
Syntax-Guided Synthesis of Datalog Programs

Xujie Si
University of Pennsylvania, USA

xsi@cis.upenn.edu

Woosuk Lee∗

University of Pennsylvania, USA

Hanyang University South Korea

woosuk@cis.upenn.edu

Richard Zhang
University of Pennsylvania, USA

rmzhang@cis.upenn.edu

Aws Albarghouthi
University of Wisconsin-Madison

USA

aws@cs.wisc.edu

Paraschos Koutris
University of Wisconsin-Madison

USA

paris@cs.wisc.edu

Mayur Naik
University of Pennsylvania, USA

mhnaik@cis.upenn.edu

ABSTRACT

Datalog has witnessed promising applications in a variety of do-

mains. We propose a programming-by-example system, alps, to

synthesize Datalog programs from input-output examples. Scaling

synthesis to realistic programs in this manner is challenging due

to the rich expressivity of Datalog. We present a syntax-guided

synthesis approach that prunes the search space by exploiting the

observation that in practice Datalog programs comprise rules that

have similar latent syntactic structure. We evaluate alps on a suite

of 34 benchmarks from three domainsÐknowledge discovery, pro-

gram analysis, and database queries. The evaluation shows that

alps can synthesize 33 of these benchmarks, and outperforms the

state-of-the-art tools Metagol and Zaatar, which can synthesize

only up to 10 of the benchmarks.

CCS CONCEPTS

· Theory of computation→ Program analysis; Active learn-

ing; · Software and its engineering → Programming by ex-

ample;Domain specific languages; · Information systems→

Relational database query languages;

KEYWORDS

Syntax-guided synthesis, Datalog, Active learning, Template aug-

mentation, Program analysis

ACM Reference Format:

Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris,

and Mayur Naik. 2018. Syntax-Guided Synthesis of Datalog Programs. In

Proceedings of the 26th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),

November 4ś9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3236024.3236034

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236034

1 INTRODUCTION

Datalog, a declarative logic programming language, has witnessed

promising applications in a variety of domains, including bioin-

formatics [33, 58], big-data analytics [30, 60, 63], natural language

processing [44], networking [39], program analysis [17, 26], and

robotics [56]. A key reason is the emergence of scalable Datalog

solvers, including open-source [1, 3, 11, 59, 60] and commercial

ones [2, 4, 6, 25]. Moreover, the concise and declarative nature of

Datalog has made it the target of a growing body of meta-reasoning

tools. For instance, program analyses written in Datalog are readily

extensible with features such as fixed point frameworks [14, 40],

abstraction refinement [74], and user interaction [41, 57, 73]. Like-

wise, software-defined networking (SDN) applications written in

Datalog can avail of efficient provenance tracking to help in tasks

such as debugging and repairing [71].

A key hindrance to bringing these benefits to a broad user base

is the lack of automated tools to help develop Datalog programs.

To this end, we propose a programming-by-example system, alps,

to synthesize Datalog programs from input-output examples. This

constitutes a natural next step in many domains such as program

analysis and networking, where reference imperative implementa-

tions can provide input-output examples.

While ostensibly simple, synthesizing such programs is challeng-

ing because Datalog is powerful enough to capture all polynomial

time computations. Learning logic programs from examples has

been extensively studied in a subfield of machine learning called

inductive logic programming (ilp) [45, 49]. However, even state-

of-the-art ilp techniques are very limited in their ability to learn

realistic Datalog programs [9, 50].

We propose a new approach to synthesize Datalog programs.

Our key insight is that such programs in practice comprise rules

that have similar latent syntactic structure. Our approach exploits

this insight via the syntax-guided program synthesis paradigm [10],

wherein the syntactic structure of the target class of programs is

leveraged to efficiently traverse the hypothesis space of programs.

For this purpose, our approach must address three key challenges:

(i) capture syntactic structure effectively, (ii) minimize the number

of examples needed, and (iii) explore the search space efficiently.

We next elaborate upon each of these objectives.

To capture the syntactic structure of rule-based programs, we

use meta-rules [50]Ðtemplates that describe a set of possible rules

that can appear in a program. The key challenge is to obtain a

set of meta-rules that is general enough to capture useful programs

515

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/3236024.3236034

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

but specific enough to enable efficient synthesis. We propose a novel

approach to systematically generate meta-rules, taking advantage

of domain knowledge.

To minimize the number of examples needed, our approach aims

to ask an oracle a small number of queries concerning the expected

output on a given input. The oracle need only answer with yes or

no, rather than crafting elaborate examples and supplying them to

the synthesizer. We use an active learning technique, called query

by committee (qbc) [24, 62], to pick an example that can prune the

search space themost. In our setting, qbc takes as input a committee

formed by a set of consistent programs, and returns an example

on which the committee disagrees the mostÐthe most controversial

example. We then prune the programs that disagree with the given

label and repeat the process. However, it is infeasible to apply qbc

on the entire search space, which is prohibitively large.

To explore the search space efficiently and overcome the chal-

lenge in using qbc, we use a bidirectional synthesis strategy to

maintain the most-general and most-specific programs that are con-

sistent with the given examples [43]. Intuitively, the most-general

and most-specific programs (defined through logical entailment)

form a representative set of the search space, allowing us to pre-

serve exactness of the search. Moreover, this set is much smaller

than the size of the search space, making it an ideal committee. To

incrementally update the search space as examples are labeled, we

define efficient top-down and bottom-up refinement operators that

are guided by the given set of meta-rules.

We have implemented our end-to-end approach in the alps sys-

tem and report on our experience evaluating it on a diverse set

of 34 benchmarks from three domains: knowledge discovery, pro-

gram analysis, and relational queries. The evaluation shows that

alps can synthesize 33 of these benchmarks, and outperforms the

state-of-the-art tools Metagol [19] and Zaatar [9], which can syn-

thesize only up to 10 of the benchmarks.

We summarize the main contributions of this paper:

• We present a syntax-guided approach and system alps for syn-

thesizing Datalog programs from input-output examples.

• alps employs a bidirectional search strategy to efficiently tra-

verse the space of possible programs.

• alpsminimizes the number of required examples using an active

learning technique called query-by-committee.

• We demonstrate the effectiveness of alps at synthesizing real-

istic Datalog programs from diverse domains and its ability to

outperform existing state-of-the-art techniques.

2 OVERVIEW EXAMPLES

alps learns Datalog programs that are correct with respect to a

given instance of input and output relations. In this section, we

first present two illustrative examples that highlight applications of

alps in two domains: program analysis and relational queries. We

then present an example to elucidate key design choices in alps.

We also use it as the running example in the rest of the paper.

Example 2.1 (Program analysis). Datalog has shown great poten-

tial in the domain of program analysis [22, 40, 51, 59, 65]. Thus, there

is a growing need to help synthesize program analyzers in Datalog

for a variety of programming languages, including general-purpose

and domain-specific ones.

We demonstrate how alps can be used to learn a static analysis

to detect API misusesÐa common source of bugs in today’s world

of complex and evolving APIs. For a given example program with

known API misuses, we populate input relations representing the

syntax of the program and output relations representing the bugs.

Then, alps learns Datalog rules that can be used for detecting

similar API misuses.

Consider the following C program using the OpenSSL API. Func-

tions ssl_socket_open1-4 establish a SSL socket and return a con-

stant OK if they succeed. Two functions ssl_socket_open{2,4} con-

tain API misuses in that they incorrectly return OK when a SSL

socket is not properly established.

1 int ssl_socket_open1(SSL∗ ssl) {

2 X509∗ cert = SSL_get_peer_certificate(ssl);

3 long err = SSL_get_verify_result(ssl);

4 if (!cert) {...}

5 if (err == X509_V_OK) { ... }

6 return OK; // correct

7 }

8

9 int ssl_socket_open2(SSL∗ ssl) {

10 X509∗ cert = SSL_get_peer_certificate(ssl);

11 if (cert == NULL) {...}

12 long err = SSL_get_verify_result(ssl);

13 ...

14 return OK; // incorrect (missing check on err)

15 }

16

17 int ssl_socket_open3(SSL∗ ssl) {

18 long err = SSL_get_verify_result(ssl);

19 if (err != X509_V_OK) {...}

20 X509∗ cert = SSL_get_peer_certificate(ssl);

21 if (cert) {...}

22 return OK; // correct

23 }

24

25 int ssl_socket_open4(SSL∗ ssl) {

26 long err = SSL_get_verify_result(ssl);

27 switch (err) {

28 case X509_V_OK:

29 cert = SSL_get_peer_certificate(ssl);

30 }

31 return OK; // incorrect (missing check on cert)

32 }

Our goal is to learn a Datalog program that detects functions that

misuse the OpenSSL API, whose behavior is defined as follows:

• SSL_get_peer_certificate returns a pointer to the X509 cer-

tificate the peer presented. If the peer did not present a certificate,

NULL is returned.

• SSL_get_verify_result returns the result of the verification of

the X509 certificate presented by the peer, if any. It returns a

constant named X509_V_OK if the verification succeeded or if no

peer certificate was presented.

Functions should return OK only if (i) SSL_get_peer_certificate

returns a non-null pointer, and (ii) SSL_get_verify_result returns

the constant named X509_V_OK.

The problem involves four input relations and one output rela-

tion with the following meaning:

516

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

• OpSucc(l1,l2): Program control may flow from line l1 to l2.

• Check(x,l): The value of variable x is compared to a specific

value at line l.

• Certify(x,l): Variable x at line l is assigned the return value

of SSL_get_peer_certificate().

• Verify(x,l): Variable x at line l is assigned the return value

of SSL_get_verify_result().

• Ok(l): The function that returns OK at line l correctly uses the

OpenSSL API.

Relations OpSucc and Check are pre-defined as part of the pro-

gram’s intermediate representation while relations Certify and

Verify can be automatically extracted from a given API, in this

case OpenSSL. We provide an instance of these relations encoding

the analyzed C program to alps, namely

Certify(cert,2), Verify(err,3), Check(cert,4), Check(err,5), ...

along with Ok(6) and Ok(22) as positive examples and Ok(14) and

Ok(31) as negative examples in the output relation. alps generates

the following program in 6 minutes.

CertFlow(x,l2) :− Certify(x,l1), OpSucc(l1,l2).

VeriFlow(x,l2) :− Verify(x,l1), OpSucc(l1,l2).

CertCheck(l2) :− CertFlow(x,l1), Check(x,l1), OpSucc(l1,l2).

VeriCheck(l2) :− VeriFlow(x,l1), Check(x,l1), OpSucc(l1,l2).

Ok(l) :− CertCheck(l), VeriCheck(l).

The rules are intended to be read right-to-left, with all variables uni-

versally quantified, and the :− operator interpreted as implication.

Note that predicates CertFlow(x,l), VeriFlow(x,l), CertCheck(l),

and VeriCheck(l) are not specified among the input or output

relations; they are invented by alps, highlighting the rich space

of programs it explores.1 We elaborate on how the search space

is determined in Section 4.1. The relation CertFlow(x,l) (Ver-

iFlow(x,l) resp.) indicates the return value of SSL_get_peer_-

certificate (SSL_get_verify_result resp.) flows to line l. The

relation CertCheck(l) (VeriCheck(l) resp.) means the return value

of SSL_get_peer_certificate (SSL_get_verify_result resp.) is

compared to a specific value and control flows to line l.

The Datalog program correctly captures an important portion

of the proper use of the OpenSSL API. This example illustrates

that alps represents a promising step towards synthesizing usable

program analyzers. On the contrary, the state-of-the-art ilp tools

Metagol and Zaatar fail to synthesize the program within 3 hours.

Example 2.2 (Relational queries). Datalog is widely used as a

relational query language due to its expressiveness and scalable

performance [13, 27, 59]. alps can be used to synthesize sophisti-

cated relational queries in Datalog from input-output behaviors.

We illustrate using alps to synthesize a relational query for

finding students who take two different classes on the same day.

The problem involves three input relations and one output relation

with the following meaning:

• Student(s,n): Student s is associated with the ID n.

• Class(c,d): Class c is held on day d.

• Enrolled(n,c): The student having ID n is enrolled in class c.

• Busy(s): Student s takes two different classes on the same day.

1For readability, we provide intuitive names for invented predicates instead of me-
chanically generated ones by alps.

It is natural in a programming-by-example setting for the user to

provide an instance specifying the input-output behavior of the

desired query. Using such an instance comprising input relations

regarding 14 students and 6 classes, and 5 examples in the out-

put relation Busy, alps synthesizes the following Datalog program

within 18 seconds:

EnrollClass(n, c, l) :− Enrolled(n, c), Class(c, l).

Busy(s) :− Student(s, n), EnrollClass(n, c1, l), EnrollClass(n, c2, l),

c1 != c2.

where EnrollClass is an invented predicate. While ostensibly sim-

ple, the above query is non-trivial to synthesize since it is semanti-

cally equivalent to the following complex SQL query:2

SELECT S.s FROM Student S

WHERE S.n IN (SELECT E1.n

FROM Enrolled E1, Enrolled E2, Class C1, Class C2

WHERE E1.n = E2.n AND E1.c <> E2.c

AND E1.c = C1.c AND E2.c = C2.c AND C1.d = C2.d))

In contrast, a state-of-the art tool Scythe [69] for synthesizing SQL

queries fails to generate the above SQL query within 3 hours.

Example 2.3 (Knowledge discovery). We demonstrate how alps

synthesizes a prototypical program in knowledge discovery that

is commonly used in the ilp literature: computing the transitive

closure of a directed graph. The problem involves one input relation

edge and one output relation path with the following meaning:

• edge(x,y): there is an edge from node x to node y.

• path(x,y): there is a path from node x to node y.

Suppose the user populates the input relation, edge, with the

following example graph:

3 4 5

6

721

where an edge from node i to node j indicates that edge(i, j) ap-

pears in the input relation.

Given 4 examples of the output relation path, alps synthesizes

the following recursive program in less than one second, which

computes the transitive closure of a directed graph.

path(x,y) :- edge(x,y).

path(x,z) :- path(x,y), edge(y,z).

In fact, since alps maintains all possible programs, it also discovers

the following non-linear recursive program:

path(x,y) :- edge(x,y).

path(x,z) :- path(x,y), path(y,z).

We next elaborate on three techniques that alps combines syner-

gistically in order to realize this result.

Meta-rule-guided synthesis. Learning Datalog programs is a

complex task; even approximate learning is hard [18].3 To overcome

this barrier, alps exploits the observation that in practice Datalog

programs comprise rules with similar latent syntactic structure.

2Datalog can in fact be viewed as augmenting relational algebra, which is widely used
in the form of sql, with recursion.
3In approximate learning, the learnt program is not guaranteed to be consistent with
the given examples.

517

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

Note that both of the recursive rules above are very similar: the

only difference is in the relation names.We capture such similarities

via the notion ofmeta-rules [50] which are essentially Horn clauses

where the relation names are kept abstract and can be instantiated

later. Then both of the recursive rules are instances of the meta-rule:

R0(x,z) :- R1(x,y), R2(y,z).

Many Datalog rules follow a similar chain pattern. This suggests

a strategy for synthesizing Datalog programs: enumerate all pos-

sible instantiations of the above meta-rule with concrete relation

names and examine their combinations. Furthermore, we can think

of slight variations of this pattern to capture a broader range of

programs. For example, the first rule in Example 2.2 is a slight

variation of this meta-rule, the only difference being the arity of

predicate EnrollClass. We formalize this concept via a process

called augmentation (see Section 4.4).

Query-by-Committee (qbc). alps uses an active learning tech-

nique to iteratively pose membership queries about the contents

of the output relation, which can be answered upfront or in an in-

teractive manner. To minimize the number of queries, at each step,

alps picks a query that can prune the space of candidate programs

the most to converge to the oracle’s desired program. In the above

example, it begins by posing the query: Is there a path from 1 to

2? It obtains the answer yes. alps then poses the next query: Is

there a path from 3 to 2? It obtains the answer no, and the process

continues. After 4 queries out of 49 possible queriesÐall pairs (i, j)

where i, j ∈ [1, 7], alps arrives at the above programs. In contrast,

picking examples to query randomly may result in a large number

of questions. For instance, in 100 trials with random selection, the

maximum number of queries is 27, with an average of 12.

Bidirectional search strategy. To explore the search space effi-

ciently, we propose a bidirectional synthesis strategy to maintain

a concise committee, i.e., the most-general and most-specific pro-

grams that are consistent with current available examples. In our

running example, using this strategy results in only 384 programs

being evaluated during the search, out of over 104 possible programs

in the search space.

The above three techniques are combined in a synergistical man-

ner in alps: meta-rules define a reasonably large and rich space of

candidate programs; the syntactic structure of the space enables

bidirectional search to efficiently represent and effectively refine all

consistent candidate programs as a concise committee; and, using

this committee, qbc guides the refinement by picking the most

controversial example to query in the next iteration.

3 PROBLEM FORMULATION

In this section, we formalize Datalog and the synthesis problem.

3.1 Datalog Programs

Rules. A term t is either a variablex ,y, z, . . ., or a constanta,b, c,

A relation symbol p,q, r , . . . is associated with an arity ar (r). An

atom is an application of a relation symbol to a vector of vari-

ables and constants, e.g., r (x ,y,a) for a relation r with arity 3. A

ground atom is an application of a relation symbol to constants,

e.g., r (a1, . . . ,an), where ai are constants. A Datalog rule C is an

expression of the form:

A :- B1,B2, . . . ,Bn .

where A,B1, . . . ,Bn are atoms. The atom A is called the head of

the rule; the set of atoms {B1, . . . ,Bn } is called the body of the

rule. A Datalog rule can be interpreted as a logical implication: if

B1, . . . ,Bn are true, then so is A.

Programs. A Datalog program P is a finite set of rules. We divide

relation symbols into two categories: the input relations whose

contents are given, and the output relations whose contents are

derived from the input relations using the program P . An input

relation can never appear in the head of a rule. We use I to denote

the set of facts (ground atoms) in the input relations. The Herbrand

base B denotes all possible applications of the output relations to

vectors of constants in I . A Datalog program is recursive if a relation

symbol appears in both the head and the body of a rule.

Semantically, evaluating P on I yields a minimal Herbrand model

of P ∪ I , which is the smallest set of ground atoms that satisfies the

rules in P and input I . Given a ground atom e , P ∪ I |= e denotes

that P with input I derives fact e .

3.2 Synthesis Problem

Our task is to synthesize Datalog programs through examples. An

example is a ground atom from the Herbrand base B, which can be

labeled as positive (+) or negative (−). We are now ready to define

our synthesis problem.

Definition 3.1 (Synthesis problem). A synthesis problem S is a tuple

(H ,O, I), where

• H is a set of Datalog programs, i.e. the hypothesis space;

• O is an oracle that labels each example with {+,−};

• I is a set of inputsÐfacts in the input relations.

Let E+
O
= {e ∈ B | O(e) = +} and E−

O
= {e ∈ B | O(e) = −} be the

positive and negative examples defined by the oracle respectively.

The goal is to find P ∈ H such that: for all e ∈ E+
O
, P ∪ I |= e , and

for all e ∈ E−
O
, P ∪ I ̸ |= e .

Given a synthesis problem (H ,O, I), the set of all Datalog pro-

grams P ∈ H that are consistent with E = (E+,E−) is called the

version space, and is denotedVE .

4 OUR APPROACH

In this section, we present the synthesis algorithm underlying alps.

Section 4.1 describes the structure of the search space. Section 4.2

presents the algorithm parameterized by refinement operators. Sec-

tion 4.3 instantiates the algorithm with meta-rules. Section 4.4

describes our methodology for designing meta-rules. Lastly, Sec-

tion 4.5 states formal properties of our algorithm.

4.1 Structure of the Search Space

The hypothesis spaceH consists of a finite set of Datalog programs

over the same input and output relations. For our running example

(Example 2.3), we consider a simple hypothesis space where all

programs use a subset of the following four rules:

r1 : path(x,y) :- edge(x,y).

r2 : path(x,z) :- path(y,z).

r3 : path(x,x) :- edge(x,x).

r4 : path(x,y) :- path(x,z), path(z,y).

518

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Algorithm 1 The alps synthesis algorithm

1: (E+, E−) ← (∅, ∅)

2: P← MostGeneral()

3: P← MostSpecific()

4: loop

5: P← P ∪ P // construct committee

6: if ∀e ∈ B . D(e, P) = 0 then return P

7: e⋆ ← argmax
e∈B D(e, P) // most controversial example

8: ⋄ ← O(e⋆) // ⋄ ∈ {+, −}

9: E⋄ ← E⋄ ∪ {e⋆ }

10: P← F ↓(P, E+, E−) // top-down refinement

11: P← F ↑(P, E+, E−) // bottom-up refinement

12: end loop

We denote the Datalog program consisting of rules ri , r j , rk as Pi jk .

Generality order. We structure the search by imposing a general-

ity order on the space of Datalog programs. To define this order, we

use θ -subsumption [54], which is a syntactic approach for deciding

whether one rule subsumes (is more general than) another rule.

Formally, a rule C subsumes another rule D iff there is a variable

substitution θ such thatCθ has the same head as D, and all atoms in

the body ofCθ appear in the body of D.4 For example, r2 subsumes

r4 with θ = { z/y, y/z }, and r1 subsumes r3 with θ = { y/x }.

Subsumption can be naturally extended from rules to programs.

For any two Datalog programs P and Q , P subsumes Q , denoted

Q ⊑ P , iff for every rule in Q there exists a rule in P that subsumes

it. For instance, in our running example, P13 subsumes P24.

Given the hypothesis space H , and a generality ordering ⊑,

every subset P ofH forms a quasi-ordered set w.r.t. ⊑. We can now

construct a partial order on the quotient set of the equivalence

relation (two programs P ,Q are equivalent if P ⊑ Q and Q ⊑ P).

In our running example, the following equivalence classes are

formed w.r.t. θ -subsumption: {P1234, P123, P124, P12}, {P143, P14},

{P13, P1}, {P324, P32}, {P24, P2}, {P34}, {P3}, and {P4}. We restrict

the hypothesis space such that it has one representative from each

class (any of the programs with the fewest rules) and define a partial

order directly on these representatives instead of the equivalence

classes. We can achieve this without any loss of generality since

we are discarding only semantically equivalent programs. For our

running example, the hypothesis space can now be reformulated

as {P12, P14, P1, P32, P2, P34, P3, P4}.

Since the generality order is a partial order, there may exist mul-

tiple maximal and minimal elements. The set of maximal elements

is denoted max(P) = { P ∈ P | ∄P ′ ∈ P. P ❁ P ′ }, and we call these

the most-general programs. Similarly, the set of minimal elements

is denoted min(P) = { P ∈ P | ∄P ′ ∈ P. P ′ ❁ P }, and we call these

themost-specific programs. Figure 1a shows the initial version space

for our running example, where the most-specific and most-general

programs are colored yellow and red, respectively.

4.2 The ALPS Algorithm

Given a synthesis problem S = (H ,O, I), alps applies Algorithm 1

to find a solution for S . It is a fixpoint algorithm that maintains a

4A substitution θ is a set {v1/t1, · · · , vn/tn } where the vi are distinct variables
and ti are terms. Notation Cθ denotes the rule obtained by applying substitution θ
on rule C , i.e., for each vi /ti ∈ θ , we replace each occurrence of vi in C by ti .

pair E = (E+,E−) of positive and negative examples, and a set of

most-general programs P and most-specific programs P that are

always consistent with E. The examples are initially empty, and

P, P are initialized to be the most general and most specific pro-

grams respectively (we define this initialization in Section 4.3). At

every iteration, it adds a (positive or negative) example by query-

ing the oracle O. Then, it invokes two refinement operators F ↑, F ↓

which recalculate the most-general programs and the most-specific

programs that agree with the new example (we define the refine-

ment operators in Section 4.3). The algorithm stops when no new

examples can be added.

The crux of the algorithm is the way we choose the example

to query the oracle. The union of two sets of programs P, P forms

the committee P. The committee then picks the most controversial

example e⋆. If O(e⋆) = +, then e⋆ is added to E+; otherwise, e⋆ is

added to E−. If no controversial example exists, then everyone in

the committee agrees; the algorithm terminates and returns set P,

which contains all the most-general and most-specific solutions.

In order to determine the most controversial example, we use the

metric of vote entropy. It is inspired by query-by-committee [24, 62],

a greedy yet effective strategy commonly used in active learn-

ing [61]. Since there are only two possible labels for an example,

we use a simplified definition, which is essentially equivalent to

disagreement count.

Definition 4.1 (Vote entropy). For an example e and set of com-

mittee members K , the normalized vote entropy is:

D(e,K) = 1 −
2

|K |

�

�

�

�

p −
|K |

2

�

�

�

�

where p is the number of committee members that assign a positive

label to the example e .

When the vote entropy of an example is zero, all programs in

the committee agree on its label. Figure 1 shows the version space

and the query posed in each iteration for our running example.

4.3 Refinement with Meta-Rules

We now give concrete definitions of the initialization functions

and refinement operators, F ↑ and F ↓ in Algorithm 1. The design

of the refinement operators is motivated by a practical insight:

the synthesis search should be biased towards patterns that are

frequently used in practice. We are inspired by meta-rules [50],

which are templates that dictate syntactic restrictions on rules and

therefore a natural representation to bias the search.

Meta-rules. A meta-rule is a second-order rule. Multiple rules can

be instantiated from a meta-rule. We shall use V1 and V2 to denote

first- and second-order variables, respectively. A meta-rule takes

the following form:

R1(x1, . . . ,xm1) :- R2(y1, . . . ,ym2), . . . ,Rn (z1, . . . , zmn
).

where xi ,yi , zi ∈ V1 and Ri ∈ V2.

A meta-rule can be instantiated by substituting second-order

variables with relation symbols. For example, the rules from the

running example are generated by the following meta-rules:

T1 : R0(x,y) :- R1(x,y).

T2 : R0(x,z) :- R0(y,z).

519

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

1,2

1,4 2,3

1 3,4 2

3 4

(a) Initialization

path(4,2)? No

1,2

1,4 2,3

1 3,4 2

3 4

(b) Iteration 1

path(1,2)? Yes

1,2

1,4 2,3

1 3,4 2

3 4

(c) Iteration 2

path(1,4)? Yes

1,2

1,4 2,3

1 3,4 2

3 4

(d) Iteration 3

converged

Figure 1: Version space in each iteration (red/yellow nodes represent most-general/specific programs in the current iteration;

purple nodes represent programs that are both most general and most specific in the current iteration; and grey nodes repre-

sent programs that have been evaluated). An arrow from u to v means that program u is more general than program v.

Algorithm 2Meta-rule-guided refinement

Function F ↓(P, E+, E−)

1: E ← (E+, E−)

2: while P ⊈ VE do

3: ∆P← (P ∩ VE+)\VE−

4: ∆P←ρ↓(∆P, T) ∩ VE+

5: P← (P ∩ VE) ∪ ∆P

6: end while

7: return P

Function F ↑(P, E+, E−)

1: E ← (E+, E−)

2: while P ⊈ VE do

3: ∆P← (P ∩ VE−)\VE+

4: ∆P←ρ↑(∆P, T) ∩ VE−

5: P← (P ∩ VE) ∪ ∆P

6: end while

7: return P

T3 : R0(x,x) :- R1(x,x).

T4 : R0(x,z) :- R0(x,y), R0(y,z).

Similar to rules, a generality order between meta-rules can be es-

tablished using θ -subsumption by allowing substitution for second-

order variables as well as first-order variables. Using this generality

order, a set of meta-rules forms a partially ordered set.

Initialization. The initialization function MostGeneral() collects

all rules instantiated from the most general meta-rules and com-

bines them as the most general program. The initialization function

MostSpecific() makes each individual rule instantiated from the

most specific meta-rules as a single rule program, and all of these

programs form the initial set of most specific programs.

Meta-rule-guided refinement. Algorithm 2 describes our refine-

ment operations, F ↓ and F ↑, which are parameterized by a set of

meta-rules T. We explain only top-down refinement F ↓ in detail,

since bottom-up refinement F ↑ works in a symmetrical manner.

The algorithm begins with the given set of programs P. Then, it

iteratively specializes the programs by applying the specialization

operator ρ↓, which is guided by T (line 2ś5). In each iteration,

the condition P ⊈ VE checks whether the current programs are

consistent with the examples. If there is no violation, the algorithm

terminates. Otherwise, line 3 first eliminates programs violating

positive examples, and then selects programs violating negative

examples to specialize. In the former case, programs fail to derive a

positive example, and more specific programs will also fail to derive

it. This process removes not only inconsistent programs but also

any programs more specific than them. The elimination happens

in the third iteration of our running example shown in Figure 1c:

when P23 is eliminated due to the positive example path(1,2),

all the more specific programs P34, P2, P3, P4 are eliminated from

consideration as well.

Next, line 4 specializes programs violating negative examples

by calling ρ↓, and eliminates any generated programs that fail to

derive a positive example. Finally, line 5 updates P by including the

new specialized programs.

The final piece of the puzzle is the specialization operator ρ↓.

Here, ρ↓ can specialize a program in two ways: (1) replace a rule

it with a more specific one; for instance, in our running example

shown in Figure 1b, program P12 is specialized to P14 and P23;

(2) remove a rule that cannot be further specialized; for instance,

P23 could potentially be specialized to P2. Finding all more specific

rules for a given rule r can be efficiently done by consulting the

generality order of the meta-rules T: first, find the meta-rule Tr
used to instantiate r ; then, find all more specific meta-rules Ts with

respect toTr ; finally examine all rules instantiated from a meta-rule

in Ts and keep the ones more specific than r .

4.4 Augmentation and Predicate Invention

The choice of meta-rules dictates the effectiveness of our synthesis

algorithm. If the set of meta-rules is too large, then alps will not

be able to scale, since the search space will be huge. On the other

hand, the meta-rules must be sufficiently rich to capture the desired

program. Simply reusing meta-rules that are either provided by

the end-user or mined from existing code repositories is usually

insufficient. To solve this problem, we start with a very small set

of intuitive meta-rules that are specified manually (e.g., the chain

meta-rule), and then extend these using augmentation, a process

that slightly modifies each meta-rule.

An augmentation T ′ of a meta-rule T is a meta-rule where each

atom R(x1, . . . ,xk) in T is replaced by another atom R(y1, . . . ,yℓ).

However, we must take care to limit how much the sequence of

variables changes. Denote by dR (T ,T
′) the edit distance between

the strings x1 . . . xk and y1 . . .yℓ . Then, the augmentation distance

between T ,T ′ is defined as

AD(T ,T ′) =
∑

R

dR (T ,T
′)

520

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

where R ranges over all atoms in T . Our key idea is to consider all

the augmentations of T that are within a bounded augmentation

distance from T . The smaller this bound, the fewer meta-rules will

be generated from T .

As an example of augmentation, consider these two meta-rules:

T1 : R0(y) :- R1(z), R2(y,z).

T2 : R0(y,z) :- R1(z,x), R2(y,z).

Then, T2 is an augmentation of T1 with distance 2.

The augmentation distance required for alps to synthesize a

program P from an initial set of meta-rules T is:

AD(P ,T) = max
T1

min
T2∈T

AD(T1,T2)

where T1 ranges over all meta-rules used in P1. In our experiments,

we could synthesize almost all of the programs using an augmenta-

tion distance of 5 from three chain meta-rules.

Predicate invention. Another orthogonal way to improve the

richness of programs in the search space is predicate invention.

Predicate invention helps to break a complex rule into simpler

ones, and thereby enables to reuse existing meta-rules. More impor-

tantly, it is unavoidable for Datalog programs with recursion. For

instance, consider the following program which computes strongly

connected components (SCC) in a directed graph:

path(x,y) :- edge(x,y).

path(x,z) :- path(x,y), edge(y,z).

scc(x,y) :- path(x,y), path(y,x).

Here, the input and output relations are edge and scc, respectively.

Given that scc cannot be derived by any set of clauses in terms of

only the input relation edge, a new predicate pathmust be invented.

The difficulty with predicate invention lies in determining what

form the invented predicates should take. Without meta-rules, we

have no way to effectively constrain the syntax of such predicates.

With meta-rules, we can easily support predicate invention: the

rules that define the potential invented predicates are exactly the

instantiations of meta-rules with concrete relations.

4.5 Properties of ALPS

The alps synthesis algorithm (Algorithm 1) always makes progress:

after every query to oracle O, we remove from consideration a

controversial example from B. Since the set of possible examples

B is finite, the algorithm always terminates. It also guarantees

that a solution is found if there are no controversial examples left

in the committee. To ensure this property, it is critical that the

algorithm tracks both the most-general and most-specific programs

at every iteration. The following theorem succinctly captures these

properties. We provide its proof in the Appendix.

Theorem 4.2. Let S = (H ,O, I) be a synthesis problem such that

a solution to S exists inH . Let P be the output of alps. Then:

(1) (Soundness) Every P ∈ P is a solution to S .

(2) (Completeness) For every solution P ∈ H to S , there exist

programs Pl , Pu ∈ P such that Pl ⊑ P ⊑ Pu . An immediate

corollary is that if there exists a program P that is a solution

to S , then P is nonempty.

(3) (Termination) alps terminates in finitely many steps.

5 EMPIRICAL EVALUATION

We evaluate alps on a variety of synthesis tasks from different

domains. Our implementation5 comprises about 8,000 lines of C++

code. It uses the fixpoint engine of the Z3 smt solver [31] for Datalog

evaluation. Our experiments were performed on a Linux machine

with 16 GB of RAM and a 3.0 GHz processor.

Our evaluation aims to answer the following questions:

Q1. How does alps perform on synthesis tasks from a variety of

domains in terms of synthesis time and number of queries?

Q2. How much does meta-rule augmentation speed up synthesis?

Q3. How effective is qbc in reducing the number of queries asked?

Q4. How sensitive is alps to changes in a given input data?

Q5. How does alps compare with existing synthesis techniques?

5.1 Benchmark Suite

We collected 34 synthesis tasks from three different application do-

mains: (i) knowledge discovery, (ii) program analysis and (iii) rela-

tional queries. Table 1 presents useful characteristics of these bench-

marks. The last three columns show the number of inputśoutput

relations, the number of rules of the smallest desired program, and

whether the desired program is recursive or not, respectively.

Knowledge discovery. The knowledge discovery benchmarks

comprise 8 tasks of synthesizing Datalog programs frequently used

in the artificial intelligence and database literature. The goal of

the first benchmark inflammation is to discover interesting cor-

relations between patient risk factors and a disease called acute

inflammations of urinary bladder. We used a dataset created by a

medical expert to enable expert systems that perform presumptive

diagnosis of the disease [20].6 The next four benchmarks (abduce,

ancestor, animals, and buildWall) are widely used in the field

of inductive logic programming [46, 50]. The samegen benchmark

is a standard Datalog program in the database literature [7]. The

path benchmark is the problem described in Example 2.3 and the

scc benchmark is the problem of computing strongly connected

components in a directed graph.

Program analysis. The program analysis benchmarks comprise

11 tasks of synthesizing static analyzers written in Datalog:

• polysite is a polymorphic call-site inference analysis for Java;

• downcast is a downcast safety checker for Java;

• rv-check is the static API misuse detector described in Exam-

ple 2.1, which is motivated from a return value checker used in a

tool called apisan [72]. apisan identifies apimisuses by detecting

inconsistent uses of the return values of api functions. However,

the tool is neither sound nor complete due to the limitation of

its statistical method. This observation motivated our rule-based

approach for static API misuse detection.

• andersen is a classic pointer analysis for C [12];

• The next five benchmarks are pointer analyses for Java with

various context abstractions [42, 66, 70].

• modref is a mod-ref analysis for Java and escape is an escape anal-

ysis for Java. Both benchmarks originated from a programming

assignment in an online course on program analysis [5].

5Our artifact is available on GitHub: https://github.com/XujieSi/fse18-artifact-183.
6Available at http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations.

521

https://github.com/XujieSi/fse18-artifact-183
http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

Table 1: Benchmark characteristics.

Benchmark Brief description #R
el
at
io
ns

#R
ul
es

R
ec
ur
si
ve
?

Knowledge Discovery
inflammation diagnosis of bladder inflammation 7 2
abduce grandparent of given father/mother [46] 4 3
animals distinguishing classes of animals [46] 13 4
ancestor ancestor in a family tree [50] 4 4 ✓

buildWall learn a stable wall strategy [50] 5 4 ✓

samegen same generation in a family tree [7] 3 3 ✓

path all-pairs reachability in directed graph 2 2 ✓

scc compute SCCs in directed graph 3 3 ✓

Program Analysis
polysite polymorphic call-site inference for Java 6 3
downcast downcast safety checker for Java 9 4
rv-check return-value-checker in APISan [72] 5 5
andersen inclusion-based pointer analysis for C [12] 5 4 ✓

1-call-site 1-call-site pointer analysis for Java [70] 9 4 ✓

2-call-site 2-call-site pointer analysis for java [70] 9 4 ✓

1-object 1-object-sensitive pointer analysis [42] 11 4 ✓

1-type 1-type-sensitive pointer analysis [66] 12 4 ✓

1-obj-type 1-type-1-object sensitive analysis [66] 13 5 ✓

escape escape analysis for Java 10 6 ✓

modref mod-ref analysis for Java 13 10 ✓

Relational Queries
sql-1 ∼ 15 15 SQL queries [69] ⩽ 7 ⩽ 4

Relational queries. These benchmarks comprise 15 synthesis

tasks from Stack Overflow posts and textbook examples [69]. We

chose the 15 tasks of synthesizing sql queries that can be expressed

in Datalog. Each task involves up to 6 input tables and one output

table. The desired Datalog programs comprise up to four rules.

5.2 Experimental Setup

Meta-rules. We first apply only the following three chain meta-

rules with up to 5 augmentations for all benchmarks:

R0(v1,v2) :- R1(v1,v2).

R0(v1,v3) :- R1(v1,v2), R2(v2,v3).

R0(v1,v4) :- R1(v1,v2), R2(v2,v3), R3(v3,v4).

We observe that alps fails to synthesize five context-sensitive

pointer analysis benchmarks, as the necessary augmentation dis-

tance is too far and offers no filtering of the search space. In these

cases, we also include domain specific meta-rules, e.g. meta-rules ex-

tracted the remaining four benchmarks. Also, we set the maximum

number of invented predicates to 4.

Input-output relations. For each benchmark, alps begins with

no examples of output relations and iteratively poses membership

queries about the contents of the output relations. To answer such

queries, we used the known solution of the benchmark (i.e., the de-

sired Datalog program) as an oracle. The populated input relations

range in size from 3 to 77 with an average of 22.

5.3 Evaluation Results

Q1:Number of queries and synthesis time. Table 2 presents the

main results of our evaluation. Consider, for instance, the ancestor

benchmark. alpsmakes 11 queries to the oracle (out of a maximum

of 450 queries, which is the size of the Herbrand base); it takes 25

seconds to synthesize 3 programs; and, in the process, it evaluates

24,280 programs out of 1010 programs in the search space.

Overall, our results demonstrate the small number of queries

needed to discover non-trivial programs. For most benchmarks,

alps requires less than 20 queries; for our largest benchmark, mod-

ref, alps makes 22 queries to the oracle in order to synthesize 10

rules. It synthesizes most programs within a few minutes. In certain

examplesÐlike modrefÐa large number of programs are evaluated,

thus requiring more synthesis time.

Q2: Effectiveness ofmeta-rule augmentations. Figure 3 shows

the frequency distribution of benchmarks according to their aug-

mentation distance with respect to chain meta-rules. Only two

benchmarks can be synthesized with no augmentation, while most

benchmarks (29 out of 34) can be synthesized with no more than

5 augmentations. This indicates that simple chain meta-rules are

quite limited by themselves, but we can handle a large number of

benchmarks by slightly mutating them.

Starting with only chain meta-rules, however, alps fails to scale

on five context-sensitive pointer analysis benchmarks, whose aug-

mentation distance is 6 or larger. We observe that although these

five benchmarks are different from each other, their rules are quite

similar. Table 3 shows the augmentation distances for each of these

five benchmarks with respect to two sets of meta-rules: chain meta-

rules and meta-rules mined from the other four benchmarks. The

augmentation distance implies that, in comparison with general

chain meta-rules, meta-rules mined from the same domain are

more useful to guide the synthesis search process. Indeed, with

extra meta-rules mined from the other four benchmarks, alps is

able to synthesize four of the five context-sensitive pointer analysis

benchmarks, as shown in Table 2.7

Q3: Quality of qbc. We now investigate the quality of qbc’s

selection strategy. To do so, we instrument alps to randomly pick

an example that the committee disagrees on, instead of one that

maximizes vote entropy. For each benchmark8, we ran 100 trials

with random example selection. Figure (2a) shows a box plot of

the number of queries made in these trials. We see that random

selection, on average, performs much worse than qbc. For instance,

on the ancestor benchmark, the median for random selection is

more than 120 queries, while qbc only needs 11.

Compared to the best-case scenarios of random selection, qbc

makes roughly the same amount (about +/-5 queries) of queries for

most benchmarks. For the andersen benchmark, one random trial

behaves surprisingly well: it only requires 8 questions to synthesize

all 4 expected rules, one of which eliminates 99.7% of the com-

mittee members. This is an artifact of qbc’s conservative example-

selection approach: it prefers high-entropy examples, so it may miss

a low-entropy example that could eliminate most of the committee,

indicating qbc is not optimal but practically effective.

Q4: Sensitivity to the size of input data. We now investigate

the effects of increasing the size of input data on the number of

queries needed. We focus on the andersen benchmark, as it is

demonstrative of the behavior across our benchmark suite. Recall

71-obj-type takes alps 17 hours to finish and hence is marked as timeout.
8We skip the SQL benchmarks as alps asks a very small number of queries for them.

522

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: alps performance results (the timeout limit is 3 hours).

#queries asked Metagol run. time (sec.)
by alps

#possible
queries

#synthesized
programs

#evaluated
programs

search
space

total
time (sec.) alps setting ideal setting

Zaatar
run. time (sec.)

inflammation 8 120 4 2327 106 4.3 0.51 0.47 timeout

abduce 11 392 1 4613 106 3.36 timeout 0.43 timeout

animals 16 80 2 45152 106 75.8 0.46 0.42 timeout

ancestor 11 450 3 24280 1010 24.6 timeout 0.43 timeout

buildWall 12 392 13 61654 1010 128.7 timeout 35.1 timeout

samegen 12 162 2 110338 109 22.3 timeout timeout 4.77

path 4 49 3 384 104 0.26 timeout 0.43 26.43

scc 14 128 4 57013 106 88.7 timeout timeout timeout

polysite 14 204 5 27432 1022 130.0 timeout 0.43 timeout

downcast 9 912 1 56489 1028 299.8 timeout 0.43 timeout

rv-check 4 24 1 393740 1029 361.5 timeout timeout timeout

andersen 15 64 1 100345 1020 148.0 timeout timeout 295.31

1-call-site 14 152 3 99697 1032 178.3 timeout timeout timeout

2-call-site 17 672 1 184824 1053 601.8 timeout timeout timeout

1-object 18 655 1 93362 1048 705.1 timeout timeout timeout

1-type 13 215 2 10038 1030 21.6 timeout timeout timeout

1-obj-type - - - - 1051 timeout timeout timeout timeout

escape 9 40 12 5706 1034 9.9 timeout timeout timeout

modref 22 145 1 1346754 1045 5307 timeout timeout timeout

sql-1 4 7 1 30 106 0.07 0.01 0.01 43.65

sql-2 3 12 1 7 106 0.02 0.01 0.01 timeout

sql-3 1 4 1 1 101 0.03 0.01 0.01 timeout

sql-4 5 15 1 19 102 0.02 0.01 0.01 timeout

sql-5 1 7 1 1 102 0.01 0.01 0.01 timeout

sql-6 6 729 1 44 102 0.03 0.01 0.01 timeout

sql-7 1 25 1 1 101 0.01 0.01 0.01 timeout

sql-8 5 48 2 230 1016 1.60 0.02 0.01 timeout

sql-9 5 27 1 9 1016 0.30 timeout 0.01 6260

sql-10 8 40 1 778 1023 63.2 timeout 0.01 timeout

sql-11 4 25 6 1192 1018 1.86 timeout 0.04 8320

sql-12 4 34 1 117 1015 0.20 timeout timeout 2417

sql-13 3 80 1 4 103 0.01 timeout timeout timeout

sql-14 3 651 1 13 1025 90.9 timeout timeout timeout

sql-15 5 266 1 344 1015 17.7 timeout timeout timeout

(a) (b)

Figure 2: (a) Box plot of the number of queries asked by random selection (green dots mark the number of queries by qbc);

and (b) Number of queries asked by alps for the andersen benchmark under different sizes of input data (where X=7).

that andersen is a pointer analysis for C programs. We system-

atically increased the size of the input data (i.e., the size of the

analyzed program), and measured the number of queries needed to

synthesize Andersen’s analysis, as well as the synthesis time. Fig-

ure (2b) summarizes the results of this experiment. It shows that as

the size of the data increases, the number of questions asked stays

roughly constant. As a result, the question ratio (number of ques-

tions asked to the total number of possible questions) is reduced

significantly, from nearly 25% to 0.002%. The number of evaluated

programs also remains roughly constant. As expected, the synthesis

time increases with more data, as alps needs to invoke the Datalog

solver on larger inputs.

Q5: Comparison with other tools. We now compare alps with

two state-of-the-art ILP tools: Metagol [19] and Zaatar [9]. We

523

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

Table 3: Augmentation distances of context-sensitive

pointer analysis benchmarks with respect to chain meta-

rules and meta-rules mined from the same domain.

1-call-site 2-call-site 1-object 1-type 1-obj-type

chain 6 8 6 6 8

same domain 3 3 1 2 2

supply both of these tools with all ground facts upfront since they

are non-interactive.

Metagol is an ilp tool that is an instance of the meta-interpretive

learning framework [50], which is also parameterized by meta-rules.

We run Metagol with two settings: the alps setting, which uses

the same set of meta-rules that alps uses after it performs augmen-

tation, and the ideal setting, which consists of the minimal set of

meta-rules that are sufficient for synthesizing a correct program.

Using alps’s setting, Metagol cannot finish most knowledge dis-

covery benchmarks and all program analysis benchmarks. Using

the ideal setting, Metagol still fails on two knowledge discovery

benchmarks and most of program analysis benchmarks. Metagol

also fails on four of the sql benchmarks despite their lack of recur-

sion. It is important to note that Metagol employs meta-interpretive

learning, which is not a complete technique, so it is not guaranteed

to terminate, despite finiteness of the search space.

Zaatar [9] is a constraint-based Datalog program synthesis tool.

It fails on most of our benchmarks because it is very sensitive to the

size of the input data, since the size of the encoding is polynomial

in the input data. In contrast, alps has much better scalability in

terms of input size, as alps only evaluates candidate programs on

input data instead of encoding the input as symbolic constraints.

Summary. To summarize, our experimental evaluation demon-

strates (i) the ability of alps to synthesize sophisticated algorithms;

(ii) the effectiveness of meta-rules and augmentations; (iii) the im-

portance of qbc at reducing the number of queries; and (iv) the

robustness of our synthesis approach to input size.

5.4 Threats to Validity

There are several threats to the validity of our approach. We outline

these next along with proposals to mitigate them.

• alpsmay fail to synthesize a desirable program because the input

relations do not cover all corner cases (i.e., overfitting). We can

mitigate this threat by allowing the user to provide a large input

and taking advantage of alps’s ability to handle sizeable input

data as shown in Figure (2b). In practice, large input relations

often cover the vast majority of corner cases.

• The labeled examples may be noisy. This threat can be mitigated

by collecting answers from multiple oracles (e.g., through crowd-

sourcing or multiple reference implementations) and using the

majority vote as the final answer.

• A large number of equivalent final programs exist due tomany ap-

plicable combinations of meta-rules. This threat can be mitigated

by sacrificing completeness and reporting a subset of programs.

• The meta-rules generated by alps may be insufficient to capture

a desired program. This threat can be mitigated by using a larger

number of invented predicates. The more such predicates we use,

the simpler rules we obtain. Eventually, the desired program will

comprise typical rules, thus enabling alps to synthesize it.

Figure 3: Augmentation distance distribution.

6 RELATED WORK

Inductive logic programming. While we use key ideas from

inductive logic programming (ilp) in alps, a number of properties

distinguish our approach from existing ilp approaches. First, work

in ilp usually learn relations, often probabilistic ones [21], from vast

amounts of mined data, e.g., biological data [47]. In our work, and

in a large class of synthesis techniques, the goal is to interactively

infer a program from a small, representative set of examples. Second,

most ilp systems are not adept at learning recursive rules. In con-

trast, we specifically aim to infer recursive rules. Third, ilp is often

interested in programs that correctly classify most examples. In

contrast, we are interested in programs that correctly characterize

all positive and negative examples. Fourth, many ilp systems re-

quire a complicated interaction model (for example, Filp [15] poses

existential queries and cigol [48] poses generalization queries).

In contrast, alps has a simple interaction model that only poses

membership queries. Lastly, we employ a complete search strategy,

whereas ilp systems can fail to find a program even if one exists

that is consistent with the given examples.

More recently, ilp has been applied to end-user programming

and online tutoring [29]. Meta-Interpretive Learning has been used

to learn Prolog programs for string manipulation tasks [38]. These

applications share similar goals as ours of learning programs by

obtaining examples from users. We focus on Datalog programs

whereas they learn programs in other domains, e.g., string manipu-

lation or table transformation. Also, when their generated program

is incorrect, the user is expected to provide a counterexample. In

contrast, our approach automatically identifies the most controver-

sial example to pose to the user.

Template-guided synthesis. Templates are commonly used to

guide the search in program synthesis [19, 64, 67, 68]. At a high-

level, meta-rules can also be seen as program sketches [67], where

the holes are the relation symbols.

Interactive synthesis by example. Some of the programming-

by-example (pbe) approaches interactively query an oracle for ex-

amples. Jha et al. [32] present an oracle-guided synthesis procedure

for straight-lines programs encodable in smt. They require the ora-

cle (usually a reference implementation) to provide the output when

given some input. Another recent interactive synthesis approach is

applied in the context of parser synthesis [37] to learn a grammar.

Synthesis of recursive programs. A number of works have tar-

geted the problem of synthesizing recursive programs [8, 23, 34, 35,

524

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

53, 55]. Most of these works focus on recursive functional programs

that manipulate recursive data structures. Datalog programs recur-

sively traverse relations (hypergraphs). To our knowledge, none of

the functional techniques have been applied to this domain.

Version-space algebras. Version-space algebras were used for

synthesis, initially by Lau et al. [36], and more recently in Flash-

Fill [28] for spreadsheet manipulation. alps maintains a version

space using most-general and most-specific programs, as first pro-

posed by Mitchell [43]. Our setting is different than Mitchell’s in

the sense that the search space is determined by a set of meta-rules

that forms a partially ordered set, and thereby we can exploit the

generality order on the meta-rules for our bidirectional search.

Learning for program analysis. Recently, several systems have

been created that apply machine learning techniques to program

analysis. Oh et al. [52] use Bayesian optimization techniques to

effectively learn adaptation strategies for parametric program anal-

ysis, while Bielik et al. [16] apply the ID3 algorithm to learn a

decision tree that represents points-to and allocation site facts for

individual JavaScript functions. This work either learns an efficient

configuration for program analysis or an accurate representation

for the results of an analysis. In contrast, our work can learn the

rules of the program analysis, expressed in Datalog.

7 CONCLUSIONS AND FUTUREWORK

We proposed a programming-by-example system, alps, to syn-

thesize Datalog programs. It employs a syntax-guided synthesis

approach that prunes the search space by exploiting the observa-

tion that Datalog programs in practice comprise rules with similar

latent syntactic structure. To this end, we synergistically combined

three techniques: a novel approach to systematically generate meta-

rules, taking advantage of domain knowledge; an active learning

technique called query-by-committee to minimize the number of

examples needed; and a bidirectional synthesis strategy to explore

the search space efficiently. We evaluated the system on a variety

of synthesis tasks from different domains and demonstrated that it

significantly outperforms existing state-of-the-art tools.

We envision many useful directions to extend our work. One

direction concerns repairing existing Datalog programs using ex-

amples rather than synthesizing them from scratch. For instance, a

user may modify an existing program analysis by refining its rules

to be consistent with known true and false positives. Another di-

rection concerns using probabilistic models to expedite the search,

for instance, by predicting which augmentations to use. Finally,

we plan to explore how to synthesize programs that are not only

correct with respect to examples, but also optimal with respect to

objectives such as likelihood or evaluation complexity.

A PROOF OF ALPS PROPERTIES

To prove Theorem 4.2, we use two key properties about the inter-

play between qbc and bidirectional search. The following lemma

captures the fact that the algorithm does not miss any controversial

examples, and thus always makes progress in terms of pruning the

search space.

Lemma A.1. Let P ⊆ H and e ∈ B. Then D(e, P) , 0 iff there

exist programs P1, P2 ∈ P such that P1 ∪ I |= e and P2 ∪ I ̸ |= e .

Proof. This is directly implied by the definition of vote entropy

(see Definition 4.1). ■

The next lemma states key invariants that hold at every iteration

of the algorithm: (i) It does not miss any programs that are solutions

to the synthesis problems, by ensuring that the contours of the

version space form an upper/lower bound of every solution. (ii) It

ensures that if the current version space contains non-solutions,

then there are non-zero entropy examples we can ask the oracle

that can eliminate them.

LemmaA.2 (Invariant). Let S = (H ,O, I) be a synthesis problem

such that a solution to S exists in H . Let E = (E+,E−) be the set of

known examples at any point during execution, and P = P ∪ P. Then:

(1) For every solution P ′ ∈ H to S , there exist programs Pl , Pu ∈ P

such that Pl ⊑ P ′ ⊑ Pu .

(2) If there exists a program P ∈ P that is not a solution to S , then

∃e ∈ B.D(e, P) , 0.

Proof. We first show item (1). First, notice that every solution

P ′ ∈ H to S belongs in the version spaceVE , since it satisfies all

current examples. Since P ⊇ max(VE) (by the definition of F ↑ in

Algo. 1), there exists Pu ∈ P such that P ′ ⊑ Pu . Similarly, since

P ⊇ min(VE), there exists Pl ∈ P such that Pl ⊑ P ′.

We next show item (2). Suppose that P ∈ P is not a solution to S ,

and let P ′ be a solution to S . Then, there exists an example e ∈ B

such that either (a) P ∪ I |= e and P ′ ∪ I ̸ |= e , or (b) P ∪ I ̸ |= e and

P ′ ∪ I |= e . We now distinguish two different cases:

• Case (a) holds: since P ′ is a solution, item (1) tells us that there

exists Pu ∈ P such that P ′ ⊑ Pu . This implies that Pu ∪ I ̸ |= e .

Because now P , Pu disagree on example e , LemmaA.1 implies

that D(e, P) , 0.

• Case (b) holds: since P ′ is a solution, item (1) tells us that

there exists Pl ∈ P such that Pl ⊑ P ′. This implies that Pl ∪

I |= e . Because now P , Pl disagree on example e , Lemma A.1

implies that D(e, P) , 0.

Thus, in both cases we find an example e such that D(e, P) , 0. ■

We are ready to prove Theorem 4.2 using the LemmasA.1 andA.2.

Proof. The algorithm terminates when for every example e ∈ B,

we have D(e, P) = 0. Recall that P = P ∪ P, where E = (E+,E−) are

the known examples.

• (Soundness) As ∀e ∈ B.D(e, P) = 0, the contrapositive of

item (2) of Lemma A.2 indicates that every P ∈ P is a solution.

• (Completeness) This holds directly from item (1) of LemmaA.2.

• (Termination) At every iteration, the algorithm adds one

example to either E+ or E−. Notice that, after an example e

is added to E = (E+,E−), it cannot be added again, since it

will never be controversial (D(e, P) , 0) from that point on.

Since we have finitely many examples in B, the algorithm

terminates after finitely many steps.

This concludes the proof of the theorem. ■

ACKNOWLEDGMENTS

We thank the anonymous reviewers for useful feedback. This re-

search was supported by DARPA under agreement #FA8750-15-2-

0009 and by NSF awards #1253867, #1526270, and #1652140.

525

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA X. Si, W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik

REFERENCES
[1] BDD-Based Deductive Database. http://bddbddb.sourceforge.net/.
[2] Datomic. https://www.datomic.com/.
[3] IRIS (Integrated Rule Inference System) Reasoner. http://repo.roscidus.com/java/

iris.
[4] LogicBlox. http://www.logicblox.com/.
[5] Righting Code. http://rightingcode.org/.
[6] Semmle. https://semmle.com/.
[7] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Addison-Wesley.
[8] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Pro-

gram Synthesis. In CAV.
[9] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. [n. d.].

Constraint-Based Synthesis of Datalog Programs. In Principles and Practice of
Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings.

[10] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R.
Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. 2013. Syntax-guided synthesis.
In 2013 Formal Methods in Computer-Aided Design.

[11] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011.
Consistency Analysis in Bloom: a CALM and Collected Approach. In CIDR.

[12] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-
ming Language. Technical Report. DIKU, University of Copenhagen. Ph.D.
thesis.

[13] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. In SIGMOD.

[14] Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Func-
tional Datalog. In ICFP.

[15] Francesco Bergadano and Daniele Gunetti. 1993. An interactive system to learn
functional logic programs. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI’93).

[16] Pavol Bielik, Veselin Raychev, andMartin Vechev. 2017. Learning a Static Analyzer
from Data. In CAV.

[17] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. OOPSLA (2009), 243ś262.

[18] William W. Cohen. 1995. Pac-Learning Recursive Logic Programs: Negative
Results. Journal of Artificial Intelligence Research 2 (1995).

[19] Andrew Cropper, Alireza Tamaddoni-Nezhad, and Stephen H Muggleton. 2015.
Meta-interpretive learning of data transformation programs. In Proceedings of
the 24th International Conference on Inductive Logic Programming.

[20] Jacek Czerniak and Hubert Zarzycki. 2003. Artificial Intelligence and Security
in Computing Systems. Chapter Application of Rough Sets in the Presumptive
Diagnosis of Urinary System Diseases.

[21] Luc De Raedt and Kristian Kersting. 2008. Probabilistic inductive logic program-
ming. In Probabilistic Inductive Logic Programming. Springer, 1ś27.

[22] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based Detection of Android Malware Through Static Analysis. In FSE.

[23] Jonathan Frankle, Peter-Michael Osera, DavidWalker, and Steve Zdancewic. 2016.
Example-directed synthesis: a type-theoretic interpretation. In POPL.

[24] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. 1997. Selective
Sampling Using the Query by Committee Algorithm. Machine Learning 28, 2-3
(1997).

[25] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and Sergio
Flesca. 2004. The Lixto Data Extraction Project: Back and Forth Between Theory
and Practice. In PODS.

[26] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. 2012. Synthesizing software verifiers from proof rules. In PLDI.

[27] Todd J. Green. 2015. LogiQL: A Declarative Language for Enterprise Applications.
In PODS.

[28] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data
manipulation using examples. CACM (2012).

[29] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Mug-
gleton, Ute Schmid, and Benjamin Zorn. 2015. Inductive Programming Meets
the Real World. Commun. ACM 58, 11 (Oct. 2015).

[30] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,
Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,
Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill
Howe, and Dan Suciu. 2014. Demonstration of the Myria big data management
service. In SIGMOD.

[31] Kryštof Hoder, Nikolaj Bjùrner, and Leonardo De Moura. 2011. µZśan efficient
engine for fixed points with constraints. In CAV.

[32] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In ICSE.

[33] Ross D. King. 2004. Applying Inductive Logic Programming to Predicting Gene
Function. AI Magazine 25, 1 (March 2004).

[34] Emanuel Kitzelmann and Ute Schmid. 2006. Inductive Synthesis of Functional
Programs: An Explanation Based Generalization Approach. JMLR (2006).

[35] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis
modulo recursive functions. In OOPSLA.

[36] Tessa A Lau, Pedro M Domingos, and Daniel S Weld. 2000. Version Space Algebra
and its Application to Programming by Demonstration.. In ICML. 527ś534.

[37] Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive parser synthesis
by example. In PLDI.

[38] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B. Tenenbaum, and Stephen
Muggleton. 2014. Bias reformulation for one-shot function induction. In ECAI.

[39] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. 2009. Declarative Networking. Commun. ACM 52, 11 (Nov. 2009).

[40] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix:
A Declarative Language for Fixed Points on Lattices. In PLDI.

[41] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-guided
Approach to Program Analysis. In FSE.

[42] AnaMilanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized Object
Sensitivity for Points-to and Side-effect Analyses for Java. In Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and Analysis.

[43] Tom MMitchell. 1982. Generalization as search. Artificial intelligence 18, 2 (1982),
203ś226.

[44] Raymond J. Mooney. 1996. Inductive Logic Programming for Natural Language
Processing. In Inductive Logic Programming: Selected papers from the 6th Interna-
tional Workshop. Springer Verlag.

[45] Stephen Muggleton. 1991. Inductive logic programming. New generation comput-
ing 8, 4 (1991).

[46] Stephen Muggleton. 1995. Inverse entailment and Progol. New generation com-
puting 13, 3-4 (1995).

[47] Stephen Muggleton. 1999. Scientific knowledge discovery using inductive logic
programming. Commun. ACM 42, 11 (1999), 42ś46.

[48] Stephen Muggleton and Wray L. Buntine. 1988. Machine Invention of First-order
Predicates by Inverting Resolution. In Proceedings of the International Conference
on Machine Learning (ICML’88).

[49] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach,
Katsumi Inoue, and Ashwin Srinivasan. 2012. ILP turns 20 - Biography and future
challenges. ML (2012).

[50] Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. 2015.
Meta-interpretive learning of higher-order dyadic datalog: Predicate invention
revisited. Machine Learning 100, 1 (2015).

[51] Mayur Naik. Chord: A Program Analysis Platform for Java. http://jchord.
googlecode.com/.

[52] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a Strategy
for Adapting a Program Analysis via Bayesian Optimisation. In OOPSLA. ACM,
572ś588.

[53] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed
program synthesis. In PLDI.

[54] Gordon D Plotkin. 1970. A note on inductive generalization. Machine intelligence
5, 1 (1970).

[55] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
synthesis from polymorphic refinement types. In PLDI. ACM, 522ś538.

[56] David Poole. 1995. Logic Programming for Robot Control. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI’95).

[57] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
[58] JCA Santos, H Nassif, D Page, SH Muggleton, and MJE Sternberg. 2012. Auto-

mated identification of protein-ligand interaction features using Inductive Logic
Programming: a hexose binding case study. BMC BIOINFORMATICS 13 (2012).

[59] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On Fast
Large-scale Program Analysis in Datalog. In Proceedings of the 25th International
Conference on Compiler Construction (CC 2016).

[60] Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. SociaLite: Datalog extensions
for efficient social network analysis. In ICDE.

[61] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1ś114.

[62] H. S. Seung,M. Opper, andH. Sompolinsky. 1992. Query by Committee. In Proceed-
ings of the 5th Annual Workshop on Computational Learning Theory (COLT’92).

[63] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,
and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark. In
SIGMOD.

[64] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In PLDI.

[65] Y. Smaragdakis and M. Bravenboer. 2010. Using Datalog for Fast and Easy
Program Analysis. In Datalog 2.0 Workshop.

[66] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your
Contexts Well: Understanding Object-sensitivity. In POPL.

[67] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and
Vijay A. Saraswat. 2006. Combinatorial sketching for finite programs. In ASPLOS.

526

http://bddbddb.sourceforge.net/
https://www.datomic.com/
http://repo.roscidus.com/java/iris
http://repo.roscidus.com/java/iris
http://www.logicblox.com/
http://rightingcode.org/
https://semmle.com/
http://jchord.googlecode.com/
http://jchord.googlecode.com/

Syntax-Guided Synthesis of Datalog Programs ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

[68] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2013. Template-based
program verification and program synthesis. STTT (2013).

[69] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-output Examples. In PLDI.

[70] J. Whaley and M. Lam. 2004. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In PLDI.

[71] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2017. Automated Bug Removal for Software-Defined Networks. In NSDI.

[72] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur
Naik. 2016. APISan: Sanitizing API Usages through Semantic Cross-checking. In
Proceedings of the USENIX Security Symposium.

[73] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective Interactive
Resolution of Static Analysis Alarms. In OOPSLA.

[74] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014.
On Abstraction Refinement for Program Analyses in Datalog. In PLDI.

527

	Abstract
	1 Introduction
	2 Overview Examples
	3 Problem Formulation
	3.1 Datalog Programs
	3.2 Synthesis Problem

	4 Our Approach
	4.1 Structure of the Search Space
	4.2 The ALPS Algorithm
	4.3 Refinement with Meta-Rules
	4.4 Augmentation and Predicate Invention
	4.5 Properties of ALPS

	5 Empirical Evaluation
	5.1 Benchmark Suite
	5.2 Experimental Setup
	5.3 Evaluation Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	A Proof of alps Properties
	Acknowledgments
	References

