
Scaling Abstraction Refinement via Pruning
Percy Liang
UC Berkeley

pliang@cs.berkeley.edu

Mayur Naik
Intel Labs Berkeley

mayur.naik@intel.com

Abstract
Many static analyses do not scale as they are made more precise.
For example, increasing the amount of context sensitivity in a k-
limited pointer analysis causes the number of contexts to grow
exponentially with k. Iterative refinement techniques can mitigate
this growth by starting with a coarse abstraction and only refining
parts of the abstraction that are deemed relevant with respect to a
given client.

In this paper, we introduce a new technique called pruning that
uses client feedback in a different way. The basic idea is to use
coarse abstractions to prune away parts of the program analysis
deemed irrelevant for proving a client query, and then using finer
abstractions on the sliced program analysis. For a k-limited pointer
analysis, this approach amounts to adaptively refining and pruning
a set of prefix patterns representing the contexts relevant for the
client. By pruning, we are able to scale up to much more expensive
abstractions than before. We also prove that the pruned analysis
is both sound and complete, that is, it yields the same results as
an analysis that uses a more expensive abstraction directly without
pruning.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Algorithms, Experimentation, Theory, Verifica-
tion

Keywords heap abstraction, static analysis, concurrency, abstrac-
tion refinement, pruning, slicing

1. Introduction
Making a static analysis more precise requires increasing the com-
plexity of the underlying abstraction—in pointer analysis, by in-
creasing the amount of context/object sensitivity [7, 8, 12, 13,
16, 22]; or in model checking, by adding more abstraction predi-
cates [1, 3]. However, the complexity of these analyses often grows
exponentially as the abstraction is refined. Much work has been
done on curbing this exponential growth (e.g., client-driven [4] and
demand-driven [5] approaches in pointer analysis; lazy abstraction
[6, 11] and other iterative refinement approaches in model check-
ing). We refer to these techniques as selected refinement, where the
main idea is to only refine an abstraction along components deemed
relevant according to client feedback.

In this paper, we introduce pruning, a new and orthogonal ap-
proach which represents a significant departure from existing se-
lected refinement techniques. Pruning is applicable to static analy-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

ses expressed as a set of inference rules where a program property
of interest (a client query) is proven by the inability to derive a des-
ignated fact using the given rules. For concreteness, assume that the
static analysis is expressed as a Datalog program. A Datalog pro-
gram takes a set of input tuples and derives new tuples via a set of
inference rules. These inference rules capture the abstract seman-
tics of the static analysis and the evaluation of the client query using
the analysis result; the input tuples encode the program we are an-
alyzing and the abstraction we are using. The program property is
proven if a designated query tuple cannot be derived.

The key idea behind pruning is to identify input tuples which
are provably irrelevant for deriving the query tuple and remove
these tuples completely from analysis. Consequently, when the ab-
straction is refined, only the relevant tuples are refined, potentially
resulting in major computational savings. It is helpful to think of
pruning in terms of generalized program slicing, where irrelevant
parts of the program (irrelevant input tuples) are removed, resulting
in a smaller program that is cheaper to analyze. Existing selected
refinement techniques attempt to keep the set of input tuples small
by simply not refining some of them; pruning keeps the set small
by removing some of them entirely.

Pruning can be a dangerous affair though. With selected refine-
ment, we are always performing a static analysis with respect to an
abstraction and therefore inherit the soundness guarantees of ab-
stract interpretation. However, once we start pruning input tuples,
we are no longer running a valid static analysis on the original pro-
gram. Soundness therefore is no longer automatic, though we do
prove that our method is sound with respect to a given client.

While soundness is trivial for selected refinement but requires
some argument for pruning, the situation is reversed for complete-
ness. By completeness, we mean that the analysis is as precise as
if we had refined all the components of an abstraction. Selected re-
finement only refines a subset of an abstraction, so it is unclear that
the resulting abstraction is as precise as an abstraction obtained by
refining all components. However, with pruning, we conceptually
work with the fully-refined abstraction; by removing input tuples,
we cannot prove fewer queries; thus, completeness is automatic.

To capitalize on the idea of pruning, we propose an algorithm,
which we call the Prune-Refine algorithm. The idea is to start with
a coarse abstraction and prune the irrelevant input tuples before
refining the abstraction; the algorithm iterates until the query is
proven or a specified computational budget is reached. We prove
that the Prune-Refine algorithm computes the same answers to
client queries as directly using a refined abstraction without prun-
ing, which would be precise but possibly infeasible.

We apply pruning to the k-object-sensitivity abstraction [12],
where objects in the heap are abstracted using chains of allocation
sites; these chains are the input tuples we maintain. To facilitate
pruning, we introduce two new heap abstractions: The first abstrac-
tion truncates chains to avoid repeating allocation sites; this allows
us to increase k without getting bogged down by long chains cre-
ated due to recursion. The second abstraction replaces allocation
sites by types (a generalization of [17]). We show that these ab-
stractions can be composed to further improve the effectiveness of
pruning.

We ran our experiments on five Java benchmarks using three
clients that depend heavily on having a precise pointer analysis:
downcast safety checking, monomorphic call site inference, and
race detection. We show that with pruning, our Prune-Refine al-
gorithm enables us to perform a k-object-sensitive pointer analysis
with a substantially much finer abstraction (larger k) compared to
a full k-object-sensitive pointer analysis or even using the selected
refinement strategy of [10]. In a few cases, the non-pruning ap-
proaches hit a wall around k = 3 but the Prune-Refine algorithm is
able to go well beyond k = 10.

2. Preliminaries
Our pruning technique works on Datalog, a general language which
can be used to express static analyses declaratively [2, 21]. Nor-
mally, these analyses and their underlying abstractions are encoded
by one monolithic Datalog program which evaluates a query ab-
stractly. For us, it will be convenient to consider the Datalog pro-
gram, which evaluates a query concretely,1 as distinct from the ab-
straction, which transforms the input to the Datalog program, re-
sulting in an abstract evaluation of the query. This separation al-
lows us to make theoretical statements comparing the behavior of
the same Datalog program across different abstractions.

We first define Datalog and the computation of a concrete query
(Section 2.1). Then, we focus on the abstraction (Section 2.2),
which interacts with the Datalog program by transforming the input
tuples. Throughout this section, we will use Figure 1 as a running
example.

2.1 Datalog
A Datalog program consists of a set of constants C (e.g., 0, [03] ∈
C), a set of variables V (e.g., i, j ∈ V), and a set of relations R
(e.g., edge ∈ R).

A term t consists of a relation t.r ∈ R and a list of arguments
t.a, where each argument t.ai is either a variable or a constant,
(that is, t.ai ∈ V ∪ C) for i = 1, . . . , |t.a|. We will write a term in
any of the following three equivalent ways:

t ≡ t.r(t.a) ≡ t.r(t.a1, . . . , t.a|t.a|). (1)

For example, ext(j, c, c′) is a term. We call a term whose argu-
ments are all constants a tuple (e.g., ext(0, [], [0])). Note that the
tuple includes the relation as well as the arguments. We let xQ

denote a designated query tuple (e.g., common(G1, G2, 3)), whose
truth value we want to determine.

Let Z denote the set of rules, where each rule z ∈ Z consists
of a target term z.t and a set of source terms z.s. We write a rule
with z.t = t and z.s = {s1, . . . , sk} as

t⇐ s1, . . . , sk. (2)

An assignment is a function f : V 7→ C which maps variables
to constants. To simplify notation later, we extend an assignment f
so that it can be applied (i) to constants (f(c) = c for c ∈ C), and
(ii) to terms by replacing the variables in the term with constants
(f(t) = t.r(f(t.a1), . . . , f(t.a|t.a|))).

Derivations A Datalog program takes a set of input tuples and
derives new tuples. To formalize this computation, we define the
notation of a derivation.

A derivation (of the query xQ) with respect to a set of input
tuples X is a sequence x = (x1, . . . , xn) such that

1 We refer to this computation as “concrete” to contrast with abstract com-
putation we will consider later, but note that this “concrete” computation
could already contain some level of abstraction. For example, the Datalog
program might correspond to∞-object-sensitivity without abstraction and
k-object-sensitivity with abstraction.

Graph Example

Input relations:

edge(g, i, j) (edge from node i to node j in graph g)
head(c, i) (first element of array c is i)
ext(i, c, c′) (i prepended to c yields c′: c′ = [i] + c)

Rules:
path(g, [0]).
path(g, c′) ⇐ path(g, c), head(c, i), edge(g, i, j), ext(j, c, c′).
common(g1, g2, i) ⇐ path(g1, c), path(g2, c), head(c, i).

Query tuple: xQ = common(G1, G2, 3).

Constants: C = {G1, G2, 0, 1, 2, 3, [0], [01], . . . }.

0 1

2 3

0 1

2 3
g1 g2

Input tuples:
edge(g1, 0, 1)
edge(g1, 0, 2)
edge(g1, 1, 3)
edge(g2, 0, 3)
head([0], 0)
. . .
ext(1, [0], [10])
. . .

Derived tuples:
path(g1, [0])
path(g1, [10])
path(g1, [20])
path(g1, [310])
path(g2, [0])
path(g2, [30])

Figure 1. A simple example illustrating Datalog: Suppose we have
two graphs G1 and G2 defined on the same set of nodes {0, 1, 2, 3},
and we want to compute the query tuple common(G1, G2, 3), asking
whether the two graphs have a common path from node 0 to node
3. Given the input tuples encoding the graph, the Datalog program
computes a set of derived tuples from the rules. In this case, the
absence of common(G1, G2, 3) from the derived tuples means the
query is false (proven).

C (concrete values)
P(C) (abstract values)
α : C 7→ P(C) (abstraction, maps to equivalence class)
xQ (designated query tuple)
D(X) (derivations of xQ using input tuples X)
E(X) (tuples involved in deriving xQ)
P(X) (input tuples relevant to deriving xQ)
Ak (abstract input tuples after k iterations)
Ãk (relevant abstract input tuples after pruning)

Figure 2. Notation.

(i) for each i = 1, . . . , n, we have xi ∈ X; or there exists a set of
indices J such that (J, i) satisfies the following two conditions:
j < i for each j ∈ J , and there is a rule z ∈ Z and an
assignment f such that f(z.t) = xi and {xj : j ∈ J} =
{f(s) : s ∈ z.s};

(ii) xn = xQ; and

(iii) for each j = 1, . . . , n−1, there exists J such that j ∈ J and
an index i such that (J, i) satisfies the two conditions in (i).

Define D(X) to be the set of all derivations with respect to the
input tuples X .

Condition (i) says that each tuple in a derivation should either
be given as an input tuple (xi ∈ X) or be the result of some rule
z ∈ Z . Condition (ii) says that the query tuple xQ is derived at the
end. Condition (iii) says that in the derivation of xQ, every tuple is
somehow “relevant” for deriving xQ.

We say that the query xQ is false (proven) if and only if D(X)
is empty. Although this answer to the query is the ultimate quantity
of interest, the Datalog program can be used to provide more
information, which will be useful for pruning. Specifically, we
define E(X) as the set of all tuples used in any derivation (of xQ)
and P(X) to be the subset of E(X) which are input tuples:

E(X) ,
[

x∈D(X)

x, (3)

P(X) , X ∩E(X). (4)

We call P(X) the set of relevant input tuples. As we will see later,
any tuple not in this set can be safely pruned. In fact, P(X) also
tells us whether the query is true or false. In particular, D(X) = ∅
if and only if P(X) = ∅ (assuming xQ cannot be derived trivially
without inputs). This equivalence suggests that proving and pruning
are intimately related; in some sense, proving the query is just
pruning away the query tuple. In the remainder of the paper, we will
make heavy use of P as the principal proving/pruning operator. In
our graph example, D(X) = P(X) = ∅, but as we will see later,
this is not true if we apply an abstraction to X .

Computation Given input tuples X , a Datalog solver returns the
set of derived tuples Y ; the query is proven if xQ 6∈ Y . Note that
Y is a superset of the relevant derived tuples E(X), which itself is
a superset of the relevant input tuples P(X), which is needed for
pruning.

We can compute P(X) by using the Datalog program trans-
formation technique described in [10]: We augment our existing
Datalog program with a set of new relations R′ = {r′ : r ∈ R}.
For a term t = t.r(t.a) we let t′ = t.r′(t.a) be the term that uses
the corresponding new relation t.r′. We then add the following new
Datalog rules:

x′Q ⇐ xQ, (5)

s′ ⇐ z.t′, z.s for each z ∈ Z and s ∈ z.s. (6)

For example, the last rule of the original Datalog program in Fig-
ure 1 generates the following three new rules:

path′(g1, c) ⇐ common′(g1, g2, i), path(g1, c), path(g2, c), head(c, i).
path′(g2, c) ⇐ common′(g1, g2, i), path(g1, c), path(g2, c), head(c, i).
head′(c, i) ⇐ common′(g1, g2, i), path(g1, c), path(g2, c), head(c, i).

The key is that a tuple x′ is derived by the new Datalog program
if and only if x ∈ E(X). Rules generated by (5) and (6) construct
E(X) recursively: The base case (5) states that the query tuple
xQ ∈ E(X). The recursive case (6) states that if x ∈ E(X) and
a rule z (with some assignment f) was used to produce x, then for
every source term s ∈ z.s of that rule, we also have f(s) ∈ E(X).
Having obtained E(X), we get P(X) by keeping only tuples inX .

The advantage of this technique is that we can use any Datalog
solver as a black-box to compute P(X). In practice, we will not
actually run P on concrete input tuples X , but on abstract input
tuples. From the point of view of the Datalog solver, there is
no difference between the two. We consider constructing abstract
tuples next.

2.2 Abstractions
Given a Datalog program, an abstraction is an equivalence relation
over constants C. In particular, we represent the abstraction as the
function which maps each constant to its equivalence class.

Definition 1. An abstraction is a function α : C → P(C) such that
for each set s ∈ range(α), we have α(c) = s for all c ∈ s.
We will refer to constants C as the concrete values and range(α)
as the abstract values. We assume the natural partial order on

{[0]} {[1]}
{[00]} {[01]} {[10]} {[11]}
[000]∗ [001]∗ [010]∗ [011]∗ [100]∗ [101]∗ [110]∗ [111]∗

Figure 3. The 14 abstract values defined by the k-limited abstrac-
tion πk with H = {0, 1} and k = 3. Specifically, πk maps each
chain c ∈ H∗ to one of the values above.

abstractions, where α1 � α2 if and only if α1(c) ⊇ α2(c) for
all c—that is, α2 is finer than α1.

Example: k-limited abstraction The main abstraction we will
work with in this paper is the k-limited abstraction [12, 16]. Our
general theory does not depend on this particular choice, but we
present the abstraction here so we can use it as a running example.

First, we define some notation. Let H be an arbitrary set; for the
graph example of Figure 1, let H = {0, 1, 2, 3} be the nodes of
the graph; later, H will be the set of allocation sites in a program.
Define a chain c ∈ H∗ to be a finite sequence of elements from
this set. Let |c| denote the length of the chain. Let c[i] be the
i-th element of c (starting with index 1) and let c[i..j] be the
subchain [c[i] · · · c[j]] (boundary cases: c[i..j] = [] if i > j and
c[i..j] = c[i..|c|] if j > |c|). For two chains c1 and c2, let c1 + c2
denote their concatenation.

The k-limited abstraction partitions chains based on their length
k prefix. First, for a chain c, let c∗ denote the set of all chains with
prefix c; formally:

c∗ , {c′ ∈ H∗ : c′[1..|c|] = c}. (7)

For an integer truncation level k ≥ 0, define the k-limited abstrac-
tion πk as follows:

πk(c) ,

(
{c} if |c| < k

c[1..k]∗ if |c| ≥ k.
(8)

If the concrete chain c is shorter than length k, we map it to the
singleton set {c}; otherwise, we map it to the set of chains that
share the first k elements. It is easy to verify that πk is a valid
abstraction under Definition 1.

For example, if c = [01], then we have that π1(c) = [0]∗ =
{[0], [00], [01], [000], . . . } are the chains that start with [0]. As
another example, Figure 3 shows the range of π3.

It is important that we represent {c} and c∗ as distinct abstract
values. In contrast, traditional k-limited analyses are parametrized
by a set S of abstract values “c”, where each abstract “c” represents
the set of concrete chains whose longest matching prefix in S is c.
With this setup, every concrete chain would map to some abstract
value regardless of S (note that we must have “[]” ∈ S). Therefore,
pruning would be impossible using this representation.

Extending the abstraction Given an abstraction α, it will be
useful to extend the definition of α to not just concrete values, but
also to abstract values, and (sets of) concrete/abstract tuples.

First, we extend α from concrete values c to abstract values s as
follows:

α(s) , {α(c) : c ∈ s}, s ∈ P(C). (9)

Note that α(s) returns a set of abstract values. This allows us to
naturally define the composition of two abstractions. In particular,
given two abstractions, α and β, define their composition to be:

(α ◦ β)(c) , ∪s∈α(β(c))s. (10)

Note that the composition α ◦ β need not be an abstraction even
if α and β are.2 Therefore, when we compose abstractions in Sec-
tion 3.2, it will be important to check that the resulting composi-
tions are valid abstractions.

An important case in which compositions yield valid abstrac-
tions is when α � β (β is finer than α). In this case, α ◦ β = α,
corresponding to the fact that applying a finer abstraction first has
no impact.

Next, we extend α to concrete tuples x and sets of concrete
tuples X in the natural way:

α(x) , x.r(α(x.a1), . . . , α(x.a|x.a|)), (11)

α(X) , {α(x) : x ∈ X}. (12)

Here, α(x) is an abstract tuple (one where the arguments are
abstract values) and α(X) is a set of abstract tuples. For example:

π1(ext(1, [0], [10])) = ext(1, [0]∗, [1]∗).

Finally, we extend α to abstract tuples b and sets of abstract tuples
B:

α(b) , {b.r(s1, . . . , s|b.a|) : ∀i, si ∈ α(b.ai)}, (13)

α(B) , ∪b∈Bα(b). (14)

(13) applies the abstraction function to each component of b and
takes the cross product over the resulting abstract values; the result
is a set of abstract tuples. (14) aggregates these sets of abstract
tuples. For example:

π1(ext(1, [00]∗, [10]∗)) = {ext(1, [0]∗, [1]∗)}.

Using the abstraction Given an abstraction α, we want to run
the Datalog program to compute an abstract answer to the query.
We do this by applying the abstraction to the concrete input tuples
X , producing a set of abstract input tuples α(X). We then feed
these tuples into the Datalog program to produce P(α(X)). (Note
that the Datalog program is oblivious to whether the tuples are
abstract or concrete.) Figure 4 shows an example of performing this
computation on the graph example from Figure 1 with the k-limited
abstraction π1.

We say the query is proven by α if P(α(X)) = ∅. Because
abstraction is sound, this happens only if the query is actually false
(P(X) = ∅). This fact is stated formally below (see Appendix A
for the proof):

Proposition 1 (Abstraction is sound). Let α be an abstraction and
letX be any set of input tuples. If P(α(X)) = ∅ (the query is false
abstractly), then P(X) = ∅ (the query is false concretely).

If α is coarse, P(α(X)) will be imprecise; but if α is fine,
P(α(X)) will be expensive to compute. The next section shows
how pruning can allow us to use a fine abstraction α without
incurring the full cost of computing P(α(X)).

3. General theory
We first describe the core idea behind pruning (Section 3.1) and
then show how it can be used in the Prune-Refine algorithm (Sec-
tion 3.2).

3.1 Pruning
Recall that the central operation of a static analysis is P, which
serves two roles: (i) determining if the query is proven (when P
returns ∅); and (ii) returning the relevant input tuples. The following

2 For example, suppose C = {1, 2, 3}; α(1) = α(2) = {1, 2}, α(3) =
{3}; and β(1) = β(3) = {1, 3}, β(2) = {2}. Then (α ◦ β)(1) =
{1, 2, 3} but (α◦β)(2) = {1, 2}. Therefore,α◦β is not a valid abstraction.

theorem provides the key equation that drives everything in this
paper (see Appendix A for the proof):

Theorem 1 (Pruning is sound and complete). Let α and β be two
abstractions such that β � α (β is coarser than α). Then for any
set of concrete input tuples X , we have:

P(α(X)) = P(α(X) ∩ α(P(β(X)))). (15)

The left-hand side of (15) corresponds to running the analysis
with respect to α. The right-hand side corresponds to first pruning
the input tuplesX with β and then running the analysis with α. The
theorem states that the two procedures obtain identical results (the
right-hand side is sound and complete with respect to the left-hand
side). The significance of this is that the right-hand side is often
much cheaper to compute than the left-hand side.

Let us decipher (15) a bit more. On the right-hand side, the
abstract input tuples β(X) are fed into the Datalog solver which
computes P(β(X)), which is the subset of input tuples, namely
those that participate in any derivation of the abstract query tuple
β(xQ). These relevant tuples are then refined via α to yield a set of
tuples which are used to prune α(X). The resulting subset is fed
into the analysis P. On the left-hand side, P(α(X)) is the result of
directly running the analysis on the abstract tuples α(X) without
pruning.

To obtain some intuition behind pruning, consider the following
simpler idea: first run the analysis with β; if the query is proven,
stop and declare proven; otherwise, run the analysis with α and
output that answer. It is easy to see that this two-step procedure
returns the same answer as just running α: Because β � α, if
β proves the query, then so does α (Proposition 1). (15) can be
thought of as an extension of this basic idea: instead of using β to
just determine whether the query tuple is proven, we obtain more
information, namely the whole set of input tuples that are relevant.

The complexity of an analysis is largely determined by the num-
ber of input tuples. Traditionally, the abstraction alone determines
the set of input tuples and thus also the complexity of the analysis.
In our case, however, the set of input tuples is pruned along the way,
so the abstraction only partially determines the complexity. As we
will see later, with sufficient pruning of the input tuples, we can use
a very refined abstraction at a low cost.

3.2 The Prune-Refine algorithm
We now turn Theorem 1 into a full algorithm, which we call the
Prune-Refine algorithm. Figure 5 shows the pseudocode of the
algorithm and a diagram showing the computation of the various
abstract input tuples computed.

This algorithm essentially applies (15) repeatedly. We first
present a simplified version of the algorithm which ignores the
pre-pruning step (we take At = A′t). We are given a sequence of
successively finer abstractions α0, α1, . . . (e.g., αt = πt for the
k-limited abstractions) and a set of input abstract tuples A0, which
is computed under the initial abstraction α0. Then the algorithm
alternates between a pruning step and a refining step, maintaining
only the abstract input tuples that could participate in a derivation
of the query tuple xQ. On iteration t, our current input tuplesAt are
first pruned to Ãt using P; this is subsequently refined to At+1.
Figure 6 shows an example of running this algorithm on the graph
example from Figure 1; the first pruning step is shown in Figure 4.

Now we discuss pre-pruning. Pre-pruning requires the user
to provide another sequence of successively finer abstractions
β0, β1, . . . which are coarser than α0, α1, . . . , respectively. These
abstractions will also be used to prune the input tuples. The idea is
that before refining At to At+1, we perform two steps of pruning:
(i) first we use βt in a pre-pruning step; (ii) then we use αt during
the main pruning step.

edge(g1, 0, 2) ext(2, [0]∗, [2]∗) path(g1, [0]∗) ext(1, [0]∗, [1]∗) edge(g1, 0, 1)

path(g1, [2]∗) path(g1, [1]∗) ext(3, [1]∗, [3]∗) edge(g1, 1, 3) path(g2, 0) ext(3, [0]∗, [3]∗) edge(g2, 0, 3)

path(g1, [3]∗) path(g2, [3]∗)

common(g1,g2, 3)

Figure 4. Computation of P(π1(X)) on the graph example from Figure 1, where X is the set of concrete input tuples, and π1 is the 1-
limited abstraction which maps each path onto the set of paths with the same first element. In the figure, each abstract tuple is derived by
a rule whose source terms are connected via incoming edges. Relevant input tuples (P(π1(X)), shown in green) are the ones which are
reachable by following the edges backwards; ones which are not backwards-reachable are pruned (π1(X)\P(π1(X)), shown in red).

Prune-Refine algorithm

Input:
−Sequence of abstractions: α0 � α1 � α2 � · · ·
−[Auxiliary abstractions: βt � αt, t = 0, 1, 2, . . .]
−A0 = α0(X), set of tuples

For t = 0, 1, 2, . . . :
−[Pre-prune: A′t ← At ∩ αt(P(βt(At)))]
−Prune: Ãt = P(A′t). If Ãt = ∅: return proven.
−Refine: At+1 = αt+1(Ãt).

Ã0 Ã1

A0 A′
0 A1 A′

1 A2

B0 B̃0 B1 B̃1

β0

P

α0

∩

P
(prune)

α1
(refine)

β1

P

α1

∩

P
(prune)

α2
(refine)

(pre-prune) (pre-prune)

· · ·

Figure 5. The pseudocode and the schema for the Prune-Refine
algorithm. The algorithm maintains a set of (abstract) input tuples
which could be involved in some derivation of the query xQ and
attempts to prune down this set. The basic version of the algorithm,
which excludes the lines in square brackets and the dotted boxes,
simply alternates between pruning and refining. The full version
includes a pre-pruning step, which uses auxiliary abstractions to
further reduce the number of tuples.

Pre-pruning requires a sequence of auxiliary abstractions (βt)
which are coarser than the main abstractions (αt). A standard way
to obtain auxiliary abstractions is by composing the main abstrac-
tions with another abstraction τ ; formally, βt = αt ◦ τ . We can use
any τ for which αt ◦ τ yields a valid abstraction, but the speedup
we obtain from pre-pruning depends on the relationship between τ
and αt. If τ is the total abstraction (τ(c) = C), then pre-pruning
will be fast but nothing will be pre-pruned, so we get no speedup.
If τ is no abstraction (τ(c) = c), then pre-pruning is equivalent to
just running the pruning step, so we again get no speedup. A good
rule of thumb is that τ should be “complementary” to αt (we will
see some examples in Section 5).

Theorem 2 states that the Prune-Refine algorithm is both sound
and complete. In other words, pruning has no impact on the answer
to a query. The proof is given in Appendix A and uses Theorem 1.

A0 Ã0 A1 Ã1

ext(1, [0]∗, [1]∗) ext(1, [0]∗, [1]∗) ext(1, {[0]}, [10]∗) (none)
ext(2, [0]∗, [2]∗) ext(3, [0]∗, [3]∗) ext(3, {[0]}, [30]∗)
ext(3, [0]∗, [3]∗) ext(3, [1]∗, [3]∗) ext(3, {[1]}, [31]∗)
ext(3, [1]∗, [3]∗) ext(3, [10]∗, [31]∗)

Figure 6. The abstract input tuples computed by the Prune-Refine
algorithm on the graph example from Figure 1 (without pre-
pruning). We are using k-limited abstractions (αt = πt). During
the first pruning step, ext(2, [0]∗, [2]∗) is pruned from A0, yield-
ing Ã0. In the refinement step, we expand [1]∗ to {[1]} and [10]∗. In
the second pruning step, we prove the query (pruning everything).

Theorem 2 (Correctness of the Prune-Refine algorithm). At itera-
tion t, using the incrementally pruned abstraction At is equivalent
to using the full abstraction αt(X) in that P(αt(X)) = P(At).
Consequently, if the algorithm returns “proven,” then P(X) = ∅
(the query is actually false).

4. k-limited Pointer Analysis
We now introduce our k-object-sensitive pointer analysis [12], on
which we will apply the Prune-Refine algorithm. Each node in
the control-flow graph of each method m ∈ M is associated
with a simple statement (e.g., v2 = v1). We omit statements
that have no effect on our analysis (e.g., operations on data of
primitive type). For simplicity, we assume each method has a single
argument and no return value.3 Figure 7 describes the Datalog
program corresponding to this analysis.

The analysis represents both contexts and abstract objects us-
ing chains of allocation sites (C = H∗). Contexts are extended into
new contexts via the ext relation, which prepends an allocation site
to a chain (e.g., ext(3, [12], [312])). Note that these chains are not
truncated in the Datalog program, and therefore, running the Data-
log program directly (ignoring the fact that it might not terminate)
corresponds to performing an∞-object-sensitivity analysis.

Although this Datalog program itself is an approximation to the
concrete program semantics—it is flow-insensitive, does not handle
primitive data, etc., we will informally say that a client query
computed with respect to this analysis yields a concrete answer.
In contrast, we obtain an abstract answer by computing the client
query with respect to a k-limited abstraction, which we will discuss
in Section 4.2.

We now briefly describe the Datalog rules in Figure 7. Rule (1)
states that the main method mmain is reachable in a distinguished
context []. Rule (2) states that a target method of a reachable call

3 Our actual implementation is a straightforward extension of this simplified
analysis which handles multiple arguments, return values, class initializers,
and objects allocated through reflection.

Domains:

(method) m ∈ M = {mmain, ...}
(local variable) v ∈ V

(global variable) g ∈ G
(object field) f ∈ F

(method call site) i ∈ I
(allocation site) h ∈ H

(statement) p ∈ P
(method context) c ∈ C = H∗
(abstract object) o ∈ O = H∗

p ::= v = newh | v2 = v1 | g = v | v = g |
v2.f = v1 | v2 = v1.f | i(v)

Input relations:

body ⊂ M× P (method contains statement)
trgt ⊂ I×M (call site resolves to method)
argI ⊂ I× V (call site’s argument variable)
argM ⊂ M× V (method’s formal argument variable)
ext ⊂ H× C× C (extend context with site)

= {(h, c, [h] + c) : h ∈ H, c ∈ C}
Output relations:

reachM ⊂ C×M (reachable methods)
reachP ⊂ C× P (reachable statements)
ptsV ⊂ C× V×O (points-to sets of local variables)
ptsG ⊂ G×O (points-to sets of static fields)
heap ⊂ O× F×O (heap graph)
cg ⊂ C× I× C×M (call graph)

Rules:

reachM([],mmain). (1)
reachM(c,m) ⇐ cg(∗, ∗, c,m). (2)
reachP(c, p) ⇐ reachM(c,m), body(m, p). (3)

ptsV(c, v, o) ⇐ reachP(c, v = newh), ext(h, c, o). (4)
ptsV(c, v2, o) ⇐ reachP(c, v2 = v1), ptsV(c, v1, o). (5)
ptsG(g, o) ⇐ reachP(c, g = v), ptsV(c, v, o). (6)
ptsV(c, v, o) ⇐ reachP(c, v = g), ptsG(g, o). (7)
heap(o2, f, o1) ⇐ reachP(c, v2.f = v1), ptsV(c, v1, o1), ptsV(c, v2, o2). (8)
ptsV(c, v2, o2) ⇐ reachP(c, v2 = v1.f), ptsV(c, v1, o1), heap(o1, f, o2). (9)

cg(c, i, o,m) ⇐ reachP(c, i), trgt(i,m), argI(i, v), ptsV(c, v, o). (10)
ptsV(c, v, c) ⇐ reachM(c,m), argM(m, v). (11)

Figure 7. Datalog implementation of our k-object-sensitivity pointer analysis with call-graph construction. Our abstraction a affects the
analysis solely through ext, which specifies that when we prepend s to c, we truncate the resulting sequence to length as.

site is also reachable. Rule (3) states that every statement in a reach-
able method is also reachable. Rules (4) through (9) implement the
transfer function associated with each kind of statement. Rule (10)
analyzes the target method m in a separate context o for each ab-
stract object o to which the distinguished this argument of method
m points, and rule (11) sets the points-to set of the this argument
of method m in context o to the singleton {o}.

This pointer analysis computes the reachable methods (reachM),
reachable statements (reachP), and points-to sets of local variables
(ptsV), each with the associated context; the context-insensitive
points-to sets of static fields (ptsG) and heap graph (heap); and a
context-sensitive call graph (cg).

4.1 Clients
The core pointer analysis just described is used by three clients,
which each defines a set of queries.

Monomorphic call site detection Monomorphic call sites are dy-
namically dispatched call sites with at most one target method.
These can be transformed into statically dispatched ones which are
cheaper to execute. For each call site i ∈ I whose target is a virtual
method, we create a query poly(i) asking whether i is polymor-
phic. This query can be computed with the following rule:

poly(i)⇐ cg(∗, i, ∗,m1), cg(∗, i, ∗,m2),m1 6= m2. (16)

Downcast safety checking A safe downcast is one that cannot fail
because the object to which the downcast is applied is guaranteed to
be a subtype of the target type. Therefore, safe downcasts obviate
the need for run-time cast checking. We create a query for each
downcast—statement of the form v1 = v2 where the declared type

of v2 is not a subtype of the declared type of v1. The query can be
computed with the following rule:

unsafe(v1, v2)⇐ ptsV(∗, v2, o), typeO(o, t2), typeV(v1, t1),
¬subtype(t1, t2). (17)

Here, typeV is a relation on a variable and its declared type and
typeO is a relation on an abstract object and its type (computed by
inspecting the initial allocation site of o).

Race detection In race detection, each query consists of a pair
of heap-accessing statements of the same field in which at least
one statement is a write. We implemented the static race detector
of [14], which declares a (p1, p2) pair as racing if both statements
may be reachable, may access thread-escaping data, may point to
the same object, and may happen in parallel. All four components
rely heavily on the context- and object-sensitive pointer analysis.

4.2 Relationship to general notation
We now describe the k-object-sensitive pointer analysis (Figure 7)
in terms of our general notation presented in Section 2. The set of
concrete values C is the union of all the domains (e.g.., allocation
sites H = {1, 2, 3, . . . }, abstract objects C = H∗, etc.). The
input tuples X are specified by the input relations (e.g., X =
{body(mmain, x = new 3), ext(3, [12], [312])}). Each of the three
clients defines a set of possible query tuples, for example, xQ =
unsafe(v4, v8) for downcast safety checking of an assignment
v4 = v8.

Recall that P(X) corresponds to obtaining an answer to a client
query with respect to ∞-object-sensitivity. To obtain k-object-

class A {
f() {

0: v = new A
if (*) return v
else return v.f()

}
}

1: x1 = new A
2: x2 = new A

y1 = x1.f()
y2 = x2.f()

Figure 8. An example illustrating the repetition of allocation
sites. The points-to set of y1 using ∞-object-sensitivity is
{[01], [001], [0001], . . . } (any positive number of zeros followed
by a 1), and the points-to set of y2 is {[02], [002], [0002], . . . }.
While these two sets are disjoint, if we use a k-limited abstraction
for any finite k, we would conclude erroneously that both variables
might point to 0k∗, where 0k is a chain of k zeros. Incidentally,
this demonstrates an intrinsic limitation of the k-object-sensitivity
abstraction. Using the barely-repeating k-limited abstraction, we
can increase k while avoiding chains longer than [00] since [00] is
barely-repeating. This results in computational savings, and in this
case, in no loss in precision.

sensitivity, we first apply the k-limited abstraction πk to the in-
put tuples and run the Datalog program on these abstract tuples
(P(πk(X))). Note that only the ext tuples are affected by the ab-
straction.

5. Abstractions
We have already defined the k-limited abstraction, which corre-
sponds to k-object-sensitivity. We now present two orthogonal vari-
ants of this basic abstraction: one that additionally limits the repe-
tition of allocation sites (Section 5.1) and one that further abstracts
allocation sites using type information (Section 5.2).

5.1 Barely-repeating k-limited abstraction
When we applied the k-limited abstraction in practice, we noticed
empirically that a major reason why it did not scale was the seem-
ingly unnecessary combinatorial explosion associated with chains
formed by cycling endlessly through the same allocation sites.
For k-CFA, this repetition corresponds to recursion. For k-object-
sensitivity, this corresponds to recursive allocation, as illustrated in
Figure 8.4 We therefore wish to define an abstraction that not only
truncates chains at length k but also truncates a chain when it starts
repeating.

For a sequence c, we say c is non-repeating if all its elements
are distinct. We say c is barely-repeating if (i) c excluding the last
element (c[1..|c| − 1]) is non-repeating and (ii) the last element of
c is repeated earlier in c. Let δ(c) be the length of the longest prefix
of c that is barely-repeating, if it exists, and∞ otherwise:

δ(c) ,

(
maxm′:c[1..m′] is barely-repeating m

′ if m′ exists,
∞ otherwise.

(18)

For example, δ([10010]) = 3 because [100] is barely-repeating,
but [1001] is not.

We now define the barely-repeating k-limited abstraction π̂k as
follows:

π̂k(c) , πmin{k,δ(c)}(c), (19)

Figure 9 shows an example of π̂k. We show that π̂k is a valid
abstraction:

4 Incidentally, the example in the figure also gives an interesting example
where k-object-sensitivity for any finite k (no matter how large) is less
precise than∞-object-sensitivity.

{[0]} {[1]}
[00]∗ {[01]} {[10]} [11]∗

[010]∗ [011]∗ [100]∗ [101]∗

Figure 9. For the barely-repeating k-limited abstraction for H =
{0, 1} and k = 3, we show the equivalence classes under π̂k. Com-
pare this with the classes for the k-limited abstraction (Figure 3).
Note that, for example, [000]∗ and [001]∗ are collapsed into [00]∗
since [000] and [001] are not barely-repeating, but [00] is.

Proposition 2. The function π̂k defined in (19) is a valid abstrac-
tion (Definition 1).

Proof. We consider two cases: (i) for {c} ∈ range(π̂k), we have
π̂k(c) = {c}; and (ii) for any c∗ ∈ range(π̂k), either |c| = k or c
is barely-repeating; in either case, it is easy to see that any extension
c′ ∈ c∗ will have π̂k(c′) = c∗.

Remark: one might wonder why we defined the abstraction
using the barely-repeating criterion as opposed to the simpler non-
repeating criterion. It turns out that using the latter in (18) would
not result in a valid abstraction. If π̂k were defined using the non-
repeating criterion, then π̂3([00]) = [0]∗. But for [01] ∈ [0]∗, we
have π̂3([01]) = {[01]} 6= [0]∗.

5.2 Type-based abstraction
We now introduce an abstraction that we will use in the pre-pruning
step of the Prune-Refine algorithm. We start by defining an equiva-
lence relation over allocation sites H, represented by a function τ :
H 7→ P(H) mapping each allocation site h ∈ H to its equivalence
class. In the graph example, we might have τ(0) = τ(1) = {0, 1}
and τ(2) = τ(3) = {2, 3}.

Given such a τ , we extend it to sequences by taking the cross
product over elementwise applications:

τ(c) = τ(c[1])× · · · × τ(c[|c|]), c ∈ H∗. (20)

In the running example, τ([02]) = {[02], [03], [12], [13]}.
To construct τ for k-limited pointer analysis, we consider using

two sources of type information associated with an allocation site,
motivated by [17]:

I(h) = declaring type of allocation site h (21)
C(h) = type of class containing allocation site h (22)

Using these two functions, we can construct three equivalence
relations, τI, τC, and τI×C as follows:

τf (h) = {h′ : f(h) = f(h′)}, (23)

for f ∈ {I, C, I × C}.
Now we have three choices for τ : one that uses the declaring

type (τI), one that uses the type of the containing class (τC), and
one that uses both (τI×C). Recall that all three are complementary
to the k-limited abstraction πk: Specifically, τ abstracts a chain by
abstracting each site uniformly, whereas πk performs no abstrac-
tion on the first k sites, but performs a total abstraction on the rest
of the chain. Recall that this complementarity is desirable for effec-
tive pre-pruning.

Since τ is not coarser than πk, we cannot use it directly in the
Prune-Refine algorithm. We must compose τ with πk or π̂k to yield
another abstraction which is coarser than πk or π̂k, respectively.
But in what order should we compose? We must be careful because
the composition of two abstractions is not necessarily an abstrac-
tion. Fortunately, the following proposition shows which composi-
tions are valid:

Proposition 3. The functions (i) πk ◦ τ and (ii) τ ◦ πk are valid
abstractions (see Definition 1) and equivalent; (iii) π̂k ◦ τ is also
valid, but (iv) τ ◦ π̂k is not.

Proof. For each of these four composed functions, each set s in the
range of the function must be either of the form s = w1×· · ·×wm
for m < k (case 1) or s = w1 × · · · × wm ×H∗ for some m ≤ k
(case 2), where wi ∈ range(τ) for each i = 1, . . . ,m.

For (i) and (ii), it is straightforward to check that (πk ◦ τ)(c) =
(τ ◦ πk)(c) = s for each c ∈ s. Intuitively, the truncation (πk) and
coarsening (τ) operate independently and can be interchanged.

For (iii) and (iv), the two dimensions do not act independently;
the amount of truncation depends on the amount of coarsening: the
coarser τ is, the more truncation one might need to limit repetitions.
Showing that π̂k ◦ τ is valid proceeds in a similar manner to
Proposition 2. If s falls under case 1, note that no c ∈ s is repeating
because thewi’s must be disjoint; therefore π̂k(τ(c)) = s. If s falls
under case 2, note that for any c[1..m] ∈ smust be barely-repeating
but any longer prefix is not, and therefore, π̂k(τ(c)) = s.

To show that (iv) is not an abstraction, consider the following
counterexample: let H = {0, 1, 2}, and define τ(h) = H for all
h ∈ H (there is one equivalence class). Consider applying τ ◦ π̂3 to
two elements [01] and [00]: For [01], we have π̂3([01]) = {[01]},
so τ(π̂3([01])) = H2; for [00], we have π̂3([00]) = [00]∗, so
τ(π̂3([00])) = H2 × H∗. But H2 (H2 × H∗ (notably, the two
sets are neither equal nor disjoint), so τ ◦ π̂3 does not define a valid
abstraction.

In light of this result, we will use the valid abstractions πk ◦ τ and
π̂k ◦ τ , which work by first applying the type-based abstraction τ
and then applying πk or π̂k.

6. Experiments
In this section, we apply the Prune-Refine algorithm (Section 3.2)
to k-object-sensitivity for our three clients (Section 4.1): downcast
safety checking (DOWNCAST), monomorphic call site inference
(MONOSITE), and race detection (RACE). Our main empirical result
is that across different clients and benchmarks, pruning is effective
at curbing the exponential growth, which allows us to run analyses
using abstractions finer than what is possible without pruning.

6.1 Setup
Our experiments were performed using IBM J9VM 1.6.0 on 64-
bit Linux machines. All analyses were implemented in Chord, an
extensible program analysis framework for Java bytecode,5 which
uses the BDD Datalog solver bddbddb [21]. We evaluated our
analyses on five Java benchmarks shown in Table 1. In each run,
we allocated 8GB of memory and terminated the process when it
ran out of memory.

We experimented with various combinations of abstractions and
refinement algorithms (see Table 2). As a baseline, we consider
running an analysis with a full abstraction α (denoted FULL(α)).
For α, we can either use k-limited abstractions (π = (πk)

∞
k=0), in

which case we recover ordinary k-object-sensitivity, or the barely-
repeating variants (π̂ = (π̂k)

∞
k=0). We also consider the site-

based refinement algorithm of [10], which considers a sequence of
abstractions α = (α0, α1, . . .) but stops refining sites which have
been deemed irrelevant. This algorithm is denoted SITE(α).

As for the new algorithms that we propose in this paper, we
have PR(α), which corresponds to the Prune-Refine (PR) algo-
rithm using a sequence of abstractions α with no pre-pruning;
and PR(α, τ), which performs pre-pruning using βt = αt ◦ τ for

5 http://code.google.com/p/jchord/

Abstractions
π = (πk)

∞
k=0 (k-limited abstractions (8))

π̂ = (π̂k)
∞
k=0 (barely-repeating k-limited abstractions (19))

τI (abstraction using type of allocation site)
τC (abstraction using type of containing class)
τI×C (abstraction using both types)

Algorithms
FULL(α) (standard analysis using an abstraction α)
SITE(α) (site-based refinement [10] on abstractions α)
PR(α) (PR algorithm using α, no pre-pruning)
PR(α, τ) (PR algorithm using α, using α ◦ τ to pre-prune)

Table 2. Shows the abstractions and algorithms that we evalu-
ated empirically. For example, PR(π̂, τI×C) means running the
Prune-Refine algorithm on the barely-repeating k-limited abstrac-
tion (αk = π̂k), using a composed abstraction based on the type of
an allocation site (τI) and the type of the declaring class (τC) to do
pre-pruning (specifically, βk = π̂k ◦ τI×C).

t = 0, 1, 2, We consider three choices of τ which use different
kinds of type information (τI, τC, τI×C).

In our implementation of the Prune-Refine algorithm, we de-
part slightly from our presentation. Instead of maintaining the full
set of relevant input tuples, we instead maintain only the set of al-
location site chains which exist in some relevant input tuple. This
choice results in more conservative pruning, but reduces the amount
of information that we have to keep. We can modify the original
Datalog program so that the original Prune-Refine algorithm com-
putes this new variant: Specifically, first introduce new input tuples
active(c) for each c ∈ H∗. Then encode existing ext input tu-
ples as rules with no source terms; ext is no longer an input rela-
tion. Finally, add active(c) to the right-hand side of each existing
rule that uses a chain-valued variable. Computing the relevant in-
put tuples in this modified Datalog program corresponds exactly to
computing the set of relevant allocation site chains.

6.2 Results
We ran the four algorithms of Table 2 using k-limited abstractions,
seeing how far we could increase k until the analyses ran out of
memory. For each analysis, we also measured the number of input
tuples given to the Datalog solver; this quantity is denoted as |A′t|
(see Figure 5). In this section, the number of iterations t is the same
as the k value.

Figure 10 plots the number of tuples |A′t| as a function of
number of iterations t. We see that the non-pruning algorithms
completely hit a wall after a few iterations, with the number of
tuples exploding exponentially. On most benchmark-client pairs,
the pruning algorithms are able to continue increasing k much
further, though on several pairs, pruning only manages to increase k
by one beyond the non-pruning algorithms. We also observed that
pruning does yield speedups, although these are less pronounced
than the differences in the number of tuples. Nonetheless, pruning
overcomes the major bottleneck—that standard k-limited analyses
run out of memory even for moderate k. By curbing the growth
of the number of tuples, pruning makes it possible to run some
analyses at all.

However, there are several caveats with pruning: First, we are
using BDDs, which can actually handle large numbers of tuples so
long as they are structured; pruning destroys some of this structure,
yielding less predictable running times. Second, pruning requires
solving the transformed Datalog program for computing P(X),
which is more expensive than the original Datalog program. Fi-
nally, we must solve the Datalog program several times, not just

description # classes # methods # bytecodes |H|
elevator discrete event simulation program 154 629 39K 637
hedc web crawler 309 1,885 151K 1,494
weblech website downloading and mirroring tool 532 3,130 230K 2,545
lusearch text indexing and search tool 611 3,789 267K 2,822
avrora simulation and analysis framework for AVR microcontrollers 1,498 5,892 312K 4,823

Table 1. Benchmark characteristics: the number of classes, number of methods, total number of bytecodes in these methods, and number of
allocation sites (|H|) deemed reachable by 0-CFA.

|Bt|
|At|

|B̃t|
|Bt|

|A′
t|

|At|
|Ãt|
|At|

|At+1|
|At|

DOWNCAST/hedc 0.28 0.72 0.68 0.65 1.63
DOWNCAST/weblech 0.19 0.18 0.26 0.19 3.28
DOWNCAST/lusearch 0.17 0.04 0.03 0.02 1.89
DOWNCAST/avrora 0.21 0.03 0.05 0.03 1.57
MONOSITE/elevator 0.10 0.55 0.21 0.21 1.67
MONOSITE/hedc 0.22 0.30 0.36 0.29 3.78
MONOSITE/weblech 0.19 0.18 0.25 0.18 3.33
MONOSITE/lusearch 0.26 0.10 0.15 0.12 3.39
MONOSITE/avrora 0.30 0.05 0.04 0.03 1.85
RACE/elevator 0.10 0.57 0.22 0.21 1.58
RACE/hedc 0.28 0.28 0.34 0.25 4.01
RACE/weblech 0.19 0.18 0.27 0.18 3.43
RACE/lusearch 0.30 0.15 0.18 0.14 3.96
RACE/avrora 0.38 0.08 0.08 0.06 2.71
Average 0.23 0.24 0.22 0.18 2.72

Table 3. Shows the shrinking and growth of the number of tu-
ples during the various pruning and refinement operations (see Fig-
ure 5) for our best algorithm PR(π, τI×C) across all the clients and
benchmarks, averaged across iterations. The columns are as fol-
lows: First, |Bt|

|At| measures the number of tuples after projecting
down to the auxiliary abstraction βt = πt ◦ τI×C for pre-pruning;
note that running the analysis using types instead of allocation sites
is much cheaper. Next, |B̃t|

|Bt| shows the fraction of abstract values
kept during pre-pruning; When we return from types to allocation
sites, we see that the effect of pre-pruning carries over (|A

′
t|

|At|). Next,

pruning kept |Ãt|
|At| of the chains. Finally, |At+1|

|At| measures the ratio
between iterations, which includes both pruning and refinement.
Note that there is still almost a three-fold growth of the number of
tuples (on average), but this growth would have been much more
unmanageable without the pruning.

once. These three caveats also apply to the site-based refinement
algorithm of [10] (SITE), so pruning is at least a strict improvement
over that algorithm.

We found that the best instantiation of the Prune-Refine algo-
rithm is PR(π, τI×C), which involves pre-pruning with both kinds of
type information (τI×C); this works better than both no pre-pruning
and pre-pruning with only τI or τC alone.

Table 3 provides more details on the quantitative impact of
pruning for PR(π, τI×C). We see that pre-pruning has a significant
impact: we can eliminate about three-quarters of the tuples by just
operating on the coarser level of types rather than allocation sites
(see the |B̃t|

|Bt| column). Importantly, the effect of this pruning carries

over to the original k-limited abstraction (see the |A
′
t|

|At| column).
So far, we have been using the k-limited abstraction; we now

compare this abstraction with the barely-repeating k-limited ab-
straction introduced in Section 5.1. As Figure 11 shows, for a few
cases, the barely-repeating k-limited abstraction requires fewer tu-
ples than the k-limited abstraction; but in most cases, it does not
improve scalability. The reason is that the barely-repeating abstrac-

client/benchmark \ k 1 2 3 4 5
DOWNCAST/elevator 0 - - - -
DOWNCAST/hedc 10 8 3 2 2
DOWNCAST/weblech 24 14 6 6 -
DOWNCAST/lusearch 36 14 6 5 5
DOWNCAST/avrora 12 10 6 6 6
MONOSITE/elevator 1 1 1 1 1
MONOSITE/hedc 164 149 149 149 -
MONOSITE/weblech 273 258 252 252 -
MONOSITE/lusearch 593 454 447 447 -
MONOSITE/avrora 288 278 272 - -
RACE/elevator 475 440 437 437 437
RACE/hedc 23,033 22,043 21,966 - -
RACE/weblech 7,286 4,742 4,669 - -
RACE/lusearch 33,845 23,509 16,957 - -
RACE/avrora 62,060 61,807 61,734 - -

Table 4. The number of unproven queries (unsafe downcasts, poly-
morphic sites, races) for each of the clients and benchmarks over
the first five iterations. All analyses obtain the exact results on it-
erations where they obtain an answer. Bolded numbers refer to k
values reached by PR(π, τI×C) but not by any non-pruning algo-
rithm. While pruning enables to increase k more, we get strictly
more precise results for only two of the client/benchmark pairs
(DOWNCAST/hedc and DOWNCAST/lusearch). This points out in-
herent limitations of this family of k-limited abstractions.

tion curbs refinement, but often, somewhat paradoxically, it is ex-
actly the refinement which enables more pruning.

Finally, Table 4 shows the effect on the number of queries
proven. While pruning enables us to increase k much more than
before, it turns out that our particular analyses for these clients
saturate quite quickly, so over all the clients and benchmarks, we
were only able to prove two queries more than using the non-
pruning techniques. On the surface, these findings seem to contra-
dict [9], which showed a sharp increase in precision around k = 4
for k-CFA. However, this discrepancy merely suggests that our
flow-insensitive analyses are simply limited: since [9] offers up-
per bounds on precision, we know for sure that low k values are
insufficient; the fact that we don’t see an increase in precision for
higher k suggests that the non-k-related aspects of our analyses are
insufficient. Given that our pruning approach is general, it would
be interesting to tackle other aspects of program analysis such as
flow-sensitivity.

7. Related Work
There is a wealth of literature which attempts to scale static anal-
yses without sacrificing precision. One general theme is to work
with a flexible family of abstractions, which in principle allows
us to conform to the needs of the client. Milanova et al. [12, 13]
consider abstractions where each local variable can be indepen-
dently treated context-sensitively or context-insensitively, and dif-
ferent k values can be chosen for different allocation sites. Lhoták
and Hendren [7, 8] present Paddle, a parametrized framework for
BDD-based, k-limited pointer analyses. [17] scale up k-object-

1

t

6.4e2

6.4e2

6.4e2

6.4e2

6.4e2

|A′t|
full(π)

site(π)

pr(π)

pr(π, τi×c)

4 8 12 16

t

2.4e6

4.8e6

7.2e6

9.7e6

1.2e7

|A′t|

1 2 3 4 5

t

2.5e6

5.1e6

7.6e6

1.0e7

1.3e7

|A′t|

2 4 6 8 10

t

3.4e6

6.8e6

1.0e7

1.4e7

1.7e7

|A′t|

4 8 12 16

t

1.5e6

3.0e6

4.6e6

6.1e6

7.6e6

|A′t|

(a) downcast/elevator (b) downcast/hedc (c) downcast/weblech (d) downcast/lusearch (e) downcast/avrora

5 10 15 20

t

1.1e6

2.1e6

3.2e6

4.2e6

5.3e6

|A′t|

1 2 3 4 5

t

1.2e6

2.4e6

3.6e6

4.8e6

6.0e6

|A′t|

1 2 3 4 5

t

2.7e6

5.5e6

8.2e6

1.1e7

1.4e7

|A′t|

1 2 3 4 5

t

3.4e6

6.8e6

1.0e7

1.4e7

1.7e7

|A′t|

2 4 6 8

t

3.5e6

7.0e6

1.1e7

1.4e7

1.7e7

|A′t|

(f) monosite/elevator (g) monosite/hedc (h) monosite/weblech (i) monosite/lusearch (j) monosite/avrora

5 10 15 20

t

7.6e5

1.5e6

2.3e6

3.0e6

3.8e6

|A′t|

1 2 3 4

t

1.2e6

2.4e6

3.6e6

4.8e6

6.0e6

|A′t|

1 2 3 4 5

t

3.9e6

7.8e6

1.2e7

1.6e7

2.0e7

|A′t|

1 2 3 4

t

3.4e6

6.8e6

1.0e7

1.4e7

1.7e7

|A′t|

1 2 3 4

t

2.8e5

5.6e5

8.3e5

1.1e6

1.4e6

|A′t|

(k) race/elevator (l) race/hedc (m) race/weblech (n) race/lusearch (o) race/avrora

Figure 10. For each client/benchmark pair, we show the growth of the number of input tuples |A′t| across iterations (recall that A′t are the
tuples fed into the Datalog program). Table 2 describes the four algorithms. We see that the pruning algorithms (PR(π) and PR(π, τI×C))
drastically cut down the number of input tuples by many orders of magnitude.

4 8 12 16

iteration t

1.5e5

3.0e5

4.5e5

6.1e5

7.6e5

|A′
t|

π

π̂

3 6 9 12 15

iteration t

1.1e6

2.3e6

3.4e6

4.5e6

5.7e6

|A′
t|

π

π̂

4 8 12 16

iteration t

1.8e6

3.6e6

5.4e6

7.2e6

8.9e6

|A′
t|

π

π̂

4 8 12 16 20

iteration t

3.8e4

7.5e4

1.1e5

1.5e5

1.9e5

|A′
t|

π

π̂

4 8 12 16 20

iteration t

5.9e4

1.2e5

1.8e5

2.3e5

2.9e5

|A′
t|

π

π̂

(a) downcast/hedc (b) downcast/avrora (c) downcast/lusearch (d) monosite/elevator (e) race/elevator

Figure 11. Shows the 5 (out of the 15) client/benchmark pairs for which using the barely-repeating k-limited abstraction (π̂) allows one to
increase k much more than the plain k-limited abstraction (π). On the other 10 client/benchmarks where k cannot get very large, limiting
repetitions is actually slightly worse in terms of scalability. Also note that three of the plots for π̂ stop early, not because the algorithm runs
out of memory, but because the algorithm has actually converged and increasing k would have no effect.

sensitivity, increasing k by one using types rather than allocation
sites. However, in all of this work, which parts of the abstraction
should be more refined is largely left up to the user.

Client-driven approaches use feedback from a client query to
determine what parts of an abstraction to refine. Plevyak and
Chien [15] use a refinement-based algorithm for type inference,
where context-sensitivity is driven by detecting type conflicts.
Guyer and Lin [4] present a pointer analysis for C which detects
loss of precision (e.g., at merge points) and introduce context-
sensitivity. Our method for determining relevant input tuples is
similar in spirit but more general.

Section 3.1 of Liang et al. [10] (not the focus of that work)
also computes the set of relevant tuples by running a transformed
Datalog program. However, what is done with this information is
quite different there. [10] merely stops refining the irrelevant sites
whereas we actually prune all irrelevant tuples, thereby exploiting

this information more fully. As we saw in Section 6, this difference
had major ramifications.

Demand-driven analyses [5, 23] do not refine the abstraction
but rather try to compute an analysis on an existing abstraction
more efficiently. Sridharan et al. [19] presents an algorithm which
casts pointer analysis as a CFL-reachability problem and relaxes
the problem by introducing additional “match” edges.

Our Prune-Refine algorithm has a client-driven flavor in that we
refine our abstraction, but also a demand-driven flavor in that we
do not perform a full computation (in particular, ignoring tuples
which were pruned). However, there are two important differences
between the present work and the work described earlier: First,
while most of that work is specific to pointer analysis, our Prune-
Refine algorithm is applicable to any Datalog program. Second,
past work is based on selected refinement, which is orthogonal
to pruning. Selected refinement merely governs the abstractions
(αt)

∞
t=0 that we use, whereas pruning focuses on removing input

tuples. Given that the input tuples encode the program analysis,
pruning is analogous to program slicing.

Other forms of pruning have been implemented in various set-
tings. [20] uses dynamic analysis to prune down the set of paths
and then focuses a static analysis on these paths. [18] uses pruning
for type inference in functional languages, where pruning is simply
a heuristic which shortcuts a search algorithm. As a result, pruning
can hurt precision. One advantage of our pruning approach is that
it comes with strong soundness and completeness guarantees.

8. Conclusion
We have introduced pruning as a general technique for scaling up
static analyses written in Datalog. The basic idea is to run an anal-
ysis using a coarse abstraction, only keeping input tuples deemed
relevant, and then using a finer abstraction on the remaining tuples.
Theoretically, we showed that pruning is both sound and complete
(our analysis is valid and we lose no precision). Empirically, we
showed that pruning enables us to scale up analyses based on k-
object-sensitivity much more than previous approaches.

Acknowledgments
We thank Mooly Sagiv and Hongseok Yang for discussion and
useful feedback. We also thank the anonymous reviewers for their
insightful comments.

References
[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic

predicate abstraction of C programs. In PLDI, pages 203–213, 2001.
[2] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification

of sophisticated points-to analyses. In OOPSLA, pages 243–262, 2009.
[3] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.

Computer Aided Verification, 1254:72–83, 1997.
[4] S. Guyer and C. Lin. Client-driven pointer analysis. In SAS, pages

214–236, 2003.
[5] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In PLDI,

pages 24–34, 2001.
[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-

tion. In POPL, 2002.
[7] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it

worth it? In CC, pages 47–64, 2006.
[8] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive

points-to analysis using a BDD-based implementation. ACM Transac-
tions on Software Engineering and Methodology, 18(1):1–53, 2008.

[9] P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of
static heap abstractions. In OOPSLA, pages 411–427, 2010.

[10] P. Liang, O. Tripp, and M. Naik. Learning minimal abstractions. In
POPL, 2011.

[11] K. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–
136, 2006.

[12] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensi-
tivity for points-to and side-effect analyses for Java. In ISSTA, pages
1–11, 2002.

[13] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensi-
tivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology, 14(1):1–41, 2005.

[14] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. In PLDI, pages 308–319, 2006.

[15] J. Plevyak and A. Chien. Precise concrete type inference for object-
oriented languages. In OOPSLA, pages 324–340.

[16] O. Shivers. Control-flow analysis in Scheme. In PLDI, pages 164–
174, 1988.

[17] Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick your contexts
well: Understanding object-sensitivity. In POPL, 2011.

[18] S. A. Spoon and O. Shivers. Demand-driven type inference with
subgoal pruning: Trading precision for scalability. In ECOOP, 2004.

[19] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for Java. In PLDI, pages 387–400, 2006.

[20] V. Vipindeep and P. Jalote. Efficient static analysis with path pruning
using coverage data. In International Workshop on Dynamic Analysis
(WODA), 2005.

[21] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision
Diagrams. PhD thesis, Stanford University, 2007.

[22] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In PLDI, pages 131–144,
2004.

[23] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In
POPL, pages 197–208, 1998.

A. Proofs
Instead of directly proving Proposition 1, we state a more general
theorem which will be useful later:

Theorem 3 (Soundness). Let α and β be two abstractions with
β � α (β is coarser), and let X be any set of input tuples. For any
derivation a ∈ D(α(X)), define b = (b1, . . . , b|a|) where each bi
is the unique element in β(ai). Then b ∈ D(β(X)).

Proof of Theorem 3. Define A = α(X) and B = β(X). Consider
a ∈ D(A) and let b be as defined in the theorem. For each position
i, we have two cases. First, if ai ∈ A, then bi ∈ (β ◦ α)(X) =
β(X) = B. Otherwise, let z ∈ Z be the rule and J be the
indices of the tuples used to derive ai. The same rule z and the
corresponding tuples {bj : j ∈ J} can also be used to derive bi.
Therefore, b ∈ D(B).

Proof of Proposition 1 (abstraction is sound). Apply Theorem 3
with β = α and α as the identity function (no abstraction).

Before we prove Theorem 1, we state a useful lemma.

Lemma 1 (Pruning is idempotent). For any set of tuples (concrete
or abstract) X , P(X) = P(P(X)).

Proof. Since P(X) ⊂ X by definition and P is monotonic, we
have P(P(X)) ⊂ P(X). For the other direction, let x ∈ P(X).
Then x is part of some derivation (x ∈ x ∈ D(X)). All the input
tuples of x (those in x ∩X) are also in P(X), so x ∈ D(P(X)).
Therefore x ∈ P(P(X)).

Proof of Theorem 1 (pruning is sound and complete). We define
variables for the intermediate quantities in (15): A = α(X) and
B = β(X), B̃ = P(B), Ã = α(B̃), and A′ = A ∩ Ã. We
want to show that pruning is sound (P(A) ⊂ P(A′)) and complete
(P(A) ⊃ P(A′)). Completeness follows directly because A ⊃ A′
and P is monotonic (increasing the number of input tuples can only
increase the number of derived tuples).

Now we show soundness. Let a ∈ P(A). By definition of P
((3)), there is a derivation a ∈ D(A) containing a. For each ai ∈ a,
let bi be the unique element in β(ai) (a singleton set because
β � α), and let b be the corresponding sequence constructed
from the bis. Since β � α, we have b ∈ D(B) by Theorem 3,
and so each input tuple in b is also in P(B) = B̃; in particular,
b ∈ B̃ for β(a) = {b}. Since β � α, a ∈ α(b), and so
a ∈ Ã. We have thus shown that P(A) ⊂ Ã. Finishing up,
P(A′) = P(A ∩ Ã) ⊃ P(A ∩ P(A)) = P(P(A)) = P(A),
where the last equality follows from idempotence (Lemma 1).

We now show that the Prune-Refine algorithm is correct, which
follows from a straightforward application of Theorem 1.

Proof of Theorem 2 (correctness of the Prune-Refine algorithm).
First, we argue that pre-pruning is correct. For each iteration t,
we invoke Theorem 1 with α = αt, β = βt and X be such that
α(X) = At. The result is that P(At) = P(A′t), so without loss of
generality, we will assume At = A′t for the rest of the proof.

Now fix an iteration t. We will show that P(αt(X)) = P(At)
by induction, where the inductive hypothesis is P(αt(X)) =
P(αt(Ãs)). For the base case (s = −1), we define Ã−1 = {X},
we get a tautology. For the inductive case, apply the theorem with
applied to β = αs, α = αt and X such that αs(X) = αs(Ãs−1),
we get that

P(αt(Ãs−1)) = P(αt(P(αs(Ãs−1)))) = P(αt(Ãs)).

When s = t − 1, we have P(αt(X)) = P(αt(Ãt−1)) = P(At),
completing the claim. Finally, if the algorithm returns proven, we
have

∅ = P(At) = P(αt(X)) ⊃ P(X).

