finding deadlocks (Section 4.2),
and use that formalization to describe our trace program
generation algorithm (Section 4.3). We then discuss how to
model check the trace program to report possible deadlocks
in the original program (Section 4.4).

4.1 Condition Annotations

1 public abstract c lass ConditionAnnotation{
2 protected stat ic int counter = 0;
3 protected Object o;
4 protected int condId;
5 protected boolean curVal;
6 public ConditionAnnotation(Object o1) {
7 o = o1; condId = counter ++;
8 associateWithObject(o1); initCond ();
9 }
10 public abstract boolean isConditionTrue

();
11 public void waitBegin(Object lock) {
12 int lockId = getUniqueObjId(lock);
13 boolean val = isConditionTrue ();
14 addLine(“if (c”+condId+“) {”);
15 i f (!val)
16 addLine(“synchronized

(l”+lockId+“)”+“{l”+lockId+“.wait();}”);
17 }
18 public void waitEnd () { addLine(“}”); }
19 public void notifyBegin(Object lock) {
20 int lockId = getUniqueObjId(lock);
21 boolean val = isConditionTrue ();
22 addLine(“if (c”+condId+“) {”);
23 i f (!val)
24 addLine(“synchronized (l”+lockId+“)”+“{l”+

lockId+“.notify();}”);
25 }
26 public void notifyEnd () { addLine(“}”); }
27 public void logChange () {
28 boolean newVal = isConditionTrue ();
29 i f (newVal != curVal) {
30 addLine(“c”+condId+“=”+newVal+“;”);
31 curVal = newVal;
32 }
33 }
34 private void associateWithObject(Object

o) {
35 . . . associate this instance of ConditionAnnotation

with the object o ...
36 }
37 private void initCond () {
38 curVal = isConditionTrue ();
39 addLine(“c”+condId+“=”+curVal+“;”);
40 }
41 }

Figure 8: Definition of class ConditionAnnotation.

Our algorithm requires users to annotate the predicate
associated with each condition variable in a Java program
using class ConditionAnnotation (Figure 8). For brevity,
we do not show the synchronization required to make Con-

ditionAnnotation thread-safe. We describe here how pro-
grammers use ConditionAnnotation to annotate their pro-
grams; Section 4.3 shows how our algorithm uses these an-
notations to generate the trace program.

For each predicate associated with a given condition vari-
able, the user subclasses ConditionAnnotation, implement-
ing its abstract method isConditionTrue(). This method
must evaluate to true if and only if the predicate evaluates to
true. This predicate will depend on one or more Java objects

1 public c lass AddLinesToTraceProgram {
2 public Map thrToLines = new TreeMap ();
3 public int getUniqueObjId(Object o) {
4 . . . return unique integer ID for object o ...
5 }
6 public void addLine(String line) {
7 ...append line to list mapped to current thread in

thrToLines ...
8 }
9 }

Figure 9: Definition of class AddLinesToTraceProgram

used by class ConditionAnnotation and Algorithm 1.

or static fields. For simplicity, we describe here only the case
where the predicate depends on a single object o, but our
implementation handles the more general case. The object
o is passed to the ConditionAnnotation constructor and ac-
cessed by the isConditionTrue() implementation. Finally,
the user calls pre-defined methods waitBegin(), waitEnd(),
notifyBegin(), and notifyEnd() on the created instance of
ConditionAnnotation before and after any calls to wait(),
notify(), and notifyAll() that are control-dependent on
the predicate.

Figure 4 shows the annotations required for the buffer-
full predicate. The underlined field condition defined on
lines 4-9 specifies the actual predicate (line 7, simply a call
to method isFull() of class MyBuffer) and the object on
which it depends (line 5, the MyBuffer instance). On lines
14, 17, 30 and 36 it specifies the predicate-dependent calls
to wait() and notify().

4.2 Concurrent System
In this section, we formalize the execution of a concurrent

system in terms of the operations that our algorithm deems
relevant to finding deadlocks. It is straightforward to express
the synchronization logic of a multi-threaded Java program
in this system.

A concurrent system consists of a finite number of threads
that communicate with each other using shared objects. At
any instant, the system is in a state s, in which each thread
is at a statement. It transitions from one state to another
with the execution of a statement by a thread. The initial
state is denoted by s0. We assume that locks are acquired
and released by each thread in a nested manner, that is, if a
thread acquires l1 before l2 then it releases l2 before l1. This
is true for Java programs. Our algorithm can be extended
to settings with arbitrary locking patterns. We also assume
that each thread t is started only once. A statement may
be of one of the following forms (we use “current thread” to
denote the thread executing the statement):

1. Acquire(l): the current thread acquires lock l.

2. Release(): the current thread releases the lock it last
acquired.

3. Wait(l): the current thread is waiting on the condition
variable (monitor) l.

4. Notify(l): the current thread notifies a thread (if any)
waiting on the condition variable l.

5. NotifyAll(l): the current thread notifies all threads
waiting on the condition variable l.

6. Start(t): the current thread starts a fresh thread t,
that is, a thread that has not yet been started.

7. Join(t): the current thread is waiting for thread t to
finish executing.



Algorithm 1 TraceProgramGenerator(s0)

1: s ⇐ s0
2: while Enabled(s) 6= ∅ do
3: t ⇐ a random thread in Enabled(s)
4: stmt ⇐ next statement to be executed by t
5: s ⇐ Execute(s,t)
6: if stmt = Acquire(l) then
7: lId ⇐ getUniqueObjId(l)
8: addLine( “synchronized (l” + lId + “) {” )
9: else if stmt = Release() then

10: addLine( “}” )
11: else if stmt = Wait(l) then
12: lId ⇐ getUniqueObjId(l)
13: addLine( “l” + lId + “.wait();” )
14: else if stmt = Notify(l) then
15: lId ⇐ getUniqueObjId(l)
16: addLine( “l” + lId + “.notify();” )
17: else if stmt = NotifyAll(l) then
18: lId ⇐ getUniqueObjId(l)
19: addLine( “l” + lId + “.notifyAll();” )
20: else if stmt = Start(t) then
21: tId ⇐ getUniqueObjId(t)
22: addLine( “t” + tId + “.start();” )
23: else if stmt = Join(t) then
24: tId ⇐ getUniqueObjId(t)
25: addLine( “t” + tId + “.join();” )
26: else if stmt = Write(o) || Stmt = Call(o) then
27: for each ConditionAnnotation c associated with o do
28: c.logChange()
29: end for
30: end if
31: end while
32: if Active(s) 6= ∅ then print ‘System Stall!’ endif
33: CreateTraceProgram(AddLinesToTraceProgram.thrToLines)

8. Write(o): the current thread writes to (some field of)
object o.

9. Call(o): the current thread invokes a method on ob-
ject o.

We also use the following definitions in our algorithm:

1. Enabled(s) denotes the set of all threads that are en-
abled in state s. A thread is disabled in the following
situations: (i) it is waiting to acquire a lock currently
held by another thread, (ii) it is waiting to be noti-
fied by another thread, or (iii) it is waiting for another
thread to finish executing.

2. Active(s) denotes the set of all threads that have not
finished executing in state s.

3. Execute(s,t) denotes the next state resulting from the
execution of thread t’s next statement in state s.

4.3 Generating the Trace Program
The first stage of CheckMate, Algorithm 1 generates

a trace program by observing an execution of a program
with synchronization predicate annotations. It populates
global map thrToLines in class AddLinesToTraceProgram

(Figure 9) while observing the execution. Map thrToLines

maps each thread in the observed execution to a list of
strings. Each string is a statement or a part of a statement,
and the whole list is a legal block of statements that con-
stitutes the body of the corresponding thread in the trace
program. Whenever a synchronization statement is executed
by a thread in the observed execution, the algorithm calls
method addLine() in class AddLinesToTraceProgram to add
the string it generates to the list mapped to that thread in

Algorithm 2 CreateTraceProgram(thrToLines)

1: lockIds ⇐ set of lock identifiers in thrToLines
2: predIds ⇐ set of synchronization predicate identifiers in

thrToLines
3: thrIds ⇐ set of thread identifiers in thrToLines
4: print “public class TraceProgram {”
5: for all lId such that lId is in lockIds do
6: print “static Object l” + lId + “= new Object();”
7: end for
8: for all pId such that pId is in predIds do
9: print “static boolean p” + pId + “;”

10: end for
11: for all tId such that tId is in thrIds do
12: print “ static Thread t” + tId + “= new Thread() {”
13: print “ public void run() {”
14: for all s such that s is in thrToLines[tId] do
15: print s
16: end for
17: print “} };”
18: end for
19: print “ public static void main(String[] args) {”
20: for all tId: tId+“.start();” not in any list in thrToLines do
21: print tId+“.start();”
22: end for
23: print “ } }”

thrToLines. The generated string depends on the kind of
synchronization statement that was executed.

If a lock acquire statement is executed, the algorithm be-
gins a synchronized statement for the involved lock object.
The lock object is uniquely identified in the trace program
using method getUniqueObjId() in class AddLinesToTra-

ceProgram which provides a unique integer for each object
created in the observed execution. If a lock release state-
ment is executed, the algorithm closes the last synchro-

nized statement that it had started for the thread. We had
earlier stated our assumption that locks are acquired and
released in a nested fashion. Thus, a lock release statement
always releases the lock that was most recently acquired by
the thread.

If a wait() statement is executed, the algorithm gener-
ates a corresponding wait() statement. Similarly, when a
notify(), notifyAll(), start(), or join() statement is
executed, a corresponding statement is generated.

If a statement writing to (some field of) object o is exe-
cuted, or a method is called on an object o, then the algo-
rithm finds all ConditionAnnotation objects that are associ-
ated with object o (this association is setup in the Conditio-
nAnnotation constructor). After the write or the method
call, the state of o may have changed, and hence the pred-
icates associated with those ConditionAnnotation objects
may have also changed. The trace program needs to track
changes to the values of predicates associated with condi-
tion variables. For this purpose, the algorithm calls method
logChange() in class ConditionAnnotation to evaluate the
predicate and check if its value has indeed changed, and if so,
generates a statement writing the new value to the variable
associated with the predicate.

When calls to the pre-defined methods waitBegin(), wai-
tEnd(), notifyBegin(), and notifyEnd() (Figure 8) that
have been added as annotations execute, statements are
generated for the trace program that capture the control-
dependence of the execution of the wait() or notify()

or notifyAll() on the synchronization predicate that has
been annotated. These statements are also added using the



method addLine() in class AddLinesToTraceProgram. We
use if statements to capture the control dependence; with
better annotations or program analysis, we can use while
statements wherever appropriate to state the control depen-
dence.

After observing the complete execution, the algorithm cre-
ates a legal Java program (trace program) by calling method
CreateTraceProgram() defined in Algorithm 2. It creates
an object for each lock object, a boolean variable for each
predicate, and a thread object for each thread in the ob-
served execution. For each created thread, it prints a run()

method containing the list of strings generated for the corre-
sponding thread in map thrToLines. Finally, the algorithm
prints the main() method, and starts all those threads in
it which are not started by any other thread2. The trace
program for the example in Figure 4 is shown in Figure 7.

The algorithm does a couple of optimizations before it
prints the body for each thread. Firstly, it does not print
any synchronized statement that involves a lock that is lo-
cal to the thread. Thread-local locks cannot be involved
in a deadlock, and hence can be safely removed. Secondly,
for any sequence of statements that consists only of syn-

chronized statements, it does the following optimization.
It finds the different nestings of lock acquires within the
sequence. Instead of printing all synchronized statements
present in the sequence, the algorithm prints one block of
nested synchronized statements for each nesting of lock ac-
quires. This removes a lot of redundancy in synchronized

statements because of loops in the original program.

4.4 Model Checking the Trace Program
The second stage of our algorithm uses an off-the-shelf

model checker to explore all possible thread interleavings
of the trace program and check if any of them deadlocks.
A deadlock in the trace program may or may not imply a
deadlock in the original program. The counterexample pro-
vided by the model checker assists in determining whether a
deadlock reported by our algorithm is real or false. Multiple
counterexamples may denote the same deadlock. We group
together counterexamples in which the same set of state-
ments (either lock acquires or calls to wait()) is blocked
and report each such group as a different possible deadlock.
To increase readability, we map the statements in the coun-
terexample back to the corresponding statements in the orig-
inal (non-trace) program. The deadlock for the example in
Figure 4 is shown in Figure 6.

5. EVALUATION
We have implemented our analysis in a prototype tool

called CheckMate for Java programs. Given a Java pro-
gram, we first use the ConditionAnnotation class (Fig-
ure 8) to manually annotate the predicate associated with
each condition variable in the program. CheckMate then
uses JChord [20], a program analysis framework for Java,
to instrument lock acquires and releases, calls to wait(),
notify(), and notifyAll(), calls to thread start() and
join(), and all writes to objects and method calls in the
program. It then executes the annotated, instrumented pro-
gram on given input data and generates the trace program.
Finally, it uses the JPF model checker to explore all possible
executions of the trace program and report deadlocks.

2Normally just the main thread.

5.1 Experimental setup
We applied CheckMate to several Java libraries and ap-

plications. We ran all our experiments on a dual socket
Intel Xeon 2GHz quad core server with 8GB RAM. The
libraries include the Apache log4j logging library (log4j),
the Apache Commons Pool object pooling library (pool),
an implementation of the OSGi framework (felix), the
Apache Lucene text search library (lucene), a reliable mul-
ticast communication library (jgroups), the JDK logging
library (java.util.logging), the Apache Commons DBCP
database connection pooling library (dbcp), and the JDK
swing library (javax.swing). We used two different ver-
sions of jgroups. We wrote test harnesses exercising each
library’s API, including two different harnesses for each of
pool and lucene, and a single harness for each of the re-
maining libraries.

The applications include Groovy, a Java implementa-
tion of a dynamic language that targets Java bytecode
(groovy), JRuby, a Java implementation of the Ruby pro-
gramming language (jruby), and a Java web server from
W3C (jigsaw). For jigsaw, we wrote a harness to concur-
rently send multiple requests and administrative commands
like “shutdown server” to the web server to simulate a con-
current environment.

5.2 Results
Table 1 summarizes our experimental results. The sec-

ond column reports the number of ConditionAnnotation’s
we had to provide, each annotating a different synchroniza-
tion predicate in the benchmark. We report the number of
ConditionAnnotation’s that we had to define, and not the
total number of lines of code that we had to use to define
the ConditionAnnotation’s and to invoke methods on those
ConditionAnnotation’s. The numbers in this column show
that the annotation burden of our approach is very small.

The third column shows the number of lines of Java code
in methods that were executed in the original program. The
fourth column shows the number of lines of Java code in the
trace program. Notice that the trace programs are much
smaller than (executed parts of) original programs although
the trace program unrolls all loops and inlines all methods
executed in the original program.

The fifth column gives the average runtime of the original
program without any instrumentation. We do not report the
runtime for the jigsaw webserver because of its interactive
nature. The sixth column gives the average runtime of the
original program with annotations and instrumentation; it
includes the time to generate the trace program. Compar-
ing these two columns shows that the runtime overhead of
CheckMate is acceptable.

The seventh column gives the average runtime of JPF on
the original program. We could not run JPF on eight of
these programs because it does not support some JDK li-
braries, and has limited support for reflection. For the re-
maining six programs, JPF did not terminate within 1 hour
nor did it report any error traces.

The eighth column shows the average runtime of JPF on
the trace programs. It terminates within a few seconds on
eleven of these programs. It does not terminate within 1
hour for jgroups-2.5.1 and jigsaw-2.2.6, but it reports a
number of error traces in that time. These benchmarks have
a lot of threads (31 for jgroups-2.5.1 and 12 for jigsaw-

2.2.6), hence a huge number of thread interleavings, which



Program No. of Orig Trace Orig Time JPF time JPF time No. of Poten- Confir- Known
name cond prog prog prog to gen on orig on trace error tial med errors

annots LOC LOC time prog prog prog traces errors errors

groovy-1.1-B1 1 45,796 59 0.118s 1s > 1h 1.3s 5 1/0 1/0 1/0
log4j-1.2.13 2 48,023 225 0.116s 1s - 8.7s 167 2/0 1/0 1/0
pool-1.5 4 48,024 136 0.116s 1s > 1h 2.3s 41 1/0 1/0 1/0
(harness 1)
pool-1.5 4 48,024 191 0.123s 1s > 1h 2.6s 36 1/0 1/0 1/0
(harness 2)
felix-1.0.0 4 73,512 113 0.173s 2.8s - - - - 1/0 1/0
lucene-2.3.0 9 68,311 298 0.230s 3s > 1h 1s 0 0/0 0/0 1/0
(harness 1)
lucene-2.3.0 9 81,071 3,534 0.296s 3.6s > 1h 20s 0 0/0 0/0 1/0
(harness 2)
jgroups-2.6.1 12 92,934 118 0.228s 4s - 3.4s 39 2/0 1/0 1/0
jigsaw-2.2.6 17 122,806 3,509 - - - > 1h 7894 2/7 1/5 0/2
jruby-1.0.0RC3 16 136,479 966 1.1s 13.7s - 3.9s 58 1/0 1/0 1/0
jgroups-2.5.1 15 160,644 2,545 9.89s 21s - > 1h 124 1/0 0/0 1/0
java logging 0 43,795 131 0.177s 2s > 1h 3.7s 96 0/2 0/1 0/1
(jdk-1.5.0)
dbcp-1.2.1 0 90,821 400 0.74s 3.3s - 12s 320 0/2 0/2 0/2
java swing 0 264,528 1,155 0.96s 17.6s - 105s 685 3/1 0/1 0/1
(jdk-1.5.0)

Table 1: Experimental results

makes model checking slow. JPF crashes on the trace pro-
gram for felix-1.0.0. Comparing the runtime of JPF on
the original and trace programs shows that it is much more
feasible to model check the trace programs.

The ninth column shows the number of error traces pro-
duced by JPF for the trace programs. An error trace is
an interleaving of threads that leads to a deadlock. Not
each error trace leads to a different deadlock, and thus, the
number of error traces is not an indication of the number
of different deadlocks in the program. Hence, CheckMate
groups together error traces in which the same set of state-
ments (either lock acquires or calls to wait()) is blocked,
and reports each such group as a potential deadlock. The
tenth column shows the number of these potential deadlocks
reported by CheckMate. The eleventh column shows how
many of these deadlocks we could manually confirm as real,
and the final column shows the number of deadlocks that
were previously known to us. The first number in each en-
try in the last three columns is the number of communi-
cation deadlocks including the deadlocks that involve both
locks and condition variables. The second number is the
number of resource deadlocks. In most of the benchmarks,
we were able to find all previously known deadlocks. Since
JPF crashed on the trace program for felix-1.0.0, we ap-
plied a randomized model checker (i.e. a model checker that
tries out random thread schedules) to it. The randomized
model checker reported a deadlock that was the same as it’s
previously known communication deadlock.

5.3 Deadlocks found
We found a number of previously known and unknown

deadlocks in our experiments. We discuss some of them
in detail below. Our running example in Figure 4 doc-
uments the previously known communication deadlock we
found in log4j that is reported at https://issues.apache.
org/bugzilla/show_bug.cgi?id=38137.

Figure 10 shows a previously known deadlock in
groovy reported at http://jira.codehaus.org/browse/

GROOVY-1890. It shows relevant code from MemoryAwareCon-

T2
326:synch (writeLock) {
327: concurrentReads ++;
328:}

T1
126:synch (writeLock) {
304: synch (writeQueue) {
305: while (concurrentReads != 0) {
307: writeQueue.wait();
309: }
310: }
129:}

T2
332:synch (writeLock) {
333: concurrentReads --;
334:}
335:synch (writeQueue) {
336: writeQueue.notify ();
337:}

Figure 10: Deadlock in groovy.

currentReadMap.java. This deadlock is a hybrid between
a communication and resource deadlock. Thread T2 incre-
ments field concurrentReads of a MemoryAwareConcurren-

tReadMap object. Thread T1 checks predicate concurren-

tReads != 0. Since this predicate is true, it executes the
wait() on line 307. T1 executes the wait() on writeQueue,
but it also holds a lock on writeLock. Thread T2 is the
only thread that can wake it up, but before T2 can reach the
notify() on line 336, it needs to acquire the lock on write-

Lock to decrement the value of concurrentReads. Since the
lock on writeLock is held by T1, it gets blocked. Thus, T1
is waiting to be notified by T2, and T2 is waiting for T1 to
release writeLock.

We found a previously unknown communication deadlock
in jigsaw. Figure 11 explains the deadlock. The line num-
bers in the figure are of statements in ResourceStoreMan-

ager.java in the benchmark. Thread T1 is a StoreManager-

Sweeper thread that executes the wait() on line 406 after
it has been started. But, before it can execute this wait(),
the server receives a request to shut down. Thread T2, which
is a httpd server thread, tries to shut down the StoreMan-



T1 T2
417:synch void shutdown () {
419: notifyAll ();
420:}

401:boolean done = f a l se ;
404:while(!done) {
406: wait();
407: done = true;
410:}

Figure 11: Deadlock in jigsaw.

agerSweeper thread, and invokes notifyAll() at line 419
during the process of shutting down. This notifyAll() is
the notification that is meant to wake T1 up when it waits
at the wait() on line 406. Thus, when T1 actually executes
the wait(), it just gets hung there. It has already missed
the notification that was supposed to wake it up.

Two resource deadlocks in jigsaw were known previ-
ously [11]. We not only found those two deadlocks, but we
also found three other resource deadlocks in jigsaw. They
are similar to the two previously known deadlocks in that
they also involve locks on SocketClientFactory and Sock-

etClientState objects, but they differ in the source line
numbers where the locks are acquired.

6. OTHER RELATED WORK
There is little prior work on detecting communication

deadlocks. Agarwal and Stoller [1] dynamically predict
missed notification deadlocks, in particular they define a
happens-before ordering between synchronization events,
and use it to reason if a wait that was woken up by a
notify could have happened after that notify. Farchi et
al [6] describe several concurrency bug patterns that occur
in practice including missed notification. They also describe
a heuristic that can increase the probability of manifesting a
missed notification during testing. Hovemeyer and Pugh [10]
present several common deadlock patterns in Java programs
that are checked by their static tool FindBugs, including
many involving condition variables such as unconditional
wait, wait with more than one lock held, etc. Their patterns
cannot help to detect the deadlock in Figure 4 and missed
notifications in general. Von Praun [18] also statically de-
tects waits that may execute with more than one lock held,
and waits that may be invoked on locks on which there is no
invocation of a notify. His approach too cannot detect the
deadlock in Figure 4 and missed notifications. Li et al [12]
build a deadlock monitor that runs as a system daemon, and
detects deadlocks that actually occur during the execution
of systems with multiple processes or threads. The monitor
can detect deadlocks involving semaphores and pipes in ad-
dition to locks. In CheckMate, we observe a deadlock-free
program execution and predict deadlocks that could occur
in a different execution of the program.

7. CONCLUSION AND FUTURE WORK
We have presented a novel dynamic analysis called

CheckMate that predicts a broad class of deadlocks.
Like most predictive dynamic analyses [16, 8, 13], Check-

Mate is neither complete nor sound. Since it does not track
all control and data dependencies observed during execu-
tion, it can miss deadlocks as well as report false deadlocks.
One way to rectify that would be to use dynamic slicing to
track not just the variables in synchronization predicates,

but also other variables that can affect the values of vari-
ables in synchronization predicates.
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