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ABSTRACT

There is great potential for boosting the performance of mobile de-
vices by offloading computation-intensive parts of mobile appli-
cations to the cloud. The full realization of this potential is hin-
dered by a mismatch between how individual mobile devices de-
mand computing resources and how cloud providers offer them:
offloading requests from a mobile device usually require quick re-
sponse, may be infrequent, and are subject to variable network
connectivity, whereas cloud resources incur relatively long setup
times, are leased for long time quanta, and are indifferent to net-
work connectivity. In this paper, we present the design and im-
plementation of the COSMOS system, which bridges this gap by
providing computation offloading as a service to mobile devices.
COSMOS efficiently manages cloud resources for offloading re-
quests to both improve offloading performance seen by mobile de-
vices and reduce the monetary cost per request to the provider.
COSMOS also effectively allocates and schedules offloading re-
quests to resolve the contention for cloud resources. Moreover,
COSMOS makes offloading decisions in a risk-controlled manner
to overcome the uncertainties caused by variable network connec-
tivity and program execution. We have implemented COSMOS
for Android and explored its design space through computation of-
floading experiments to Amazon EC2 across different applications
and in various settings. We find that COSMOS, configured with the
right design choices, has significant potential in reducing the cost
of providing cloud resources to mobile devices while at the same
time enabling mobile computation speedup.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications
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1. INTRODUCTION
The idea of offloading computation from mobile devices to re-

mote computing resources to improve performance and reduce en-
ergy consumption has been around for more than a decade [5, 6].
The usefulness of computation offloading hinges on the ability to
achieve high computation speedups with small communication de-
lays. In recent years, this idea has received more attention because
of the significant rise in the sophistication of mobile applications,
the availability of powerful clouds and the improved connectivity
options for mobile devices. By identifying the offloadable tasks at
runtime, recent work [11, 10, 15, 20] has aimed to generalize this
approach to benefit more mobile applications.

Despite great potential, a key challenge in computation offload-
ing lies in the mismatch between how individual mobile devices
demand and access computing resources and how cloud providers
offer them. Offloading requests from a mobile device require quick
response and may not be very frequent. Therefore, the ideal com-
puting resources suitable for computation offloading should be im-
mediately available upon request and be quickly released after exe-
cution. In contrast, cloud computing resources have long setup time
and are leased for long time quanta. For example, it takes about 27
seconds to start an Amazon EC2 VM instance. The time quantum
for leasing an EC2 VM instance is one hour. If an instance is used
for less than an hour, the user must still pay for one-hour usage.
This mismatch can thus hamper offloading performance and/or in-
cur high monetary cost.

Complicating this issue is the fact that mobile devices access
cloud resources over wireless networks which have variable per-
formance and/or high service cost. For example, 3G networks have
relatively low bandwidth, causing long communication delays for
computation offloading [11]. On the other hand, although WiFi
networks have high bandwidth and are free to use in many cases,
their coverage is limited, resulting in intermittent connectivity to
the cloud and highly variable access quality even when connectiv-
ity exists [8, 12, 24].

In this paper we propose COSMOS, a system that bridges the
above-discussed gaps by providing computation offloading as a ser-
vice. The key premise of COSMOS is that an intermediate ser-
vice between a commercial cloud provider and mobile devices can
make the properties of underlying computing and communication
resources transparent to mobile devices and can reorganize these
resources in a cost-effective manner to satisfy offloading demands
from mobile devices. The COSMOS system receives mobile user
computation offload demands and allocates them to a shared set
of compute resources that it dynamically acquires (through leases)
from a commercial cloud service provider. The goal of COSMOS is
to provide the benefit of computation offloading to mobile devices



while at the same time minimizing the compute resource leasing
cost.

Our goal in this paper is to develop a design for COSMOS, im-
plement it and evaluate its performance. At the heart of COSMOS
are two types of decisions: 1) whether a mobile device should of-
fload a particular computation to COSMOS and 2) how COSMOS
should manage the acquisition of compute resources from the com-
mercial cloud provider.

We start by formulating an optimization problem whose solution
can guide the required decision making. Because of its complexity,
no efficient solution to this optimization is available. It does, how-
ever, lead us to the identification of three components of COSMOS
decision making that we then explore individually. Specifically, we
develop a set of novel techniques, including resource-management
mechanisms that select resources suitable for computation offload-
ing and adaptively maintain computing resources according to of-
floading requests, risk-control mechanisms that properly assess re-
turns and risks in making offloading decisions, and task-allocation
algorithms that properly allocate offloading tasks to the cloud re-
sources with limited control overhead.

We have implemented COSMOS for Android and evaluated the
system for offloading from a set of smartphones/tablets to Amazon
EC2, across different applications in various types of mobile envi-
ronments. We evaluate the performance of the system in several
realistic mobile environments. To further explore the design space
of COSMOS, we also conduct extensive trace-based simulation. In
all these experiments, COSMOS achieves good offloading perfor-
mance and significantly reduces the monetary cost compared with
previous offloading systems like CloneCloud [10]. We find that
COSMOS, configured with the right design choices, has significant
potential in reducing the cost of providing cloud resources to mo-
bile devices while at the same time enabling mobile computation
speedup.

The rest of the paper is organized as follows. Section 2 presents
some background material and presents the problem statement and
optimization formulation. Section 3 presents an overview of COS-
MOS’s architecture incorporating the insight gained from the op-
timization formulation regarding the system decomposition. The
design details are presented in Section 4. COSMOS is evaluated in
Section 5 and 6. We summarize related work in Section 7. Sec-
tion 8 concludes the paper and discusses future work.

2. BACKGROUND AND PROBLEM STATE-
MENT

2.1 Background

2.1.1 Computation Offloading
A basic computation-offloading system [10, 11] is composed of

a client component running on the mobile device and a server com-
ponent running in the cloud. The client component has three major
functions. First, it monitors and predicts the network performance
of the mobile device. Second, it tracks and predicts the execution
requirements of mobile applications in terms of input/output data
requirements and execution time on both the mobile device and the
cloud. Third, using this information the client component chooses
some portions of the computation to execute in the cloud so that the
total execution time is minimized. The server component executes
these offloaded portions immediately after receiving them and re-
turns the results back to the client component so that the application
can be resumed on the mobile device.

Computation offloading trades off communication cost for com-
putation gain. Previous systems [10, 11] usually assume stable

network connectivity and adequate cloud computation resources.
However, in mobile environments a mobile device may experience
varying or even intermittent connectivity, while cloud resources
may be temporarily unavailable or occupied. Thus, the commu-
nication cost may be higher, while the computation gain will be
lower. Moreover, the network and execution prediction may be in-
accurate, causing the performance of these systems to be degraded.

2.1.2 Cloud Computation Resources
Cloud computation resources are usually provided in the form

of virtual machine (VM) instances. To use a VM instance, a user
installs an OS on the VM and starts it up, both incurring delay. VM
instances are leased based on a time quanta. e.g., Amazon EC2 uses
a one hour lease granularity. If a VM instance is used for less than
the time quanta, the user must still pay for usage. A cloud provider
typically provides various types of VM instances with different
properties and prices. Table 1 lists some properties and prices for
three types of Amazon EC2 VM instances: Standard On-Demand
Small instance (m1.small), Standard On-Demand Medium instance
(m1.medium) and High-CPU On-Demand Medium instance
(c1.medium). For some pricing models (e.g., EC2 spot), the leasing
price may change over time.

Table 1: The characteristics of EC2 on-demand instances. The
setup time is measured by starting and stopping each type of in-
stances for 10 times. The average value and standard deviation
are reported.

Instance Cores CPU(GHz) Setup(second) Price($/hr)
m1.small 1 1.7 26.5(5.5) 0.06

m1.medium 1 2.0 26.6(3.7) 0.12
c1.medium 2 2.5 26.7(8.4) 0.145

Note that the server component of offloaded mobile computation
needs to run on a VM instance. This server component needs to
be launched at the time the offloading request is made and termi-
nated when the required computation is complete. The lifetime of
the server component is typically much less than the lease quan-
tum used by the cloud service provider. An important question we
consider in our system design is how to ensure there is enough VM
capacity available to handle the mobile computation load without
needing to always launch VM instances on-demand and incur long
setup time.

2.2 Problem Statement
The basic idea of COSMOS is to achieve good offloading perfor-

mance at low monetary cost by sharing cloud resources among mo-
bile devices. Specifically, in this paper our goal is to minimize the
usage cost of cloud resources under the constraint that the speedup
of using COSMOS against local execution is larger than 1−δ of the
maximal speedup that it can achieve using the same cloud service,
where δ ∈ (0, 1). The extension of COSMOS to support other
optimization goals will be discussed in Section 8. A related but
independent problem is how COSMOS charges mobile devices for
computation offloading, which will also be discussed in Section 8.

Let’s assume that the cloud can simultaneously run N VM in-
stances. Let’s use ⟨Mi, Ti⟩ to denote the usage of the ith VM
instance, where Mi is its type (see Table 1 for examples), and
Ti = {⟨tij , t′ij⟩|∀j, tij < t′ij , t

′

ij < ti(j+1)} represents all the
leasing periods. We use tij and t′ij to represent the start time and

end time of the jth leasing period, respectively. Let ψ(M,T ) be
the leasing cost of ⟨M,T ⟩, which is computed by multiplying the
price with the total leasing time quanta.

Let’s assume that there are K computation tasks generated by
mobile users in the COSMOS system during the period of time



of interest. Let Ok = ⟨tk, ck, dIk, dOk⟩ denote the kth compu-
tation task, where tk ( ∀k, tk−1 ≤ tk ) is the time when the task
was initiated by the mobile user, ck is the number of CPU cycles
it requires, dIk is the size of its input data, and dOk is the size
of its output data. Let I(i, k) and Il(k) be indicator functions. If

Ok is offloaded to the ith VM instance, I(i, k) = 1. Otherwise,
I(i, k) = 0. Similarly, if it is locally executed, Il(k) = 1. Oth-
erwise, Il(k) = 0. Since Ok should be executed exactly once,
Il(k) +

∑

i I(i, k) = 1. Let L(Ok) be the local execution time
of Ok which can be estimated based on ck and the CPU frequency
of the mobile device [20]. Let Ri(Ok) be the response time of

offloading Ok to the ith VM instance, i.e., the time elapsed from
tk to the time that the output is returned to the mobile device. It
depends on the network delays of sending input data and receiving
output data, the execution time on the VM instance and the waiting
time. Its formula will be shown in Section 4.2. The key symbols
are summarized in Table 2.

Table 2: Key symbols used in COSMOS problem formulation

Mi the type of the ith VM instance
Ti the leasing periods of the ith VM instance

ψ(M, T ) the pricing function for leasing a VM instance
Ok the kth computation task

I(i, k) the indicator function for offloading task Ok to VM i
Il(k) the indicator function for executing task Ok locally
L(Ok) the local execution time of the task Ok

Ri(Ok) the response time of offloading the task Ok to VM i

The maximal speedup of using COSMOS against local execution
can be obtained by solving the following optimization problem:

Max
K
∑

k=1

L(Ok)

min{L(Ok)
Il(k)

, {Ri(Ok)
I(i,k) |∀i}}

(1)

s.t. Il(k) +
N
∑

i=1

I(i, k) = 1

Since for each k there is exactly one of the functions Il(k) and
I(i, k) that equals to 1, min{L(Ok)

Il(k)
, {Ri(Ok)

I(i,k) |∀i}} equals to the
corresponding L(Ok) or Ri(Ok), representing the response time
of task Ok in COSMOS. Thus, Eqn 1 is to maximize the speedup
of all tasks. Let’s use S∗

k to denote the corresponding maximal
speedup achieved by task Ok . We have ∀k, S∗

k ≥ 1. The goal of
COSMOS can be formally formulated as:

Min
N
∑

i=1

ψ(Mi, Ti) (2)

s.t. Il(k) +
N
∑

i=1

I(i, k) = 1

L(Ok)

min{L(Ok)
Il(k)

, {Ri(Ok)
I(i,k) |∀i}}

≥ (1− δ)S∗

k

where δ ∈ (0, 1) can be arbitrarily chosen by the system. When
δ → 1, all tasks will be executed locally while the total cost will
approach 0. When δ → 0, the speedups approach to the optimal
values while the total cost will be high.

COSMOS is to find the values of ⟨Mi, Ti⟩, Il(k), and I(i, k) that
optimize Eqn 2. This is a challenging problem especially because
we have no information regarding future computation tasks. Our
approach to solve this problem is to break it down into three sub-
problems and address each of them separately:
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Figure 1: The architecture of the COSMOS system.

• Cloud resource management: This is the problem of deter-
mining the number and type of VM instances to lease over
time, i.e., ⟨Mi, Ti⟩. It has two major goals. First, there
should always be enough VM instances to ensure high of-
floading speedup. Second, the cost of leasing VM instances
should be minimized.

• Offloading decision: This is the problem of deciding whether
a mobile device offloads a computation task, i.e., deciding
whether to set Il(k) to 0 or 1. The challenge comes from
the uncertainties of network connectivity, program execu-
tion, and resource contention. A wrong offloading decision
will both waste cloud resources and result in lower speedup.
It is very important to properly handle the uncertainties.

• Task allocation: This is the problem of choosing a VM in-
stance among all available instances if we decide to offload
a computation task, i.e., deciding whether to set I(i, k) to 0
or 1. The decision is made independently by each mobile
device. In addition, the decisions for previous computation
tasks will impact the decision of the current one because of
resource sharing. Therefore, task allocation should be de-
signed as a distributed mechanism.

In the following sections, we will present the design of COS-
MOS and its mechanisms to solve these problems.

3. COSMOS SYSTEM
Figure 1 provides a high-level overview of the COSMOS sys-

tem. It consists of three components: a COSMOS Master running
on a VM instance that manages cloud resources and exchanges in-
formation with mobile devices; a set of active COSMOS Servers
each of which runs on a VM instance and executes offloaded tasks;
and a COSMOS Client on each mobile device that monitors ap-
plication execution and network connectivity and makes offloading
decisions.

The COSMOS Master is the central component for cloud re-
source management. It periodically collects information of com-
putation tasks from COSMOS Clients through task tracker and
the workloads of COSMOS Servers through server tracker. Us-
ing this information, its server scheduler decides the number and
type of active COSMOS Servers over time. Note that when a COS-
MOS Server is turned on/off, its corresponding VM instance is also
turned on/off. The algorithms will be described in Section 4.1.

An active COSMOS Server is responsible for executing offloaded
computation tasks. Each COSMOS Server has one task queue and
multiple workers the number of which equals to its number of CPU



cores. Computation tasks are executed on a first-come-first-serve
basis. The COSMOS Server also estimates and provides the work-
load information upon request by predicting the execution time of
all tasks in the queue through the execution predictor. We use Man-
tis [22], a state-of-the-art predictor for mobile applications.

A COSMOS Client tracks all applications running on its mobile
device, makes offloading decisions for them, and allocates tasks
to COSMOS Servers. When a mobile application starts, an ap-
plication tracker monitors the application execution and identifies
its compute-intensive tasks in the same way as MAUI [11] and
CloneCloud [10]. When it reaches the entry point of such a task,
the offloading controller obtains the computation speedup from the
execution predictor and the communication delay from the connec-
tivity predictor (e.g., BreadCrumbs [25]) and decides if it should
offload the task based on them. The design details of this offloading
decision will be described in Section 4.2. If it decides to offload, the
COSMOS Client allocates the task to an active COSMOS Server,
which will be described in Section 4.3. Finally the COSMOS Client
offloads the task and waits to receive the result. If the COSMOS
Client cannot obtain the results before a deadline, it executes the
task on a local worker.

4. DESIGN DETAILS

4.1 Cloud Resource Management
The cloud resource management has two major mechanisms:

how to select the type of VM instance (i.e., Mi) and when to start
and stop COSMOS Servers (i.e., Ti).

4.1.1 Resource Selection
COSMOS strives to minimize the cost per offloading request un-

der the constraint that the offloading speedup is large enough. Re-
call that our goal is to achieve speedup of at least 1 − δ of the
maximally possible. Therefore, the resource selection algorithm
selects the least cost VM instance whose CPU frequency is larger
than 1 − δ of the most powerful VM instance. The algorithm is
shown in Algorithm 1.

Algorithm 1 Resource Selection
1: procedure RESOURCESELECTION({I},δ) ◃ I is a instance type.
2: maxFreq← 0; minCost← +∞ ;
3: for I in {I} do
4: if maxFreq < I.f then
5: maxFreq← I.f;
6: end if
7: end for
8: for I in {I} do

9: if I.f≥ (1− δ)maxFreq && I.p
I.c×I.f

< minCost then

10: maxCost← I.p
I.c×I.f

;
11: selected← I;
12: end if
13: end forreturn selected;
14: end procedure

In Algorithm 1, c, f , and p denote the number of processor cores,
the CPU frequency and the price of a VM instance, respectively. If
all cores are 100% utilized during a time quanta τ , the VM instance
totally executes cfτ CPU cycles. The cost of each CPU cycle is p

cf
.

We use this value as the cost for comparison in Algorithm 1.

4.1.2 Server Scheduling
Server scheduling is the key mechanism to balance the usage

cost of VM instances and the offloading performance. Its basic op-
erations are as follows: The COSMOS Master periodically collects

the number of offloading requests and the workloads of COSMOS
Servers (every 30 seconds in our implementation). When the work-
loads are too large, it turns on new COSMOS Servers. When a time
quantum of a COSMOS Server is to expire, it turns off the COS-
MOS Server if the remaining COSMOS Servers are enough to han-
dle the offloading requests. The algorithm is shown in Algorithm 2.

Algorithm 2 Server Scheduling
1: procedure SERVERSCHEDULING(λ,µ) ◃ λ and µ are reported arrival

rate and service time of offloading requests in the last round.
2: λs← getMaxArrivalRatePerServer(µ, µ

1−δ
);

3: n← ⌈ λ
λs
⌉;

4: if n > activeServers.size() then
5: turnOnServers(n - activeServers.size());
6: else
7: for s ∈ activeServers do
8: if s.quantumExpiring() then
9: pendingServers.add(s);

10: end if
11: end for
12: turnOffServers();
13: end if
14: end procedure
15: procedure TURNONSERVERS(n) ◃ n is the number of server
16: for i = 1:n do
17: if pendingServers.isEmpty() then
18: activeServers.add(turnOnAServer())
19: else
20: activeServers.add(pendingServers.remove(0));
21: end if
22: end for
23: end procedure
24: procedure TURNOFFSERVERS
25: for s ∈ pendingServers do
26: if s.quantumaExpired() then
27: turnOff(s);
28: end if
29: end for
30: end procedure

Every round the COSMOS Master computes the current arrival
rate and service time of offloaded computation tasks and uses them
to estimate the minimal number of COSMOS Servers to achieve
the desired offloading performance. If the number of active COS-
MOS Servers is smaller than this value, it turns on new COS-
MOS Servers. A COSMOS Server whose current time quantum
expires will be turned off only if the number of remaining COS-
MOS Servers are larger than the minimal value for several rounds.
Otherwise, its lease will be renewed for another quantum.

A key function of Algorithm 2 is how to estimate the maximal
arrival rate (i.e., λs) that a COSMOS Server can handle, as shown
in Line 2. Since a COSMOS Server serves offloading requests in a
first-come-first-serve manner, it can be modeled as a G/G/c system.
Based on the required speedup (i.e., 1−δ of the maximal speedup),
we obtain that the maximal response time of the system should be
smaller than µ

1−δ
. According to Kingman’s formula [19], we can

obtain the value of λs.

4.2 Offloading Decision
The offloading controller uses the information from the connec-

tivity and execution predictors to estimate the potential benefits of
the offloading service. Ideally, if future connectivity and execu-
tion time can be accurately predicted immediately after the mobile
application starts, the offloading controller can make the global op-
timal offloading decision. However, such global optimum is un-
available in reality.



Instead, the offloading controller uses a greedy strategy to make
the offloading decision. Every time an offloadable task is initiated,
the offloading controller determines if it is beneficial to offload it.
Because of the uncertainties inherent in the mobile environment,
the offloading decision takes risk into consideration. In case a bad
decision has been made, it will also adjust its strategy with new
information available.

4.2.1 Offloading Gain
When an offloadable task, Ok, is initiated at time tk, the offload-

ing controller needs to determine if it is beneficial to offload this
task to the cloud. Let us use Tws to denote the time to wait for
connectivity before sending the data, Ts for the time to send the
data, Tc for the execution time of the task in the cloud, Twr for
the time to wait for connectivity before receiving the result, Tr for
the time to receive the result. The local execution time is L(Ok),
which is estimated by the execution predictor. The response time of
offloading to an active COSMOS Server, R(Ok), can be expressed
as:

R(Ok) = Tws + Ts + Tc + Twr + Tr (3)

It is beneficial to offload only if the local execution time is longer
than the response time of offloading. Therefore, we use their dif-
ference to represent the offloading gain:

G = L(Ok)−R(Ok) (4)

Because of the uncertainties in the mobile environment, the offload-
ing controller can only obtain a distribution for G (i.e., E(G) and
σ2(G)). Simply using E(G) to make the offloading decision will
introduce the risk of longer execution time. We describe the risk-
control mechanism in the next subsection.

4.2.2 Risk-Controlled Offloading Decision
Our risk-controlled offloading is based on two key ideas. First,

we use risk-adjusted return [9] in making the offloading decision
so that the return and risk of offloading are simultaneously con-
sidered. Specifically, E(G) and σ(G) are used as the return and
risk of the offloading gain, respectively. Thus, the risk-adjusted
return of offloading gain is E(G)

σ(G) . When its value is larger than cer-
tain threshold, the computation task will be offloaded to the cloud.
Otherwise, it will be locally executed. Second, we re-evaluate the
return and risk when new information is available. The algorithm
is shown in Algorithm 3.

When a computation task is initiated, the offloading controller
evaluate its return and risk of offloading gain. Functions
getOffloadingGain(Ok) and getOffloadingRisk(Ok) return E(G)
and σ(G), respectively. The detailed algorithms to compute them
are described in the appendix. If the risk-adjusted return (i.e., E(G)

σ(G) )
is larger than a threshold, the offloading controller offload the task
to the cloud. In addition, it also listens to the connectivity status
which has high impact on E(G) and σ(G). Once new connectivity
information is updated, it re-evaluates the risk-adjusted return and
adjust its decision accordingly.

4.3 Task Allocation
When a COSMOS Client is to offload a task, it must decide

which COSMOS Server should execute the task. We consider three
heuristic methods. The first method is that the COSMOS Mas-
ter maintains a global queue to directly accept offloading requests
and allocates tasks when a COSMOS server has idle cores. Al-
though it should have high server utilization, the network connect-
ing the COSMOS Master may become a bottleneck. The second
method is that the COSMOS Client queries the workloads of a set

Algorithm 3 Risk Controlled Offloading
1: procedure OFFLOADING(Ok) ◃Ok is the computation task.
2: if riskAdjustedOffloading(Ok ) then
3: offloadedTask← Ok;
4: registerReceiver(this,CONNECTIVITY);
5: end if
6: end procedure
7: procedure RISKADJUSTEDOFFLOADING(Ok)
8: gain← getOffloadingGain(Ok ); ◃ E(G) as offloading gain
9: risk← getOffloadingRisk(Ok ); ◃ σ(G) as offloading risk

10: if gain/risk ≥ α then
11: offload(Ok); return true;
12: else
13: localExecute(Ok )
14: unregisterReceiver(this); return false;
15: end if
16: end procedure
17: procedure ONRECEIVE(conn) ◃ conn is the connectivity status.
18: riskAdjustedOffloading(offloadedTask);
19: end procedure
20: procedure RECEIVERESULT(Ok)
21: offloadedTask← NULL;
22: unregisterReceiver(this);
23: end procedure

of COSMOS servers and randomly chooses one with low work-
load to allocate the new task. Although tasks are directly sent to
COSMOS Servers in this method, it will cause huge control traffic.
In addition, it will cause extra waiting time. The third method is
that the COSMOS Master provides each COSMOS Client a set of
active COSMOS Servers and informs it the average workloads of
all COSMOS Servers. Each COSMOS Client randomly chooses
a server among them to offload the task. This method has min-
imal control overhead. As the resource-management mechanism
ensures that the workloads of COSMOS Servers are low, it should
also have good performance. Thus, COSMOS uses the third method
for task allocation.

5. SYSTEM IMPLEMENTATION AND EVAL-
UATION

In this section, we evaluate our prototype implementation of COS-
MOS in various mobile environments.

5.1 Implementation
We implemented the COSMOS Server on Android x86 [2]. To

run COSMOS Servers on Amazon EC2, we use an Android-x86
AMI [21] to create EC2 instances. Since Android-x86 is a 32-
bit OS, three types of EC2 instances can be used for COSMOS
Servers, as listed in Table 1. Based on our resource selection algo-
rithm in Section 4.1.1, High-CPU On-Demand Medium instances
are used to run COSMOS Servers.

The COSMOS Master runs on an EC2 instance running Ubuntu
12.04. It uses the Amazon EC2 API tools [1] to start and stop EC2
VM instances on which COSMOS Servers run.

A COSMOS Client runs on an Android device equipped with
both WiFi and 3G connections. It uses the Java reflection tech-
niques to enable the offloading of computation tasks. We modified
three existing Android applications to use COSMOS, including:

FACEDETECT is a face detection application that uses APIs in
the Android SDK. We collected a data set of pictures containing
faces from Google Image.

VOICERECOG is an Android port of the speech recognition pro-
gram PocketSphinx [18]. For simplicity of experiments, we also
modified it to use audio files as input.



0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Speedup

CD
F

 

 

CloneCloud
COSMOS(OP)
COSMOS

(a) Speedup

CloneCloud COSMOS(OP) COSMOS0

5

10

15

20

25

To
ta

l c
os

t (
$)

 

 

(b) Cost

0 6 12 18 240

1

2

3

Time (hours)

Nu
m

be
r o

f S
er

ve
rs

0 6 12 18 240

2

4

6

8

10

Nu
m

be
r o

f M
ob

ile
 D

ev
ice

s

(c) Number of active servers in COSMOS

Figure 2: The performance of COSMOS on Amazon EC2 for FACEDETECT in one day. There are 10 Android devices which randomly
become active or idle. When they are active, they randomly execute the FACEDETECT application.

DROIDFISH is an Android port of the chess engine Stockfish [3]
that allows users to set the strength of the AI logic.

5.2 Experimental Setup
We evaluate COSMOS in four different mobile scenarios:
• Stable WiFi: A student carrying a mobile device sits in his

lab. WiFi is stable and fast.
• Indoor WiFi: A student randomly walks in a building which

has good WiFi coverage.
• Outdoor WiFi: A student takes a campus shuttle, experienc-

ing varying signal strength and frequent intermittent connec-
tivity.

• Outdoor 3G: A student is on his commute between home
and school. 3G is used for Internet access.

For each scenario, we measure the network connectivity and con-
struct a database for the connectivity predictor.

We compare COSMOS with three baseline systems:
• CloneCloud is a basic offloading system in which each mo-

bile device has a server in the cloud that is always on [10]. In
addition, it assumes stable network connectivity.

• Oracle assumes accurate knowledge of all connectivity and
execution profile information necessary to make the offload-
ing decision. Since this is impossible to implement, we use
post-analysis to obtain the results. It represents an upper-
bound on offloading benefits.

• COSMOS(OP) is a variant of COSMOS with a simple strat-
egy for resource management, i.e., the number of active COS-
MOS Servers are over-provisioned for the peak requests. We
assume the number of peak requests is accurately estimated
in advance.

We use two metrics to evaluate COSMOS: speedup and cost. The
values of speedup are different for different mobile devices. For fair
comparison, we use a Samsung Galaxy Tab running Android 2.3 to
obtain the local execution time in calculating speedup. The prices
for EC2 on-demand instances are used to compute the cost.

5.3 COSMOS Performance with Stable WiFi

This represents the best network environment for computation
offloading. In this scenario, the performance of cloud resource
management dominates the COSMOS performance.

In this set of experiments, we use 10 Android devices to con-
duct a one-day experiment for each of the systems: CloneCloud,
COSMOS(OP), and COSMOS. During an experiment, each device
randomly becomes active or idle from time to time. Their dura-
tions follow an exponential distribution, with average values of 0.5
hour and 1 hour, respectively. When a device is active, it randomly
starts the FACEDETECT application following a Poisson distribu-

tion with arrival rate of 0.2. The same random seed is used for all
three experiments.

The experiment results are reported in Figure 2. As shown in
Figure 2(a), all three systems achieve similar speedups, i.e., 2.91X,
2.86X and 2.76X on average for CloneCloud, COSMOS(OP), and
COSMOS, respectively. Meanwhile, the total cost of COSMOS
($7.25) is significantly lower than that of CloneCloud ($23.4) and
COSMOS(OP) ($10.44), as shown in Figure 2(b).

To demonstrate how COSMOS reduces its cost, we plot the num-
ber of active devices (the dotted blue line) and that of active COS-
MOS Servers (the red line) in Figure 2(c). COSMOS adaptively
changes the number of active COSMOS Servers according to the
arrival rate of offloading requests. Therefore, COSMOS is able to
reduce its cost by turning off some COSMOS Servers when the
number of offloading requests is low. In contrast, COSMOS(OP)
spends 44% more money to keep 3 COSMOS Servers active the
whole day, whereas CloneCloud spends 223% more money than
COSMOS with only 5.4% extra speedup.

5.4 COSMOS Performance with Variable Con-
nectivity

In this subsection, we evaluate how COSMOS handles variable
connectivity in Indoor WiFi, Outdoor WiFi and Outdoor 3G. To
eliminate the impact of cloud resource contention, we run a COS-
MOS Server on a machine with an 8-core 3.4GHz CPU, running
VirtualBox 4.1.22, in our lab.

The dynamic mobile environment makes the comparison very
hard since each invocation of an offloadable task has different In-
ternet access quality. To achieve fair comparison, at runtime we
force COSMOS to offload every offloadable task and record the in-
formation of network connectivity and application states. Then we
replay these applications later for each baseline.

5.4.1 Results for Different Scenarios
In the first set of experiments, we evaluate the performance of

COSMOS in the three different mobile scenarios using the FACEDE-
TECT application. Figure 3 shows the speedup distribution in those
experiments. When the speedup is larger than 1, the system out-
performs local execution. Otherwise, the system takes longer time
than local execution. In all these experiments, COSMOS performs
well and achieves similar performance to Oracle. It also outper-
forms CloneCloud by reducing the number of bad offloading deci-
sions.

We also find some interesting phenomena in these experiments.
First, in the scenario of Indoor WiFi where mobile users have good
WiFi coverage, offloading computation to the cloud benefits the
mobile applications in about 80% of the cases. However, there are
still about 20% in which a simple method like CloneCloud will
increase the execution time as much as 20 times. COSMOS re-
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Figure 3: A comparison of COSMOS’s performance benefits using the FACEDETECT application in different mobile scenarios.
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Figure 4: Local execution time vs.the size of migrated data.
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Figure 5: COSMOS performance for different applications. All
experiments are conducted in the scenario of Outdoor WiFi.

duces the portion of negative cases to about 10% with the small-
est speedup at approximately 0.4. In addition, it also enables 75%
of the cases to benefit from offloading. COSMOS achieves 4.1x
overall speedup in this scenario. Second, in the scenario of Out-
door WiFi, CloneCloud can result in extreme speedup penalty when
wrong offloading decision is made. In contrast, COSMOS still
manages to limit the worst speedup results. Third, in the scenario
of Outdoor 3G, ideally at most 30% of the cases benefit from of-
floading. This is because 3G has relatively lower bandwidth and
longer delays. In this scenario, COSMOS only occasionally makes
some poor decision, while CloneCloud causes more than 30% of
the offloaded computation to take more time to execute.

5.4.2 Results for Different Applications
The gain from computation offloading is normally counterbal-

anced by the communication overhead. Different applications usu-
ally have different execution times and different amount of data
exchanged between the mobile device and the cloud. In this sub-
section, we evaluate COSMOS on applications with different com-
putation and communication properties. Figure 4 plots the local
execution time of the offloadable tasks and the corresponding data
to be sent to the cloud. We can see that local execution time of
VOICERECOG is almost proportional to the data size, while DROID-
FISH has constant data size.

To demonstrate how these application properties impact compu-
tation offloading, we compare the performance of different applica-
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Figure 6: Impact of the arrival rate on COSMOS performance.

tions using COSMOS in the scenario of Outdoor WiFi. The results
are plotted in Figure 5.

COSMOS performs well in all these experiments. For FACEDE-
TECT and VOICERECOG, COSMOS helps more than 35% of the
offloadable task invocations benefit from offloading. Meanwhile, it
limits the portion of bad decision cases to be about 10% with small
extra execution time. In contrast, CloneCloud makes many more
bad offloading decisions and causes these invocations to last much
longer.

The behavior of DROIDFISH is quite different from those of
FACEDETECT and VOICERECOG. Even Oracle can only help about
15% of those invocations achieve more than 2X speedup. This is
because the data uploaded to the cloud is so large that if the com-
putation gain is small it cannot compensate for the communication
overhead. We also notice that CloneCloud always chooses to exe-
cute locally because it underestimates the computation gain using
previous invocations. Moreover, compared with Oracle, COSMOS
does not help computations that can only achieve small perfor-
mance improvement because it tries to control the risk of offload-
ing. As a result, only a small portion of invocations have longer
execution time when using COSMOS.

6. TRACE BASED SIMULATION
In this section, we use trace-based simulation to extensively eval-

uate the properties of COSMOS and how its components impact its
performance.

6.1 Scalability
In this subsection, we analyze the impact of offload request in-

tensity on the performance of COSMOS.
In the first set of experiments, we conduct simulation-based ex-

periments using information logged in the experiments of Section 5.3.
We vary the arrival rate of offloading requests from 0.1 to 0.4 per
second and keep other settings unchanged.

Figure 6 plots the experiment results. In all experiments, COS-
MOS achieves the lowest cost and high speedup. We also make the
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Figure 7: Offloading cost for various real-world access traces.

1 2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

3

3.5

4

Trace ID

Sp
ee

du
p

 

 

COSMOS(OP)
COSMOS

Figure 8: Offloading speedup for various real-world access
traces.

following observations. First, both COSMOS and COSMOS(OP)
have lower cost with lower arrival rate, while CloneCloud has con-
stant cost. This indicates the importance of cloud resource sharing
in reducing the cost. Second, when the arrival rate is very high
(e.g., 0.4), COSMOS(OP) has higher speedup (i.e., 2.87X) than
CloneCloud (i.e., 2.78X). Its cost is slightly higher than CloneCloud.
Third, the speedup of COSMOS is similar with those of CloneCloud
and COSMOS(OP) in all experiments.

Next, we evaluate COSMOS using real-world access
traces [4]. The data set consists of 8 access traces each of which is
composed of access requests in 2 days. We use these timestamps
of access requests as the start time of mobile applications on var-
ious mobile devices. We evaluate the performance of COSMOS
through simulation. The average number of requests from the same
user is very low in the traces, indicating extremely high cost of
CloneCloud. Therefore, we only compare COSMOS with COS-
MOS(OP). The costs and speedups for the FACEDETECT applica-
tion on various traces are plotted in Figure 7 and 8, respectively.

COSMOS yields slightly smaller speedups but at significantly
lower cost than COSMOS(OP) on all traces. Specifically, COS-
MOS(OP) pays 13.2 times more money than COSMOS on trace
7, while its speedup (i.e., 2.87X) is only slightly higher than that
of COSMOS (i.e., 2.7X). COSMOS is able to reduce the cost by
an order of magnitude while still achieving 2.7X speedup. The re-
sults of this set of experiments demonstrate that COSMOS is able
to provide computation offloading with high performance at very
low cost.

We also conducted experiments for our other two mobile appli-
cations, as well as a mix of all three applications. The results are
similar and we omit them for brevity.

6.2 Robustness
To make the offloading decision, a COSMOS Client relies on

its connectivity predictions and execution predictions to estimate
how long an offloaded task will need to complete processing and
return result (response time). Errors in these predictions may lead
to incorrect estimation of response time and thus wrong offloading
decisions and performance degradation. Here, we investigate how
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robust COSMOS performance is relative to such estimation errors.
Because the farther the prediction is in the future the higher the ab-
solute errors [25], we use an exponential function (E = (−1)rbT ),
where r is a uniform random variable and r ∈ {0, 1}, T is the
response time. To show robustness of COSMOS and emulate dif-
ferent erroneous environments, we change b from 1.1 to 2. Our re-
sults are depicted in Figure 9. It shows that with the increase of the
prediction error, the performance of COSMOS is degraded slightly.
However, even with severe errors, COSMOS is still able to achieve
high speedup for most offloading requests which highlights that the
higher the offloading gains the more robustness against prediction
errors.

6.3 Task Allocation
To distribute the tasks across different COSMOS Servers, our

task-allocation algorithm uses aggregated information about the
workloads on these servers. Such aggregated information may lead
to sub-optimal distribution of the tasks across the servers and af-
fect performance. To quantify the efficiency of our task allocation
algorithm, we compare it with two algorithms: 1) Optimal Alloca-
tion (OptAlloc) and 2) Optimal Allocation with Overhead (OptAl-
loc+Ov.). The Optimal Allocation algorithm is based on knowing
the realtime COSMOS Servers queueing information and assign-
ing a task to the server which minimizes its queuing delay. Optimal
Allocation with Overhead uses OptAlloc mechanism while adding
the overhead of getting the COSMOS Servers queuing informa-
tion which we estimate to be one round trip time from the mobile
device to COSMOS Servers. Figure 10 compares COSMOS task
allocation mechanism with these two algorithms. We observe that,
because COSMOS ensures that the load on COSMOS Servers stays
low, the Optimal Allocation mechanism did not outperform COS-
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Figure 11: The tradeoff between risk and return. We use dif-
ferent values of α for VOICERECOG in the scenario of Outdoor
WiFi.

MOS. When the RTT overhead is accounted for, the performance
degrades only slightly.

6.4 The Return-Risk Tradeoff
COSMOS enables applications to control the risk of offloading

by setting the value of α. An application sensitive to extra delays
can use large α value, while a small α value will result in higher
expected return. To show how α impacts the return-risk tradeoff,
we apply various values of α to the VOICERECOG application in
the scenario of Outdoor WiFi.

Figure 11 plots the results. When the value of α increases from
0.5 to 10, the portion of invocations with speedup less than 1 de-
creases from about 10% to almost 0%. Meanwhile the portion of
invocations that can benefit from offloading also drops from about
35% to 5%. It will be important to find a proper tradeoff between
return and risk a question we relegate to future research.

7. RELATED WORK
The concept of cyber foraging [26, 13], i.e., dynamically aug-

menting mobile devices with resource-rich infrastructure, was pro-
posed more than a decade ago. Since then significant work has
been done to augment the capacity of resource-constrained mobile
devices using computation offloading [5, 6, 16, 7]. A related tech-
nique proposes the use of cloudlets which provide software instan-
tiated in real-time on nearby computing resources [27]. Recog-
nizing the importance of quick responses, Ha et al. [17] propose
various virtual machine techniques to enable fast provisioning of a
cloudlet.

Closer to our work, MAUI [11] enables mobile applications to
reduce the energy consumption through automated offloading. Sim-
ilarly, CloneCloud [10] can minimize either energy consumption
or execution time of mobile applications by automatically identi-
fying compute-intensive parts of those applications. ThinkAir [20]
enables the offloading of parallel tasks with server-side support.
These systems focus on how to enable computation offloading for
mobile devices. Based on these offloading techniques, COSMOS
takes the next important step further to bridge the gap between
offloading demands and the availability of cloud computing re-
sources. In addition, COSMOS simultaneously considers perfor-
mance and monetary cost in offloading. Moreover, they assume a
stable network environment, whereas COSMOS also handles the
more challenging mobile environment where connectivity is highly
variable.

The challenges of computation offloading with variable connec-
tivity have been identified in [28]. A system, Serendipity [29],
was designed for computation offloading among intermittently con-
nected mobile devices. In contrast, COSMOS proposes techniques

to handle the variable connectivity for offloading to a cloud. A de-
tailed survey of cyber foraging can be found in [13].

Our work is also related to studies on cloud resource manage-
ment. This problem is intensively studied in the context of power
saving in data centers [23, 14, 30]. For example, Lu et al. [23] uses
reactive approaches to manage the number of active servers based
on current request rate. Gandhi et al. [14] investigate policies for
dynamic resource management when the servers have large setup
time. COSMOS is different from them in three major aspects. First,
they minimize the cost of power consumption, whereas COSMOS
reduces the cost of leasing cloud resources. Second, in COSMOS
computation tasks may be offloaded to the cloud or be executed on
local devices, while in data centers services are always provided
by servers. Third, COSMOS also needs to handle variable network
connectivity of mobile devices, which is unnecessary for data cen-
ters.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed COSMOS, a system that provides

computation offloading as a service to resolve the mismatch be-
tween how individual mobile devices demand computing resources
and how cloud providers offer them. COSMOS solves two key
challenges to achieve this goal, including how to manage and share
the cloud resources and how to handle the variable connectivity
in making offloading decision. We have implemented COSMOS
and conducted an extensive evaluation. The experimental results
show that COSMOS enables effective computation offloading at
low cost.

There are some future directions to extend COSMOS. We will
explore how to extend COSMOS to provide the computation of-
floading services in a manner that optimizes the energy consump-
tion of mobile devices. It requires two major changes. First, the
offloading controller should make the offloading decision based on
energy consumption. It should delay computation offloading until
the network connectivity is good. Second, the cloud resources can
be used in a more efficient way. Instead of immediately execut-
ing each offloaded task, COSMOS should wait until enough tasks
are aggregated. In addition, we will investigate the proper pricing
model for COSMOS. There are several possible methods. Users
pay monthly service fees and can use COSMOS as frequently as
they want. Alternately, an offloaded task could be charged accord-
ing to its execution time. It’s even possible for mobile devices to
bid for computation-offloading. When the number of offloading
requests is small, COSMOS could charge a lower price to attract
more requests and thereby avoid wasting cloud resources.
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APPENDIX

In this appendix we describe how to compute the offloading gain
G of a task at time tk. Depending on the connectivity at time tk,
Tws and Ts have different distributions. In the case that the mobile
device connects to the cloud at time tk, Tws = 0; Ts = ds

bu(tk)
,

where ds is the data size, and bu(tk) is the upload bandwidth at
time tk. ds is available at time tk, while bu(tk) can be estimated
using the current signal strength. Otherwise, Tws = RD,tk . Ts =
ds
b∗
u

, where b∗u is the overall upload bandwidth of the entire trace.
The value of Twr depends on whether the mobile device still

connects to the cloud when the cloud finishes execution at time
t+ Tws + Ts + Tc. If connected, Twr = 0. Otherwise,

Twr =

{

D −RC,tk + Ts + Tc, if connected at tk
D − C + Ts + Tc, otherwise

(5)

where C and D are contact duration and inter-contact duration,
respectively.

Tr also depends on the connectivity at time t′ = tk + Tws +
Ts +Tc. If connected, Tr = dr

bd(t′)
, where dr is the result size, and

bd(t
′) is the download bandwidth. Otherwise Tr = dr

b∗
d

, where b∗d
is the average download bandwidth.

According to the above analysis, Twr is directly related to Ts

and Tc. Tr is indirectly related to Ts and Tc as Ts + Tc may im-
pact the distribution of signal strength which impacts Tr . However,
this correlation is small and, thus, be ignored in the implementa-
tion for simplicity. Other variables are independent of each other.
Therefore, the variance of offloading gain can be computed using

σ2(G) = σ2(Tws) + σ2(Ts) + σ2(Tc) + σ2(Twr)

+σ2(Tr) + σ2(Tl) + 2σ(Ts + Tc, Twr) (6)


