
Hybrid Top-down and Bottom-up Interprocedural Analysis

Xin Zhang1 Ravi Mangal1 Mayur Naik1 Hongseok Yang2
1 Georgia Institute of Technology 2 Oxford University

Abstract
Interprocedural static analyses are broadly classified into top-down
and bottom-up, depending upon how they compute, instantiate, and
reuse procedure summaries. Both kinds of analyses are challeng-
ing to scale: top-down analyses are hindered by ineffective reuse of
summaries whereas bottom-up analyses are hindered by inefficient
computation and instantiation of summaries. This paper presents
a hybrid approach SWIFT that combines top-down and bottom-
up analyses in a manner that gains their benefits without suffer-
ing their drawbacks. SWIFT is general in that it is parametrized
by the top-down and bottom-up analyses it combines. We show
an instantiation of SWIFT on a type-state analysis and evaluate it
on a suite of 12 Java programs of size 60-250 KLOC each. SWIFT
outperforms both conventional approaches, finishing on all the pro-
grams while both of those approaches fail on the larger programs.

Categories and Subject Descriptors D.2.4 [SOFTWARE ENGI-
NEERING]: Software/Program Verification

1. Introduction
Interprocedural static analyses are broadly classified into top-down
and bottom-up. Top-down analyses start at root procedures of a
program and proceed from callers to callees. Bottom-up analyses,
on the other hand, begin from leaf procedures and proceed from
callees to callers. For reasons of scalability and termination, both
kinds of analyses compute and reuse summaries of analysis results
over procedures, but they do so in fundamentally different ways.

Top-down analyses only analyze procedures under contexts in
which they are called in a program. A key drawback of such anal-
yses is that the summaries they compute tend to track details that
are specific to individual calling contexts. These analyses thereby
fail to sufficiently reuse summaries of a procedure across different
calling contexts. This in turn causes a blow-up in the number of
summaries and hinders the scalability of the analyses.

Bottom-up analyses analyze procedures under all contexts, not
just those in which they are called in a program. These analyses
have two key strengths: the summaries they compute are highly
reusable and they are easier to parallelize. But these analyses also
have drawbacks that stem from analyzing procedures in contexts
that are unrealizable in a program: they either lose scalability due to
the need to reason about too many cases, or they sacrifice precision
by eliding needed distinctions between cases. Also, instantiating
summaries computed by bottom-up analyses is usually expensive
compared to top-down analyses.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI ’14,, June 9–11, 2014, Edinburgh, United Kingdom..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594328

It is thus evident that the performance of both top-down and
bottom-up analyses depends crucially on how procedure sum-
maries are computed, instantiated, and reused. Top-down analy-
sis summaries are cheap to compute and instantiate but hard to
reuse, whereas bottom-up analysis summaries are easy to reuse but
expensive to compute and instantiate.

This paper proposes a new hybrid interprocedural analysis ap-
proach called SWIFT that synergistically combines top-down and
bottom-up analyses. Our approach is based on two observations.
First, multiple summaries of the top-down analysis for a procedure
can be captured by a single summary of the bottom-up analysis
for the procedure. Therefore, applying bottom-up summaries in the
top-down analysis can greatly improve summary reuse. Second, al-
though bottom-up analysis reasons about all possible cases over
the unknown initial states of a procedure, only few of those cases
may be encountered frequently during top-down analysis, or even
be reachable from the root procedures of a program. Therefore,
making the bottom-up analysis only analyze those cases that are en-
countered most frequently during top-down analysis can greatly re-
duce the cost of computing and instantiating bottom-up summaries.

We formalize SWIFT as a generic framework that is parametrized
by the top-down and bottom-up analyses, and show how to instan-
tiate it on a type-state analysis for object-oriented programs. This
analysis is useful for checking a variety of program safety prop-
erties, features both may and must alias reasoning about pointers,
and is challenging to scale to large programs. We implemented
SWIFT for Java and evaluate it on the type-state analysis using 12
benchmark programs of size 60-250 KLOC each. SWIFT outper-
forms both conventional approaches in our experiments, achieving
speedups upto 59X over the top-down approach and 118X over the
bottom-up approach, and finishing successfully on all programs
while both conventional approaches fail on the larger programs.

We summarize the main contributions of this paper:

1. We propose SWIFT, a new interprocedural analysis approach
that synergistically combines top-down and bottom-up ap-
proaches. We formalize SWIFT as a generic framework and
illustrate it on a realistic type-state analysis.

2. Central to SWIFT is a new kind of relational analysis that
approximates input-output relationships of procedures without
information about initial states, but avoids the common problem
of generating too many cases by using a pruning operator to
identify and drop infrequent cases during case splitting.

3. We present empirical results showing the effectiveness of
SWIFT over both the top-down and bottom-up approaches for
type-state analysis on a suite of real-world Java programs.

2. Overview
We illustrate SWIFT on a type-state analysis of an example program
shown in Figure 1. The program creates three file objects and calls
procedure foo on each of them to open and close the file. Each file
f can be in state opened, closed, or error at any instant, and starts
in state closed. A call f.open() changes its state to opened if it is
closed, and to error otherwise. Similarly, f.close() changes its
state to closed if it is opened, and to error otherwise.



main() {
v1 = new File(); // h1

pc1: foo(v1);
v2 = new File(); // h2

pc2: foo(v2);
v3 = new File(); // h3

pc3: foo(v3);
}

foo(File f) {
f.open(); f.close();

}

Summaries computed for procedure foo by a type-state analysis using:
top-down approach bottom-up approach

(h1, closed, {f}, ∅)→ { (h1, closed, {f}, ∅) } [T1]

(h2, closed, {f}, ∅)→ { (h2, closed, {f}, ∅) } [T2]

(h1, closed, ∅, {f})→ { (h1, closed, ∅, {f}) } [T3]

(h2, closed, ∅, {f})→ { (h2, closed, ∅, {f}) } [T4]

(h3, closed, {f}, ∅)→ { (h3, closed, {f}, ∅) } [T5]

λ(h, t,a,n). if (f ∈ n) then { (h, t,a,n) } [B1]

λ(h, t,a,n). if (f ∈ a) then
{ (h, (ιclose ◦ ιopen)(t),a,n) } [B2]

λ(h, t,a,n). if (f /∈ n ∧ f /∈ a ∧
mayalias(f,h)) then { (h, error,a,n) } [B3]

λ(h, t,a,n). if (f /∈ n ∧ f /∈ a ∧
¬mayalias(f,h)) then { (h, t,a,n) } [B4]

Figure 1: Example illustrating top-down and bottom-up approaches to interprocedural type-state analysis.

We use a type-state analysis by Fink et al. [8] which computes a
set of abstract states at each program point to over-approximate
the type-states of all objects. Each abstract state is of the form
(h, t, a, n) where h is an allocation site, t is the type-state in which
an object created at that site might be in, and a and n are finite sets
of program expressions with which that object is aliased (called
must set) and not aliased (called must-not set), respectively.

We next illustrate two common interprocedural approaches: top-
down and bottom-up. Informally, we use top-down to mean global
and explicit (or tabulating), and bottom-up to mean compositional
and symbolic (or functional). Our formal meaning of these terms is
given in Sections 3.1 and 3.2.

2.1 The Top-Down Approach
The top-down approach starts from root procedures and summa-
rizes procedures as functions on abstract states. For our example,
it starts from main, proceeds in the order of program execution,
and computes summaries T1 through T5 for procedure foo, which
are shown in Figure 1. Summaries T1, T2, and T5 mean that an
incoming abstract state (hi, closed, {f}, ∅) is transformed to it-
self by foo, whereas summaries T3 and T4 mean the same for an
incoming abstract state (hi, closed, ∅, {f}). Summaries T1, T2,
and T5 share the property that the effect of foo on the incoming
abstract state is a no-op when its argument f definitely points to the
abstract object hi (i.e., f is in the must set). In this case, the type-
state analysis is able to perform a strong update, and establishes
that the type-state remains closed after the calls to f.open() and
f.close(). Summaries T3 and T4 share an analogous property
that holds when f definitely does not point to the abstract object hi
(i.e., f is in the must-not set). In this case, the analysis establishes
that the type-state remains closed despite the calls to f.open() and
f.closed(), since hi is different from f. However, these five top-
down summaries are specific to calling contexts, and fail to capture
these two general properties. As a result, they are unlikely to be
reused heavily. The only summary reused is T3 at call site pc3.

2.2 The Bottom-Up Approach
The bottom-up approach starts from leaf procedures and proceeds
up along call chains. Like the top-down approach, it too computes
summaries, but they differ in crucial ways. Top-down summaries
consider only reachable incoming abstract states of procedures
whereas bottom-up summaries cover all possible incoming abstract
states. Also, caller-specific information is not present in bottom-up
summaries. For example, the bottom-up approach computes sum-
maries B1 through B4 for procedure foo, which are shown in Fig-
ure 1. These summaries represent four partial functions on abstract
states, corresponding to four different cases of incoming abstract
states of foo based on the kind of aliasing between argument f and
incoming abstract object h. SummaryB1 is applicable when f is in
the incoming must-not set n. In this case, the incoming abstract
state is simply returned. Summary B2 is applicable when f is in
the incoming must set a. In this case, a strong update is performed,

returning the incoming abstract state with the type-state updated to
(ιclose ◦ ιopen)(t), where

ιopen = λt. if (t = closed) then opened else error

ιclose = λt. if (t = opened) then closed else error

are type-state transformers associated with open() and close(),
respectively. The remaining two summariesB3 andB4 are applica-
ble when f is neither in the incoming must nor must-not set; this is
possible as the must and must-not sets track only finite numbers of
expressions. In this situation, the type-state analysis uses possibly
less precise but still safe information from a may-alias analysis, de-
noted mayalias in summaries B3 and B4. If the may-alias analysis
states that f may-alias with h, then B3 applies, and a weak update
is performed, returning the error type-state. Otherwise, B4 applies
and the incoming abstract state is returned similar to B1.

Procedure foo has only two statements yet there are already
four cases represented in its bottom-up summaries. Note that this
is despite the use of symbolic representations such as type-state
transformer ιclose ◦ ιopen in B2 instead of case-splitting on t. For
real-world programs, the number of cases can grow exponentially
with the number of commands, and hinder scalability.

2.3 Our Hybrid Approach: SWIFT

The above drawbacks of the top-down and the bottom-up ap-
proaches (namely, lack of generalization in top-down summaries
and excessive case splitting in bottom-up summaries) motivate our
hybrid approach SWIFT. SWIFT is parametrized by the top-down
and the bottom-up versions of the given analysis, plus two thresh-
olds k and θ that control its overall performance. SWIFT triggers
the bottom-up analysis on a procedure when the number of incom-
ing abstract states of that procedure computed by the top-down
analysis exceeds threshold k. Requiring sufficiently many incom-
ing abstract states not only limits triggering the bottom-up analysis
to procedures that are being re-analyzed the most often by the top-
down analysis—and thus are likely suffering the most from lack of
summary reuse and offer the greatest benefit of generalizing—but
also helps the bottom-up analysis to determine the most common
cases when it does case splitting, and track only those cases, un-
like the original bottom-up analysis which tracks all cases. The
threshold θ dictates the maximum number of such cases to track
and thereby limit excessive case splitting.

We illustrate SWIFT using k = 2 and θ = 2 on our example.
SWIFT starts the top-down analysis of main in the usual order of
program execution. Upon reaching program point pc1 with abstract
state (h1, closed, {v1}, ∅), it checks whether any bottom-up sum-
mary is available for foo. Since there is none, it continues the top-
down analysis, analyzes the body of foo with initial abstract state

(h1, closed, {f}, ∅) [A1]

and computes top-down summary T1. The number of initial ab-
stract states of foo is now one but not above the threshold (k = 2)



needed to trigger the bottom-up analysis. So SWIFT continues with
the top-down analysis, reaches program point pc2 with abstract
states (h2, closed, {v2}, ∅) and (h1, closed, {v1}, {v2}), proceeds
to re-analyze foo in the corresponding new initial abstract states

(h2, closed, {f}, ∅) [A2]

(h1, closed, ∅, {f}) [A3]

and computes top-down summaries T2 and T3, respectively. The
number of initial abstract states of foo is now 3, which has ex-
ceeded our threshold k = 2. Hence, SWIFT triggers a bottom-up
analysis of foo. The bottom-up analysis starts analyzing foo with

λ(h, t,a,n). if (true) then { (h, t,a,n) }
which means the identity function on abstract states, and correctly
summarizes that the part of foo analyzed so far does not make any
state changes. The analysis then proceeds to transform the above
function according to the abstract semantics of each command in
foo, while avoiding case splitting by ignoring certain initial ab-
stract states of foo. When it analyzes the first command f.open(),
it transforms the identity function above to four cases, namely, B1,
B3, and B4 shown in Figure 1, plus

λ(h, t,a,n). if (f ∈ a) then { (h, ιopen(t),a,n) } [B′2]

B′2 differs from B2 in Figure 1 only in skipping the application
of ιclose, since the second command f.close() has not yet been
analyzed by the bottom-up analysis. At this point, the bottom-up
analysis inspects the three existing abstract states A1, A2, and A3

that have been recorded in the corresponding top-down summaries
T1, T2, and T3, respectively, and determines that case B′2 is the
most common (applying to A1 and A2), case B1 is the second-
most common (applying to A3), and cases B3 and B4 are the least
common (applying to none of the existing abstract states). Since
θ = 2, it keeps the two most common casesB′2 andB1, and prunes
casesB3 andB4. It then proceeds to analyze command f.close()
similarly to obtain the final bottom-up summaries of foo as

λ(h, t,a,n). if (f ∈n) then { (h, t,a,n) } [B1]

λ(h, t,a,n). if (f ∈a) then { (h, (ιclose ◦ ιopen)(t),a,n) } [B2]

Thus, while four cases (B1–B4) existed in the original bottom-up
summaries of foo, these new summaries represent only two cases,
corresponding to the most common incoming abstract states of foo.

Once the bottom-up analysis is finished, SWIFT continues from
the statement following program point pc2 in main, and reaches the
call to foo at pc3 with three abstract states:

(h1, closed, ∅, {f}) [A3]

(h2, closed, ∅, {f}) [A4]

(h3, closed, {f}, ∅) [A5]

Since it had encounteredA3 at pc2, it reuses top-down summary T3

and avoids re-analyzing foo, similar to a conventional top-down
analysis. But more significantly, SWIFT avoids re-analyzing foo
even for A4 and A5: of the bottom-up summaries B1 and B2 that
it computed for foo, B1 applies to A4, and B2 applies to A5.

In summary, for our example, SWIFT avoids creating top-down
summaries T4 and T5 that a conventional top-down analysis com-
putes, and it avoids creating bottom-up summaries B3 and B4 that
a conventional bottom-up analysis computes.

2.4 The Challenge of Pruning
Procedure foo has a single control-flow path which causes exactly
one of bottom-up summaries B1–B4 to apply to any incoming ab-
stract stateA. But in general, procedures have multiple control-flow
paths, which can cause multiple bottom-up summaries to apply to a
given state A. Retaining some of these summaries while pruning

others, and reusing only the retained ones upon encountering state
A, is unsound. We illustrate this with an alternate definition of foo:

foo(File f, File g) {
if (*) then { f.open(); f.close(); } else g.open(); }

Its bottom-up analysis yields summariesB1–B4 for the true branch,
and four similar summaries for the false branch, one of which is

λ(h, t,a,n). if (g ∈ a) then { (h, ιopen(t),a,n) } [B5]

Suppose SWIFT prunes all of them except B2 (case f ∈ a) and B5

(case g ∈ a), and then encounters two incoming abstract states:

〈h, closed, {f, g}, ∅〉 [A1]

〈h, closed, {g}, {f}〉 [A2]

BothB2 andB5 apply toA1, yielding result {〈h, closed, {f, g}, ∅〉,
〈h, opened, {f, g}, ∅〉} as expected. In particular, none of the six
pruned cases apply to A1, and therefore they have no effect on
the result. On the other hand, B1 and B5 apply to A2. Since
B1 was pruned, applying B5 alone will yield incorrect result
{〈h, opened, {g}, {f}〉}, as it omits state 〈h, closed, {g}, {f}〉
produced by B1. SWIFT guarantees correctness; specifically, we
prove that the hybrid approach it embodies is equivalent to a con-
ventional top-down approach (see Theorem 3.1). In the above sce-
nario, SWIFT re-analyzes foo for A2, as a conventional top-down
approach would; only if both of B1 and B5 are retained does it
avoid re-analyzing, and reuses both of them. Thus, in either sce-
nario, SWIFT produces the correct result for A2.

3. Formalism
This section presents SWIFT as a generic framework. Section 3.1
formulates the top-down analysis. Section 3.2 formulates the
bottom-up analysis. Section 3.3 describes conditions relating the
two analyses that SWIFT requires. Section 3.4 augments bottom-
up analysis with a pruning operator guided by top-down analysis.
Section 3.5 extends the formalism to (recursive) procedures.

3.1 Top-Down Analysis
Our formalism targets a language of commands C:

C ::= c | C + C | C;C | C∗

It includes primitive commands, non-deterministic choice, sequen-
tial composition, and iteration. Section 3.5 adds procedure calls.

A top-down analysis A = (S, trans) is specified by:

1. a finite set S of abstract states, and
2. transfer functions trans(c) : S→ 2S of primitive commands c.

The abstract domain of the analysis is the powerset D = 2S with
the subset order. The abstract semantics of the analysis is standard:

JCK : 2S → 2S

JcK(Σ) = trans(c)†(Σ)
JC1 + C2K(Σ) = JC1K(Σ) ∪ JC2K(Σ)

JC1;C2K(Σ) = JC2K(JC1K(Σ))
JC∗K(Σ) = lfix (λΣ′.Σ ∪ JCK(Σ′)).

where notation f† denotes lifting of function f : D1× . . .×Dn →
2D to sets of input arguments, as follows: f†(X1, . . . , Xn) =⋃
{f(x1, . . . , xn) | ∀i. xi ∈ Xi}.

Example. We illustrate our formalism using the type-state anal-
ysis shown in Figure 2. This analysis computes a set of abstract
states (also called abstract objects) at each program point to over-
approximate the type-states of all objects. Each abstract state is of
the form (h, t, a) and represents that an object allocated at site h
may be in type-state t and is pointed to by at least variables in a



Domains:
(method) m ∈ M (allocation site) h ∈ H
(variable) v ∈ V (access path set) a ∈ A = 2V

(type state) t ∈ T = {init, error, ...}
(type-state function) [m] ∈ I = T→ T
(abstract states) σ ∈ S = H× T× A

Primitive Commands:
c ::= v = newh | v = w | v.m()

Transfer Functions:
trans(v = newh′)(h, t, a) = {(h, t, a \ {v}), (h′, init, {v})}

trans(v = w)(h, t, a) = if (w ∈ a) then {(h, t, a ∪ {v})}
else {(h, t, a \ {v})}

trans(v.m())(h, t, a) = if (v ∈ a) then {(h, [m](t), a)}
else {(h, error, a)}

Figure 2: Top-down type-state analysis.

(the must set). For clarity of exposition, this type-state analysis is
simpler than the full version in our experiments, in two respects:
first, it omits tracking the must-not set in each abstract state, unlike
the type-state analysis in Section 2; second, it restricts the must set
to only contain variables, whereas the implementation allows heap
access path expressions such as v.f and w.g.f .

The transfer function of a primitive command c conservatively
updates the type-state and must set of each incoming abstract object
(h, t, a). The updated must set includes aliases newly generated by
c, and those in a that survive the state change of c. For instance,
trans(v = w)(h, t, a) removes v from a when w is not in a.
This is because in that case, any aliases with v can be destroyed
by assignment v = w. The only command that affects the type-
state is a method call. In particular, trans(v.m())(h, t, a) performs
a strong update on the incoming type-state t according to the type-
state function [m] associated withm, when v is in a, and transitions
it to the error type-state otherwise. �

3.2 Bottom-Up Analysis
A bottom-up analysis B=(R, id], γ, rtrans, rcomp) is specified by:

1. a domain of abstract relations (R, id], γ) where R is a finite
set with an element id] and γ is a function of type R → 2S×S

such that γ(id]) = {(σ, σ) | σ ∈ S};
2. transfer functions rtrans(c) : R → 2R of primitive com-

mands c; and
3. an operator rcomp : R×R→ 2R to compose abstract relations.

Elements r in R mean relations γ(r) over abstract states in S.
Hence, they are called abstract relations. We require a relation id] in
R that denotes the identity relation on S.1 We denote the domain of
a relation r by dom(r) = {σ | ∃σ′ : (σ, σ′) ∈ γ(r)}. The input to
rtrans(c) describes past state changes from the entry of the current
procedure up to the primitive command c, and the function extends
this description with the state change of c. The operator rcomp
allows composing two abstract relations, and is used to compute the
effects of procedure calls; namely, when a procedure with summary
{r1, ..., rn} is called and an input relation to this call is r, the result
of analyzing the call is

⋃n
i=1 rcomp(r, ri).

Example. Our bottom-up type-state analysis is shown in Figure 3.
It contains two types of abstract relations. The first type is (σ, φ),
and it denotes a constant relation on abstract states that relates any
σ′ satisfying φ to the given σ. The second type is (ι, a0, a1, φ),
and this means a relation that takes an abstract state σ = (h, t, a)

1 Our bottom-up analysis uses id] as the initial abstract relation when
analyzing procedures. See Section 3.5.

Domain of Abstract Relations:
(predicate) φ ∈ Q

φ ::= true | φ ∧ φ | have(v) | notHave(v)
(type-state function) ι ∈ I = {λt.t, λt.init, λt.error, ...}
(abstract relation) r ∈ R = (S×Q) ∪ (I× 2V × 2V ×Q)

id] = (λt.t,V, ∅, true)
γ(σ, φ) = {(σ0, σ) | σ0 |= φ}

γ(ι, a0, a1, φ) = {(σ0, σ) | σ0 |= φ ∧ ∃h, t, a, a′ : (σ0 = (h, t, a)
∧ σ = (h, ι(t), a′) ∧ a′ = (a ∩ a0) ∪ a1)}

where σ |= φ expresses the satisfaction of φ by the abstract state:

σ |= true always
σ |= φ ∧ φ′ ⇐⇒ σ |= φ and σ |= φ′

σ |= have(v) ⇐⇒ (h, t, a) = σ and v ∈ a for some h, t, a
σ |= notHave(v) ⇐⇒ (h, t, a) = σ and v 6∈ a for some h, t, a

Transfer Functions:
rtrans(c)(σ, φ) = {(σ′, φ) | σ′ ∈ trans(c)(σ)}
rtrans(v = newh)(ι, a0, a1, φ) =

{(ι, a0 \ {v}, a1 \ {v}, φ), ((h, init, {v}), φ)}
rtrans(v = w)(ι, a0, a1, φ) =

if (w ∈ a1) then {(ι, a0, a1 ∪ {v}, φ)}
else if (w 6∈ a0) then {(ι, a0 \ {v}, a1 \ {v}, φ)}
else {(ι, a0, a1 ∪ {v}, φ ∧ have(w)),

(ι, a0 \ {v}, a1 \ {v}, φ ∧ notHave(w))}
rtrans(v.m())(ι, a0, a1, φ) =

if (v ∈ a1) then {([m] ◦ ι, a0, a1, φ)}
else if (v 6∈ a0) then {(λt.error, a0, a1, φ)}
else {([m] ◦ ι, a0, a1, φ ∧ have(v)),

(λt.error, a0, a1, φ ∧ notHave(v))}
Relation Composition:

rcomp(r, r′) =
let ( , φ) = r and ( , φ′) = r′ in
if (wp(r, φ′)⇔ false) then ∅ else {(r; r′, φ ∧ wp(r, φ′))}

Here the routines wp and r; r′ are defined as follows:

wp(r, true) = true, wp(r, φ ∧ φ′) = wp(r, φ) ∧ wp(r, φ′),
wp((σ, φ), have(v)) = if (σ |= have(v)) then true else false
wp((σ, φ), notHave(v)) = if (σ |= notHave(v)) then true else false
wp((ι, a0, a1, φ), have(v)) =

if (v ∈ a1) then true else (if (v 6∈ a0) then have(v) else false)
wp((ι, a0, a1, φ), notHave(v)) =

if (v ∈ a1) then false else (if (v 6∈ a0) then true else notHave(v))
r; (σ′, ) = σ′

((h, t, a), ); (ι′, a′0, a
′
1, ) = (h, ι′(t), a∩ a′0 ∪ a′1)

(ι, a0, a1, ); (ι′, a′0, a
′
1, ) = (ι′ ◦ ι, a0 ∩ a′0, a1 ∩ a′0 ∪ a′1)

Figure 3: Bottom-up type-state analysis.

satisfying φ and updates its type-state to ι(t) and its must set to
(a ∩ a0) ∪ a1. For instance, (ιclose ◦ ιopen,V, ∅, have(f)) denotes
the relation that is defined only when the input must set contains
f , and that produces as output the same must set but updates type-
state t to t′ = (ιclose ◦ ιopen)(t) (e.g., if t = closed then t′ = closed,
and if t = opened then t′ = error). This is precisely the bottom-up
summary B2 of procedure foo in the example in Section 2.

We next describe transfer functions rtrans of primitive com-
mands. When the input abstract relation is (σ, φ), rtrans(c) sim-
ply updates the σ part using trans from the top-down type-state
analysis. When the input is (ι, a0, a1, φ), rtrans(c) does not have
such a uniform behavior—it changes each component of the input
according to trans(c). We explain this with rtrans(v=w). Recall
that trans(v = w)(h, t, a) splits cases based on whether the must
set a contains w or not. To implement this case split, rtrans(v=w)
views the input (ι, a0, a1, φ) as a transformer on abstract states, and



[C1] For all commands c, relations r ∈ R, and states σ, σ′ ∈ S:
(∃r0 : r0 ∈ rtrans(c)(r) ∧ (σ, σ′) ∈ γ(r0)) ⇐⇒

(∃σ0 : (σ, σ0) ∈ γ(r) ∧ σ′ ∈ trans(c)(σ0))

[C2] For all r1, r2 ∈ R and σ, σ′ ∈ S:
(σ, σ′) ∈ γ†(rcomp(r1, r2)) ⇐⇒

∃σ0 : (σ, σ0) ∈ γ(r1) ∧ (σ0, σ
′) ∈ γ(r2)

[C3] For all r ∈ R and σ ∈ S and Σ ∈ 2S:
σ ∈ wp(r,Σ) ⇐⇒ (∀σ′ : (σ, σ′) ∈ γ(r)⇒ σ′ ∈ Σ)

Figure 4: Conditions required by our SWIFT framework.

checks whether this transformer results in an abstract state with w
in its must set. The three cases in the definition of rtrans(v = w)
correspond to the three answers to this question: always, never and
sometimes. In the first two cases, rtrans(v = w) updates its input
so that v is included (first case) or excluded (second case) from the
must set. In the third case, it generates two abstract relations that
cover both possibilities of including and excluding v.

The remaining part is the composition operator rcomp(r, r′).
One difficulty for composing relations r and r′ symbolically is that
the precondition φ′ of r′ is not a property of initial states of the
composed relation, but that of intermediate states. Hence, we need
to compute the weakest precondition of φ′ with respect to the first
relation r. Our rcomp operator calls the routine wp(r, φ′) to do
this computation, and constructs a new precondition by conjoining
the precondition φ of the first relation r with the result of this
call. Computing the other state-transformation part of the result of
rcomp(r, r′) is relatively easier, and follows from the semantics of
γ(r) and γ(r′). It is described by the other routine r; r′. �

3.3 Conditions of SWIFT Framework
SWIFT allows combining a top-down analysis A and a bottom-up
analysis B as specified in the preceding subsections. Since it is a
generic framework, however, SWIFT lets users decide the relative
degrees of these two analyses in the resulting hybrid analysis, by
means of thresholds k and θ. SWIFT has to guarantee the correct-
ness and equivalence of the resulting analyses for all choices of
these thresholds. For this purpose, SWIFT requires three conditions
C1–C3 shown in Figure 4 on the two analyses that it combines.

Condition C1 requires trans and rtrans—the transfer functions
of the top-down and bottom-up analyses for primitive commands—
to be equally precise. Our top-down and bottom-up type-state anal-
yses satisfy this condition. In Section 5, we discuss ways to avoid
manually specifying both trans and rtrans, by automatically syn-
thesizing one from the other while satisfying this condition.

Condition C2 requires the operator rcomp : R × R → 2R to
accurately model the composition of relations γ(r1) and γ(r2).
Note that γ(ri) is a relation over abstract states, not concrete
states, which makes it easier to discharge the condition. Besides,
the bottom-up analysis might define rcomp in a manner that al-
ready satisfies this condition. The rcomp operator for our type-state
analysis in Figure 3 illustrates both of these aspects.

Condition C3 requires an operator wp : R × 2S → 2S to com-
pute the weakest precondition of an abstract relation over a given
set of abstract states. SWIFT uses this operator to adjust bottom-
up summaries of called procedures. Those summaries involve pre-
conditions on incoming abstract states to the callee, and need to
be recast as preconditions to the caller. The wp operator satisfies
this need. Designing wp is relatively simple, because it computes
a weakest precondition on abstract relations in R, not on relations
over concrete states. Besides, this operator might already be defined
as part of the bottom-up analysis. Both of these observations hold
for the wp operator in Figure 3 for our type-state analysis.

In summary, the conditions required by SWIFT are not onerous,
and may even already hold for the analyses to be combined.

3.4 Pruning and Coincidence
We now proceed to augment our bottom-up analysis with a pruning
operator and show that it coincides with the top-down analysis. We
first define an operation excl : 2R × 2S → 2R as follows:

excl(R,Σ) = {r ∈ R | dom(r) 6⊆ Σ},
which removes abstract relations r that become void if we ignore
abstract states in Σ from the domain of r.

We then define a pruning operator as a function f : 2R× 2S →
2R × 2S such that for all R,R′ ⊆ R and Σ,Σ′ ⊆ S,

f(R,Σ) = (R′,Σ′)⇒ (Σ ⊆ Σ′ ∧R′ = excl(R,Σ′)).

The purpose of a pruning operator f is to filter out some abstract
relations from its input R. When making this filtering decision,
the operator also takes Σ, which contains abstract states that the
bottom-up analysis has already decided to ignore. Given such an R
and Σ, the operator increases the set of ignored states to Σ′, and
removes all abstract relations r that do not relate any abstract states
outside of Σ′ (i.e., dom(r) ⊆ Σ′).

SWIFT automatically constructs a pruning operator, denoted
prune, by ranking abstract relations and choosing the top θ rela-
tions, where θ is a parameter to SWIFT. The ranking is based on
the frequencies of incoming abstract states of the current proce-
dure, which are encountered during top-down analysis performed
by SWIFT. Formally, prune is built in four steps described next.

First, we assume a multi-set M of incoming abstract states to
a given command, which the top-down analysis has previously
encountered while analyzing that command in a bigger context.

Second, we define a function rank : R → N that ranks abstract
relations based on M as follows:

rank(r) =
∑

σ∈dom(r)

# of copies of σ in M

Third, we define a function bestθ : 2R → 2R that chooses the
top θ ≥ 1 abstract relations by their rank values as follows:

bestθ(R) = set of the top θ elements in R according to rank

Finally, we define the pruning operator prune as follows:

prune(R,Σ) = let R0 = bestθ(R) in
let Σ′ = Σ ∪

⋃
{dom(r) | r ∈ R \R0} in

(excl(R0,Σ
′),Σ′).

The operator first chooses the top θ abstract relations from R, and
forms a new set R0 with these chosen relations. The next step is
to increase Σ. The operator goes through every unchosen relation
in R, computes its domain, and adds abstract states in the domain
to Σ. The reason for performing this step is to find an appropriate
restriction on the domains ofR andR0 such that they have the same
meaning under this restriction, although R0 contains only selected
few of R. The result of this iteration, Σ′, is such a restriction:

γ†(R) ∩ ((S \ Σ′)× S) = γ†(R0) ∩ ((S \ Σ′)× S).

Note that once we decide to ignore abstract states in Σ′ from
the domain of an abstract relation, some abstract relations in R0

become redundant, because they do not relate any abstract states
outside of Σ′. In the last step, the operator removes such redundant
elements fromR0 using the operator excl(−,Σ′). The result of this
further reduction and the set Σ′ become the output of the operator.

Example. We illustrate the prune operator on our type-state anal-
ysis using the example in Section 2. Suppose SWIFT has ana-
lyzed procedure foo thrice using the top-down type-state analy-
sis in incoming abstract states A1, A2, and A3, and suppose the



bottom-up analysis it triggered has just finished analyzing com-
mand f.open() in the body of foo. At this point, SWIFT has data:

M = {(h1, closed, {f}), (h2, closed, {f}), (h1, closed, ∅)},Σ = ∅,
R= {(ιopen,V, ∅, have(f)), (λt.error,V, ∅, notHave(f))}.

If θ is 1, the pruning operator will retain (ιopen,V, ∅, have(f)) from
R, since two abstract states in M satisfy have(f) (namely, the first
two listed inM ) whereas only one satisfies notHave(f). The result
of the operator in this case will become:

Σ′ = {(h, t, a) | f /∈ a}, R′ = {(ιopen,V, ∅, have(f))}. �

SWIFT automatically augments the given bottom-up analysis with
the prune operator to yield an analysis whose abstract domain is

Dr = {(R,Σ) ∈ 2R × 2S | ∀r ∈ R. dom(r) 6⊆ Σ}
(R,Σ) v (R′,Σ′) ⇐⇒ Σ ⊆ Σ′ ∧ excl(R,Σ′) ⊆ R′

An element (R,Σ) means a set of relations R on abstract states
together with the set of ignored input abstract states Σ. We require
that every r ∈ R carries non-empty information when the input
abstract states are restricted to S \ Σ (i.e., dom(r) 6⊆ Σ). Our
order v says that increasing the ignored set Σ or increasing the
set of relations R makes (R,Σ) bigger. It is a partial order with the
following join operation t where clean(R,Σ) = (excl(R,Σ),Σ):⊔

i∈I

(Ri,Σi) = clean(
⋃
i∈I

Ri,
⋃
i∈I

Σi)

The semantics of the bottom-up analysis with pruning is as follows:

JCKr : Dr → Dr
JcKr(R,Σ) = (prune ◦ clean)(rtrans(c)†(R),Σ)

JC1 + C2Kr(R,Σ) = prune(JC1Kr(R,Σ) t JC2Kr(R,Σ))
JC1;C2Kr(R,Σ) = JC2Kr(JC1Kr(R,Σ))

JC∗Kr(R,Σ) = fix(R,Σ) F
(where F (R′,Σ′) = prune((R′,Σ′) t JCKr(R′,Σ′))).

fix(R,Σ) F gives the stable element of the increasing sequence:2

(R,Σ), F (R,Σ), F 2(R,Σ), F 3(R,Σ), F 4(R,Σ), . . .

This sequence is increasing because (R′,Σ′) v F (R′,Σ′) for
every (R′,Σ′), and the sequence has a stable element because the
domain Dr has finite height. Notice that whenever a new abstract
relation r can be generated in the above semantics, prune is applied
to filter r out unless it is considered one of common cases. The
degree of filtering done by prune is the main knob of SWIFT for
balancing performance against other factors such as the generality
of computed abstract relations.

We now present our main theorem, which says that bottom-
up analysis with pruning computes the same result as top-down
analysis, provided the set of incoming abstract states does not
include any abstract state that the bottom-up analysis ignores. The
proof is given in Appendix A.

THEOREM 3.1 (Coincidence). For all Σ,Σ′, R′, if

(JCKr({id]}, ∅) = (R′,Σ′)) ∧ (Σ ∩ Σ′ = ∅),

we have that for every σ′ in S,

σ′ ∈ JCK(Σ) ⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(R′).

3.5 Extension for Procedures
To handle procedures that are potentially mutually recursive, we
extend the formalism we have so far, as follows.

2 A stable element of a sequence {xi}i≥0 is xn such that xn = xn+1.

First, we include procedure calls f() in our language of com-
mands, where f ∈ PName, a set of procedure names. We also
define a program Γ as a map from procedure names to commands.

Second, we allow the prune operator to be parametrized by
procedure names, so that it can be specialized to each procedure.
For instance, the operator can use a different pruning strategy for
each procedure that depends on the incoming abstract states of that
procedure. After this change, prune has the following type:

prune : PName→ (2R × 2S → 2R × 2S)

Given the above two changes, the abstract semantics of the bottom-
up analysis augmented with pruning is defined for a program Γ as
a map from procedure names to their bottom-up summaries, and it
is computed by an iterative fixpoint computation:

JΓKr : PName→ 2R × 2S

JΓKr = fixη0 (λη. λf. η(f) t JΓ(f)Krf,η({id]}, ∅))
The fixη0 operator iterates its argument function from η0 =
λf. (∅, ∅) until it obtains a stable point. It is the same operator as
in the intraprocedural setting in Section 3.4. The abstract semantics
repeatedly updates a map η of procedure summaries until it reaches
a fixpoint. The update is done by analyzing the body Γ(f) of each
procedure f separately, while using the given η to handle proce-
dure calls in the procedure body. The analysis of Γ(f) is formally
specified by its abstract semantics JΓ(f)Krf,η , which is analogous
to that in Section 3.4 (namely, we replace each occurrence of J.Kr
by J.Krf,η , and each occurrence of prune by prune(f)), augmented
with a case for procedure calls g() defined as follows:

JCKrf,η : 2R × 2S → 2R × 2S

Jg()Krf,η(R,Σ) = let (R′,Σ′) = η(g) in
let R′′ = rcomp†(R,R′) in
let Σ′′ = S \

⋂
{wp(r, S \ Σ′) | r ∈ R} in

(prune(f) ◦ clean)(R′′,Σ′ ∪ Σ′′)

In the case of a procedure call g(), the analysis first looks up a sum-
mary (R′,Σ′) of g from the given summary map η. Then, it incor-
porates the effects of this procedure call by composing R and R′,
and propagates backward the set Σ′ of abstract states to be pruned
at the call site, all the way to the entry of the current procedure.
This propagation uses the wp operator defined in Section 3.3.

4. Algorithm
The overall algorithm of SWIFT is presented as Algorithm 1. It
takes an initial abstract state to the procedure main ∈ PName,
and a program. For convenience, we assume that the program
is specified by both a control-flow graph G and a map Γ from
procedure names to commands. Given these inputs, the algorithm
iteratively updates three data structures:

td : PC→ 2S×S, workset : 2PC×S×S, bu : PName ⇀ 2R × 2S.

Here PC is a set of program points (i.e., vertices in the control
flow graph G), S a set of abstract states and R a set of abstract
relations. The map td and the set workset are data structures of the
top-down analysis. The former records the result of the top-down
analysis. It maps a program point pc to a set of pairs (σ, σ′), which
represent state changes from the entry of the procedure containing
pc up to the program point pc. The first component σ of a pair
is an incoming abstract state of the procedure containing pc, and
the second σ′ is an abstract state that arises at pc when σ is the
abstract state at the procedure entry. The top-down analysis works
by generating new abstract states from pairs (σ, σ′) ∈ td(pc) and
propagating them to successors of pc. The set workset keeps a set
of newly generated abstract states that should be handled by the
top-down analysis subsequently. The remaining bu is a table of



procedure summaries computed by the bottom-up analysis. Note
that bu is a partial function. If bu(f) is undefined, it means that the
procedure f is not yet analyzed by the bottom-up analysis.

Algorithm 1 The SWIFT algorithm.
1: INPUTS: Initial abstract state σI and program (G,Γ)
2: OUTPUTS: Analysis results td and bu
3: var workset, R0,Σ0,Σ, f, σ
4: td = λpc.∅, bu = λf.undef, workset = {(entrymain, σI , σI)}
5: while (workset 6= ∅) do
6: pop w from workset
7: if (command at w is not a procedure call) then
8: (td,workset) = run td(G,w, td,workset)
9: else

10: let f be the procedure invoked at w
11: let σ be the current abstract state in w
12: if (∃R0,Σ0 : bu(f) = (R0,Σ0) ∧ σ 6∈ Σ0) then
13: Σ = {σ′ | (σ, σ′) ∈ γ†(R0)}
14: (td,workset) = update td(Σ, w, td,workset)
15: else
16: (td,workset) = run td(G,w, td,workset)
17: if (# of input abstract states to f in td > threshold k

and bu is undefined for f ) then
18: bu = run bu(Γ, θ, f, bu)
19: end if
20: end if
21: end if
22: end while

The algorithm repeatedly pops a w ∈ workset and processes
it until workset becomes empty. Handling w normally means the
update of workset and td according to the top-down analysis. We
express this normal case in the algorithm by

(td,workset) := run td(G,w, td,workset)

where run td is a standard tabulation-based computation [14] that
we omit here. The exception to this normal case occurs when the
command at the program point of w is a call to a procedure f . In
this case, the algorithm checks whether the bottom-up analysis has
a summary for f that can be applied to the current abstract state σ of
w (i.e., the third component ofw). If the check passes, it uses bu(f)
and computes the result Σ of analyzing f with σ, and updates
(td,workset) with Σ according to the top-down analysis (line 14).
If the check fails, the algorithm resorts to the top-down analysis,
and updates (td,workset). However, unlike the non-procedure call
case, the handling of w does not stop here. Instead, it examines
the possibility of running the bottom-up analysis on the body of
f . If the number of incoming abstract states of f in the top-down
analysis exceeds the threshold k, and the bottom-up analysis is not
yet run on f and so bu(f) is undefined, then the algorithm runs
the bottom-up analysis for all procedures F reachable from f via
call chains, computes summaries for procedures in F , and updates
bu with these summaries. All these steps are expressed by a single
instruction bu := run bu(Γ, θ, f, bu) in the algorithm (line 18),
which gets expanded to the following pseudo code:

run bu(Γ, θ, f, bu) =
let F = {procedures reachable from f} in
let bu′ = JΓ|F Kr with θ used during pruning in
λg. if (g ∈ F ) then bu′(g) else bu(g)

where JΓ|F Kr denotes the run of the bottom-up analysis of Sec-
tion 3.5 on procedures in F .

We conclude by discussing two scenarios where the pruning op-
erator could have difficulty in identifying common cases during the

execution of run bu. Both scenarios could arise in theory but oc-
curred rarely in our experiments. Assume a setting where the num-
ber of incoming abstract states to a procedure f has exceeded the
threshold k, and a procedure g is reachable from f . In the first sce-
nario, g has not been analyzed in the top-down analysis, although
f was analyzed multiple times. Our pruning operator lacks data
about g from the top-down analysis and so cannot steer the bottom-
up analysis of g towards its common cases. Our implementation
handles this issue by postponing executing run bu(Γ, θ, f, bu) un-
til there is at least one incoming abstract state of g. The second
scenario is that g has been analyzed multiple times in the top-down
analysis but most of these analyses do not originate from f . In this
scenario, our pruning operator uses the dominating incoming ab-
stract states of g over the whole program, even though these may
not be the dominating ones for g’s calling context from f .

5. Discussion
Most existing interprocedural analyses either use the top-down ap-
proach or the bottom-up approach. This section discusses obliga-
tions that analysis developers using either of these approaches must
satisfy in order to apply SWIFT for improving their scalability.

5.1 From Bottom-Up Analysis to SWIFT

Suppose a bottom-up analysis exists as specified in Section 3.2.
To employ SWIFT, an analysis designer must supply a top-down
analysis as specified in Section 3.1, and ensure that it satisfies
condition C1 in Section 3.3 that relates the transfer functions for
primitive commands trans and rtrans by the two analyses. (We
discuss the remaining two conditions C2 and C3 momentarily.)
Such a top-down analysis can be synthesized automatically from
the bottom-up analysis:

trans(c)(σ) = {σ′ | (σ, σ′) ∈ γ(rtrans(c)(id]))}
The only obligations for using SWIFT on an existing bottom-up
analysis, then, are defining operators rcomp and wp of the bottom-
up analysis in a manner that satisfies conditions C2 and C3, respec-
tively. As we discussed in Section 3.3, discharging these conditions
is not onerous, since they are stated over abstract semantics, not
the concrete one. Also, the bottom-up analysis may already define
these operators, as in the case of our type-state analysis.

5.2 From Top-Down Analysis to SWIFT

Suppose a top-down analysis exists as specified in Section 3.1. To
make use of SWIFT, an analysis designer must supply a bottom-
up analysis as specified in Section 3.2, and ensure that it satisfies
conditions C1–C3. Unlike the opposite direction above, there is
no general recipe to synthesize the bottom-up analysis automati-
cally from the top-down analysis. Intuitively, the naı̈ve synthesis
approach, which defines

rtrans(c)(r) = {(σ1, σ3)|∃σ2 : (σ1, σ2)∈ r ∧ σ3 ∈ trans(c)(σ2)}
does not generalize input-output relationships any more than the
top-down analysis. Nevertheless, we have identified a general class
of analyses for which we can automatically synthesize. We call
these kill/gen analyses. The details of this synthesis are provided
in Appendix B. The intuition is that transfer functions of primitive
commands for kill/gen analyses have a special simple form: they
transform the input by using the meet and join with fixed abstract
states, which are selected based on a transformer-specific case
analysis on the input. These kill/gen analyses include bitvector
dataflow analyses as well as certain alias analyses (e.g., connection
analysis [9]). Our type-state analysis is not an instance of kill/gen
analysis, due to the transfer function of v.m(), but its handling of
the must sets re-uses our kill/gen recipe for synthesizing bottom-up
analysis from top-down analysis.



description # classes # methods bytecode (KB) KLOC
app total app total app total app total

jpat-p protein analysis tools 5 176 13 766 1 39 1.5 78
elevator discrete event simulator 5 188 24 899 2.3 52 0.6 88
toba-s java bytecode to C compiler 25 158 149 745 32 56 6 69
javasrc-p java source code to HTML translator 49 135 461 789 43 60 13 66
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
antlr A parser/translator generator 111 350 1,150 2,370 128 186 29 131
luindex document indexing and search tool 206 619 1,390 3,732 102 235 39 190
lusearch text indexing and search tool 219 640 1,399 3,923 94 250 40 198
kawa-c scheme to java bytecode compiler 151 529 1,049 3,412 62 174 21 186
avrora microcontroller simulator/analyzer 1,158 1,544 4,234 6,247 223 325 64 193
rhino-a JavaScript interpreter 66 330 686 2,288 64 162 26 153
sablecc-j parser generator 294 876 1,742 5,143 75 276 40 257

Table 1: Benchmark characteristics. All the reported numbers are computed using a 0-CFA call-graph analysis.

 1

 10

 100

 1000

 0  100  200  300  400  500  600

# 
su

m
m

ar
ie

s

method index

toba-s

TD
SWIFT

 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700  800

# 
su

m
m

ar
ie

s

method index

javasrc-p

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500

# 
su

m
m

ar
ie

s

method index

antlr

Figure 5: Number of top-down summaries computed for each method by TD and SWIFT for three different benchmarks. The X-axis represents
indices of methods sorted by the number of summaries. The Y-axis, which uses log scale, represents the number of summaries.

6. Empirical Evaluation
This section empirically evaluates SWIFT. Section 6.1 describes
our experiment setup. Section 6.2 compares SWIFT to conventional
top-down and bottom-up approaches, called TD and BU, respec-
tively. Section 6.3 shows the effect of varying thresholds k and θ.
6.1 Experimental Setup
We implemented SWIFT for building hybrid interprocedural analy-
ses for Java bytecode using the Chord program analysis platform.
The top-down part of the framework is based on the tabulation al-
gorithm [14] while the bottom-up part is based on the relational
analysis with pruning described in Section 3.

For concreteness, we built an interprocedural type-state analysis
using SWIFT. Unlike the type-state analysis from Section 3, it
allows tracking access path expressions formed using variables and
fields (upto two), such as v.f and v.f.g. By tracking more forms of
access path expressions and handling field updates more precisely,
the type-state analysis implemented is more precise but also more
difficult to scale than the simplified one in Section 3.

We obtained the baseline TD and BU type-state analyses by
switching off the bottom-up part and the top-down part, respec-
tively, in SWIFT. Throughout this section, a top-down summary
means a pair of input-output abstract states (σ, σ′) computed for
a method by TD or the top-down part of SWIFT. A bottom-up sum-
mary is a pair (r, φ) computed for a method either by BU or the
bottom-up part of SWIFT, such that r is an abstract relation and φ
the set of input abstract states to which it applies.

We compared SWIFT with TD and BU on 12 real-world Java
programs shown in Table 1. The programs and type-state properties
are from the Ashes Suite and the DaCapo Suite. All experiments
were done using Oracle HotSpot JVM 1.6.0 on Linux machines
with 3.0GHz processors and 16GB memory per JVM process.
6.2 Performance of SWIFT vs. Baseline Approaches
Table 2 shows the running time and the total number of top-down
and bottom-up summaries computed by SWIFT and the baseline
approaches on each benchmark. For SWIFT, we set the threshold on
the number of top-down summaries to trigger bottom-up analysis

to five (i.e., k=5) and limited to keeping a single case in the pruned
bottom-up analysis (i.e., θ=1), which we found optimal overall.

SWIFT successfully finished on all benchmarks and outper-
formed both TD and BU significantly on most benchmarks, while
TD and BU only finished on a subset of the benchmarks.

SWIFT vs. TD. SWIFT significantly boosted the performance of
the type-state analysis over TD, achieving speedups of 4X–59X
for most benchmarks. Moreover, for the largest three benchmarks,
SWIFT only took under seven minutes each, whereas TD ran out
of memory. Besides running time, the table also shows the total
number of top-down summaries computed by the two approaches.
SWIFT avoided computing over 95% of the summaries computed
by TD for most benchmarks.

Figure 5 shows the number of top-down summaries computed
for each method by the two approaches. The Y-axis represents the
number of summaries using log scale and the X-axis lists the meth-
ods sorted by the number of summaries. A point on the X-axis does
not necessarily denote the same method for both approaches since
they may differ in the sorted order. The graphs show that SWIFT
greatly reduces the numbers of top-down summaries, keeping them
close to the threshold (k = 5) for most methods. It shows that the
pruned bottom-up analysis successfully finds the dominating case.
We inspected the top-down summaries of some methods and found
that, for most of the inspected methods, the identity function with
a certain precondition was the dominating case.

SWIFT vs. BU. BU only finished on our two smallest bench-
marks. Compared with TD, BU is much harder to scale due to the
exponential case splitting and expensive summary instantiation, es-
pecially for an analysis like type-state analysis, which tracks non-
trivial aliasing information. Even on these two benchmarks, SWIFT
achieved speedups of 9X–118X over BU. Besides running time, Ta-
ble 2 also shows the total number of bottom-up summaries com-
puted in both approaches. SWIFT avoided computing 87% to 96%
of the bottom-up summaries that BU computed.
6.3 Effect of Varying SWIFT Thresholds
Effect of Varying k. Table 3 shows the total running time and the

number of top-down summaries generated for one of our largest



running time (m=min., s=sec.) # summaries (k=thousands)

TD BU SWIFT
speedup speedup top-down bottom-up
over TD over BU TD SWIFT drop BU SWIFT drop

jpat-p 0.91s 15.62s 1.79s 0.5X 9X 6.5k 1.7k 74% 2.3k 0.3k 87%
elevator 1.59s 6m35s 3.36s 0.5X 118X 8.4k 2.9k 66% 12k 0.5k 96%
toba-s 20.4s timeout 5s 4X - 68.5k 3.5k 95% - 0.6k -
javasrc-p 4m44s timeout 12s 24X - 319k 5k 98% - 0.7k -
hedc 22m57s timeout 41s 33X - 891k 11k 99% - 1.8k -
antlr 35m28s timeout 36s 59X - 1,357k 13k 99% - 2k -
luindex 43m26s timeout 1m53s 23X - 2,260k 20k 99% - 3k -
lusearch 31m39s timeout 1m52s 17X - 1,922k 21k 99% - 3.5k -
kawa-c 23m52s timeout 1m6s 22X - 1,661k 19k 99% - 3k -
avrora timeout timeout 6m35s - - - 91k - - 5.4k -
rhino-a timeout timeout 6m39s - - - 16k - - 2k -
sablecc-j timeout timeout 4m25s - - - 26k - - 4.8k -

Table 2: Running time and total number of summaries computed by SWIFT and the baseline approaches TD and BU. Experiments that timed
out either ran out of memory or failed to terminate in 24 hours.

benchmarks avrora, using seven different values of k. The trend
is similar for the other benchmarks. According to this table, k = 50
is optimal in terms of the running time while k = 10 is optimal in
the number of top-down summaries generated.

If we fix the running time of bottom-up analysis, the perfor-
mance of SWIFT can be approximated by the number of times the
top-down analysis is performed on each method, which in turn can
be captured by the number of top-down summaries generated. On
one hand, setting k too high generates too many top-down sum-
maries before the bottom-up analysis is triggered on the method.
As Table 3 shows, the numbers of top-down summaries generated
for each method grow dramatically from k = 10 to k = 500. On
the other hand, setting k too low triggers the bottom-up analysis
too early, resulting in failure to predict the dominating case in the
top-down analysis. For example, using k = 2 and k = 5 generates
more top-down summaries than using k = 10.

If we consider the running time of bottom-up analysis, there is a
tradeoff between the time spent on running bottom-up analysis and
the time saved by avoiding repeatedly running top-down analysis
on the same method. Generally, bottom-up analysis is much more
expensive than the top-down analysis, even under our setting using
pruning. The run using k = 10 thus consumes more time than
that using k = 50 by running bottom-up analysis too frequently.
However, the run using k = 50 is faster than k = 100, as the
time it saves on the top-down analysis compensates for the time
spent on running the bottom-up analysis. The run using k= 2 not
only invokes the bottom-up analysis too often but also the top-down
analysis, due to its failure to predict the dominating case. It is thus
even slower than the run using k=200.

Effect of Varying θ. Table 4 shows the effect of varying θ,
the maximum number of cases to be kept by the pruned bottom-up
analysis. Using θ = 2 reduced the number of top-down summaries
computed by SWIFT, as expected, but on most benchmarks overall
performance was worse since the overhead incurred in the bottom-
up analysis offset the savings of applying bottom-up summaries in
the top-down analysis. The only exception was the run on one of
our largest benchmarks avrora, which received a slight boost in
running time and a large drop in top-down summaries generated
when increasing θ from 1 to 2. As shown in Table 3, using k = 5
triggers the bottom-up analysis too early, resulting in failure to
predict the dominating case in the top-down analysis when just one
case is tracked. Using θ=2 gives the bottom-up analysis additional
budget and reduces the risk of pruning away the dominating case.

7. Related Work
Sharir and Pnueli [19] present the call-strings and functional ap-
proaches to interprocedural analysis. The call-strings approach is a
particular kind of top-down approach in which procedure contexts

k running time # summaries
(m=min., s=sec.) (in thousands)

2 28m4s 372
5 6m35s 91

10 4m5s 68
50 2m37s 280

100 4m9s 543
200 22m7s 1,150
500 48m49s 2,663

Table 3: Running time and total number of top-down summaries
computed by SWIFT using different k on avrora with θ=1.

running time # summaries
(m=min., s=sec.) (in thousands)
θ = 1 θ = 2 θ = 1 θ = 2

toba-s 5s 6s 3.5 3.5
javasrc-p 12s 20s 5 4.6
hedc 41s 1m36s 11 10
antlr 36s 1m18s 13 13
luindex 1m53s 3m48s 20 20
lusearch 1m52s 3m48s 21 20.5
kawa-c 1m6s 2m10s 19 18
avrora 6m35s 6m20s 91 39
rhino-a 6m39s 12m28s 16 16
sablecc-j 4m25s 13m28s 26 22

Table 4: Running time and total number of top-down summaries
computed by SWIFT using different θ with k = 5.

are distinguished using call strings. They present two variants of
the functional approach: one that uses a symbolic representation of
summaries, which may be viewed as a bottom-up approach, and an-
other that uses an explicit representation, which may be viewed as a
top-down approach where procedure contexts are abstract states as
opposed to call strings. They provide an iterative fixpoint algorithm
for the functional approach variant that uses an explicit represen-
tation, but it may use exponential space. Reps et al. [14] identify
a representation for the class of IFDS dataflow analysis problems
that takes quadratic space and can be computed in cubic time. Sagiv
et al. [17] generalize the IFDS problem into IDE problem, which
takes quadratic space and can be computed in cubic time, if there
exits efficient representations for the transfer functions.

Our work differs from the above works as follows. First, even
when there is a compact representation of procedure summaries
with polynomial guarantee, our approach aims at empirically out-
performing this guarantee. Second, we do not require a compact
representation of transfer functions or procedure summaries. For
instance, a summary of our bottom-up type-state analysis is a set
of tuples, whose size can be exponential in the number of program
variables. The above works do not attempt to avoid such blowup,



whereas we provide a recipe for it, via the pruning operator and the
interaction between the top-down and bottom-up versions.

Jeannet et al. [12] propose an analysis to generate relational
summaries for shape properties in three-valued logic. Yorsh et al.
[22] present a logic to relate reachable heap patterns between pro-
cedure inputs and outputs. These works involve relational analyses,
but they do not focus on controlling the amount of case splitting in a
bottom-up relational analysis, as we do with a pruning operator. For
instance, Jeannet et al.’s relational shape analysis works top-down,
and computes summaries for given incoming abstract states, unlike
our bottom-up summaries that can be applied to unseen states. The
issue of case splitting does not arise in their setting.

Bottom-up analyses have been studied theoretically in [6, 11],
but are less popular in practice than top-down analyses, because
of the challenges in designing and implementing them efficiently.
Notable exceptions are analyses about pointer and heap reasoning,
such as those for may-alias information [10, 13, 18, 20], must-alias
information [4, 7] and shape properties [3, 10], where the analyses
typically use symbolic abstract domains.

In contrast, top-down analysis [5, 14, 19] is much better under-
stood, and generic implementations are available in analysis frame-
works such as Chord, Soot, and Wala. Various approaches have
been proposed to scale top-down analyses. Rinetzky et al. [15, 16]
improve summary reuse in heap reasoning by separating the part of
the heap that can be locally changed by the procedure from the rest
of the heap. Yorsh et al. [23] generalize top-down summaries by re-
placing explicit summaries with symbolic representations, thereby
increasing reuse without losing precision. Ball et al. [2] generalize
highly reusable summaries by encoding the transfer functions us-
ing BDDs. Our work provides a new technique to scale top-down
analysis by tightly integrating it with a bottom-up counterpart.

Others have hinted at the existence of dominating cases in
bottom-up analyses. The shape analysis of Calcagno et al. [3] as-
sumes that a dereferenced heap cell at a program point pc of a pro-
cedure f is usually not aliased with any of the previously accessed
cells in the same procedure, unless f creates such an aliasing ex-
plicitly before reaching pc. The analysis, then, focuses on initial
states to procedures that are considered common based on this as-
sumption, and thereby avoids excessive case splitting. Bottom-up
alias analyses [21] likewise assume non-aliasing between proce-
dure arguments. These assumptions are not robust since they con-
jecture a property of common initial states to procedures without
actually seeing any of them. Our hybrid analysis suggests a way
to overcome this issue by collecting samples from the top-down
analysis and identifying common cases based on these samples.

An orthogonal approach for scaling interprocedural analysis
is parallelization. Bottom-up analyses are easy to parallelize—
independent procedures can be analyzed in parallel—and recent
work also addresses parallelizing top-down analyses [1]. A possible
way to parallelize our hybrid approach is to modify it such that
whenever a bottom-up summary is to be computed, it spawns a
new thread to do this bottom-up analysis, and itself continues the
top-down analysis. Developing this idea further and exploring other
parallelizing strategies (such as [1]) is future work.

8. Conclusion
We proposed a new approach to scale interprocedural analysis by
synergistically combining the top-down and bottom-up approaches.
We formalized our approach in a generic framework and showed its
effectiveness on a realistic type-state analysis. Our approach holds
promise in contrast or complementation with existing techniques
to scale interprocedural analysis, including those that use domain
knowledge to increase summary reuse in top-down approaches,
and those that use sophisticated symbolic techniques to efficiently
compute and instantiate summaries in bottom-up approaches.

Acknowledgements We thank the referees for useful feedback.
This work was supported by DARPA under agreement #FA8750-
12-2-0020, NSF award #1253867, and EPSRC. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright thereon.

References
[1] A. Albarghouthi, R. Kumar, A. Nori, and S. Rajamani. Parallelizing

top-down interprocedural analyses. In PLDI, 2012.
[2] T. Ball and S. Rajamani. Bebop: a path-sensitive interprocedural

dataflow engine. In PASTE, 2001.
[3] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional

shape analysis by means of bi-abduction. J. ACM, 58(6), 2011.
[4] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference. In

POPL, 1999.
[5] P. Cousot and R. Cousot. Static determination of dynamic properties

of recursive procedures. In E. Neuhold, editor, Formal Descriptions of
Programming Concepts. North-Holland, 1978.

[6] P. Cousot and R. Cousot. Modular static program analysis. In CC,
2002.

[7] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In
PLDI, 2011.

[8] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM TOSEM, 17(2),
2008.

[9] R. Ghiya and L. Hendren. Connection analysis: A practical interpro-
cedural heap analysis for C. IJPP, 24(6), 1996.

[10] B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori. Bottom-up
shape analysis using lisf. ACM TOPLAS, 33(5), 2011.

[11] S. Gulwani and A. Tiwari. Computing procedure summaries for
interprocedural analysis. In ESOP, 2007.

[12] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach
to interprocedural shape analysis. ACM TOPLAS, 32(2), 2010.

[13] R. Madhavan, G. Ramalingam, and K. Vaswani. Modular heap analy-
sis for higher-order programs. In SAS, 2012.

[14] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, 1995.

[15] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm. A semantics
for procedure local heaps and its abstractions. In POPL, 2005.

[16] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. In SAS, 2005.

[17] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput.
Sci., 167(1&2), 1996.

[18] A. Salcianu and M. Rinard. Purity and side effect analysis for Java
programs. In VMCAI, 2005.

[19] M. Sharir and A. Pnueli. Two approaches to interprocedural data
flow analysis. In Program Flow Analysis: Theory and Applications,
chapter 7. Prentice-Hall, 1981.

[20] J. Whaley and M. Rinard. Compositional pointer and escape analysis
for Java programs. In OOPSLA, 1999.

[21] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection
using boolean satisfiability. ACM TOPLAS, 29(3), 2007.

[22] G. Yorsh, E. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A
logic of reachable patterns in linked data-structures. In FOSSACS,
2006.

[23] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise
procedure summaries. In POPL, 2008.



A. Proof of Theorem 3.1
In this appendix, we provide the proof of Theorem 3.1:

THEOREM 3.1 (Coincidence) For all Σ,Σ′, R′, if

(JCKr({id]}, ∅) = (R′,Σ′)) ∧ (Σ ∩ Σ′ = ∅),

we have that for every σ′ in S,

σ′ ∈ JCK(Σ) ⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(R′).

Our proof strategy is to define an intermediate abstract semantics
working on 2R, and to relate both non-relational and relational
semantics with this intermediate one. Our theorem will follow from
these relationships.

A.1 Intermediate Abstract Semantics
The intermediate abstract semantics uses the domain 2R with the
subset order, and has the following abstract semantics:

JCKi : 2R → 2R

JcKi(R) = rtrans(c)†(R)

JC1 + C2Ki(R) = JC1Ki(R) ∪ JC2Ki(R)

JC1;C2Ki(R) = JC2Ki(JC1Ki(R))

JC∗Ki(R) = lfix (λR′.Σ ∪ JCKi(R′)).

Although this semantics reuses R and rtrans from the relational
analysis, it does not prune any abstract relations, and it uses the
standard subset order and defines the abstract meaning of C∗ using
the standard least fixpoint operator lfix.

THEOREM A.1. For all commands C, sets Σ of abstract states in
S and abstract states σ′,

σ′ ∈ JCK(Σ) ⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(JCKi({id]})).

Proof. For all R and Σ, we define

apply(R,Σ) = {σ′ | ∃σ ∈ Σ : (σ, σ′) ∈ γ†(R)}.

The theorem can be paraphrased to the following equation:

JCK(Σ) = apply(JCKi({id]}),Σ).

We prove the following slightly stronger property than this para-
phrase of the theorem:

CORRESPONDENCE PROPERTY: For all commands C, sets
of abstract states Σ, and sets of abstract relations R,

JCK(apply(R,Σ)) = apply(JCKi(R),Σ)

By instantiating R with {id]}, we can derive the theorem from this
property.

Our proof of the correspondence property uses the induction
on the structure of C. The case of primitive commands follows
from our requirement on rtrans. We handle the remaining cases
separately. To do so, choose R,Σ.

The case C = C1;C2 is proved as follows:

JC1;C2K(apply(R,Σ)) = JC2K(JC1K(apply(R,Σ)))

= JC2K(apply(JC1Ki(R),Σ))

= apply(JC2Ki(JC1Ki(R)),Σ)

= apply(JC1;C2Ki(R),Σ).

The first and last equalities just use the definitions of JC1;C2K
and JC1;C2Ki. The second and third equalities hold because of the
induction hypothesis on C1 and C2.

The next case is C = C1 + C2, which we prove below:

JC1 + C2K(apply(R,Σ))

= JC1K(apply(R,Σ)) ∪ JC2K(apply(R,Σ))

= apply(JC1Ki(R),Σ) ∪ apply(JC2Ki(R),Σ)

= apply(JC1Ki(R) ∪ JC2Ki(R),Σ)

= apply(JC1 + C2Ki(R),Σ).

The first and last equalities are just the unrolling and rolling of
the defining clauses in the two semantics. The second equality
holds because of the induction hypothesis. The third equality holds
because apply(−,Σ) preserves the union operation.

The remaining case is C = C∗1 . Let F and G be functions
defined by:

F = λΣ′. (apply(R,Σ) ∪ JC1K(Σ′)),

G = λR′. R ∪ JC1Ki(R′).

And let R be the following relation between sets of abstract states
and those of abstract relations:

(Σ′, R′) ∈ R ⇐⇒ apply(R′,Σ) = Σ′.

Then,

JC∗1 K(apply(R,Σ)) = lfixF ∧ JC∗1 Ki(R) = lfixG.

It is easy to show that (∅, ∅) ∈ R, and for all families {(Ri,Σi)}i∈I ,

(∀i ∈ I. (Ri,Σi) ∈ R)⇒ (
⋃
i∈I

Ri,
⋃
i∈I

Σi) ∈ R.

In other words, R preserves arbitrary union. Hence, to prove this
case of C = C∗1 , it is sufficient to show that

(Σ′, R′) ∈ R ⇒ (F (Σ′), G(R′)) ∈ R, (1)

because this implies

(lfixF, lfixG) = (
⋃
n∈N

Fn(∅),
⋃
n∈N

Gn(∅)) ∈ R

and unpacking the definition of R here gives the correspondence.
Finally, we discharge the final proof obligation, i.e., the implication
in (1):

(Σ′, R′) ∈ R
⇒ (JC1K(Σ′), JC1Ki(R′)) ∈ R
⇒ ((apply(R,Σ), R) ∈ R) ∧ ((JC1K(Σ′), JC1Ki(R′)) ∈ R)

⇒ (apply(R,Σ) ∪ JC1K(Σ′), R ∪ JC1Ki(R′)) ∈ R
⇒ (F (Σ′), G(R′)) ∈ R.

The first implication follows from the induction hypothesis, the
second holds because apply(R,Σ) and R are related by R, and
the third equality uses the fact thatR preserves the union. �

A.2 Relationship between Intermediate Abstract Semantics
and Relational Analysis

We prove that the relational analysis computes the same results as
the intermediate abstract semantics, as long as we filter out some
abstract relations as indicated by the theorem below:

LEMMA A.2. For all primitive commands c, and sets of abstract
relations R, and those of abstract states Σ,

excl(rtrans(c)†(excl(R,Σ)),Σ) = excl(rtrans(c)†(R),Σ).

Proof. By the definition of excl, we have that

excl(R,Σ) ⊆ R.



Since both rtrans(c)†(−) and excl(−,Σ) are monotone with re-
spect to the subset order, the LHS of the equation in this lemma
should be included in the RHS of the equation. It remains to show
the other inclusion. Pick r ∈ excl(rtrans(c)†(R),Σ). Then,

(dom(r) 6⊆ Σ) ∧ (∃r′ ∈ R : r ∈ rtrans(c)(r′)). (2)

Let r′ ∈ R be the witness in the second conjunct. We will show

dom(r′) 6⊆ Σ. (3)

This would imply r′ ∈ excl(R,Σ) and, hence, the desired mem-
bership of r to the LHS of the equation in the lemma. Because of
the first conjunct in (2), there exist σ and σ′ such that

(σ, σ′) ∈ γ(r) ∧ σ 6∈ Σ.

But r ∈ rtrans(c)(r′), so the requirement on rtrans(c) gives

∃σ0 : (σ, σ0) ∈ γ(r′) ∧ σ ∈ trans(c)(σ0).

Recall σ 6∈ Σ. Thus, the first conjunct gives dom(r′) 6⊆ Σ. �

THEOREM A.3. For every R,R′ ⊆ R and Σ,Σ′ ⊆ S, if

(JCKr ◦ clean)(R,Σ) = (R′,Σ′)

we have that R′ = excl(JCKi(R),Σ′).

Proof. We prove the theorem by induction on the structure of C.
Pick R,R′,Σ,Σ′ such that

(R′,Σ′) = (JCKr ◦ clean)(R,Σ).

We first prove the base case that C is a primitive command c:

(R′,Σ′) = (JcKr ◦ clean)(R,Σ)

⇒ (R′,Σ′) = (prune ◦ clean)(rtrans(c)†(excl(R,Σ)),Σ)

⇒ (R′,Σ′) = (prune ◦ clean)(rtrans(c)†(R),Σ)

⇒ (R′,Σ′) = prune(excl(rtrans(c)†(R),Σ),Σ)

⇒ R′ = excl(excl(rtrans(c)†(R),Σ),Σ′)

⇒ R′ = excl(rtrans(c)†(R),Σ′)

⇒ R′ = excl(JcKi(R),Σ′).

The first, third and sixth implications are just the unpacking and
packing of the definitions of clean, JcKr and JcKi. The second holds
because of Lemma A.2, the fourth follows from the conditions used
for defining the pruning operator, and the fifth implication follows
from the subset relationship Σ ⊆ Σ′.

The next case is that C = C1 + C2. For i ∈ {1, 2}, let

(R′i,Σ
′
i) = (JCiKr ◦ clean)(R,Σ) ∧ R′′i = JCiKi(R).

Then, by the induction hypothesis, we have that for all i ∈ {1, 2},

R′i = excl(R′′i ,Σ
′
i). (4)

Using this equality, we prove the case as follows:

(R′,Σ′) = (JC1 + C2Kr ◦ clean)(R,Σ)

⇒ (R′,Σ′) = prune(JC1Kr(clean(R,Σ)) t JC2Kr(clean(R,Σ)))

⇒ (R′,Σ′) = prune(excl(R′1 ∪R′2,Σ′1 ∪ Σ′2),Σ′1 ∪ Σ′2)

⇒ R′ = excl(excl(R′1 ∪R′2,Σ′1 ∪ Σ′2),Σ′)

⇒ R′ = excl(R′1 ∪R′2,Σ′)
⇒ R′ = excl(excl(R′′1 ,Σ

′
1) ∪ excl(R′′2 ,Σ

′
2),Σ′)

⇒ R′ = excl(R′′1 ∪R′′2 ,Σ′)
⇒ R′ = excl(JC1 + C2Ki(R),Σ′).

The first and second implications are the unrolling of the definitions
of JC1 + C2Kr and the join operation, the third follows from the

defining condition for the pruning operator, the fourth and sixth
implications hold because Σ′i is a subset of Σ′, and the last holds
because of the definition of JC1 + C2Ki. The only remaining step
is the fifth implication, and it uses the equality in (4) above.

The third case is that C = C1;C2. Let (R′1,Σ
′
1) be (JC1Kr ◦

clean)(R,Σ). We prove the case as follows:

(R′,Σ′) = (JC1;C2Kr ◦ clean)(R,Σ)

⇒ (R′,Σ′) = JC2Kr((JC1Kr ◦ clean)(R,Σ))

⇒ (R′,Σ′) = JC2Kr(R′1,Σ
′
1)

⇒ (R′,Σ′) = JC2Kr(excl(JC1Ki(R),Σ′1),Σ′1)

⇒ (R′,Σ′) = (JC2Kr ◦ clean)(JC1Ki(R),Σ′1)

⇒ R′ = excl(JC2Ki(JC1Ki(R)),Σ′)

⇒ R′ = excl(JC1;C2Ki(R),Σ′).

The first, second, fourth and sixth implications follow from the
definitions of JC1;C2Kr , (R′1,Σ

′
1), clean and JC1;C2Ki. The third

and fifth implications use induction hypothesis on C1 and C2,
respectively.

The remaining case is that C = C∗1 . Let

F (R0,Σ0) = prune((R0,Σ0) t JCKr(R0,Σ0)),

G(R0) = R ∪ JCKi(R0).

Also, define two sequences: for every n ≥ 0,

(R′n,Σ
′
n) = Fn(clean(R,Σ)), R′′n = Gn(R).

Then, there exists m ≥ 0 such that

JC∗1 Kr(clean(R,Σ)) = (R′m,Σ
′
m), JC∗1 Ki(R) = R′′m.

Hence, it is sufficient to prove that for every n ≥ 0,

R′n = excl(R′′n,Σ
′
n). (5)

We do this by induction on n. The case of n = 0 is immediate. To
prove the inductive case, we assume that the equality in (5) holds
for n, and let

(Rn,Σn) = JC1Kr(R′n,Σ
′
n).

We prove the inductive case as follows:

(R′n+1,Σ
′
n+1) = prune((R′n,Σ

′
n) t JC1Kr(R′n,Σ

′
n))

⇒ (R′n+1,Σ
′
n+1) = prune((R′n,Σ

′
n) t (Rn,Σn))

⇒ (R′n+1,Σ
′
n+1) = (prune ◦ clean)(R′n ∪Rn,Σ′n ∪ Σn)

⇒ (R′n+1,Σ
′
n+1) = prune(excl(R′n ∪Rn,Σ′n ∪ Σn),Σ′n ∪ Σn)

⇒ R′n+1 = excl(R′n ∪Rn,Σ′n+1)

⇒ R′n+1 = excl(R′n ∪ excl(JC1Ki(R′′n),Σn),Σ′n+1)

⇒ R′n+1 = excl(R′n ∪ JC1Ki(R′′n),Σ′n+1)

⇒ R′n+1 = excl(R′n ∪ JC1Ki(R′′n),Σ′n+1) ∪ excl(R,Σ′n+1)

⇒ R′n+1 = excl(R′n ∪R ∪ JC1Ki(R′′n),Σ′n+1)

⇒ R′n+1 = excl(R′n ∪R′′n+1,Σ
′
n+1)

⇒ R′n+1 = excl(R′′n+1,Σ
′
n+1).

The first, second and third implications use the definitions of
(Rn,Σn), the join and the clean operation, respectively. The fourth
uses the defining condition for the pruning operator and the subset
relationship Σ′n∪Σn ⊆ Σ′n+1. The fifth implication holds because
of the induction hypothesis, and the sixth is based on the subset
relationship between Σn and Σ′n+1. The seventh implication holds
because

clean(R,Σ) = (R′0,Σ
′
0) v (R′n+1,Σ

′
n+1).



The eighth uses the distributivity of excl(−,Σ′n+1) over union,
and the ninth is the packing of the definition of R′′n+1. The last
implication holds because

R′n = excl(R′′n,Σ
′
n) ⊆ R′′n ⊆ R′′n+1.

�

A.3 Theorem 3.1 as a Corollary of Theorems A.1 and A.3
We will now prove Theorem 3.1 using Theorems A.1 and A.3.
Consider Σ,Σ′, R′ such that

(JCKr({id]}, ∅) = (R′,Σ′)) ∧ (Σ ∩ Σ′ = ∅).
We should prove that for every σ′ in S,

σ′ ∈ JCK(Σ) ⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(R′).
We discharge this proof obligation as follows:

σ′ ∈ JCK(Σ) ⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(JCKi({id]}))
⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(excl(JCKi({id]}),Σ′))
⇐⇒ ∃σ ∈ Σ : (σ, σ′) ∈ γ†(R′).

The first equivalence follows from Theorem A.1, and the second
holds because Σ and Σ′ do not overlap and the source abstract state
σ in the pair (σ, σ′) is in Σ. The last equivalence is valid because
of Theorem A.3.

B. Kill-Gen Analysis
In this appendix, we explain how to synthesize a bottom-up analysis
from the top-down analysis, for a limited but useful class of anal-
yses with transfer functions of a specific form, namely, so-called
“kill/gen” dataflow analyses.

B.1 Top-Down Analysis
Our construction applies to a particular kind of top-down analysis
(S, trans) where transfer functions of primitive commands have
a simple form. To describe this form formally, we assume two
domains associated with the analysis (S, trans).

1. A finite distributive lattice (∆,⊥,>,t,u) with two operations:

⊗,⊕ : S×∆→ S.

Intuitively, elements of ∆ represent deltas on abstract states,
i.e., changes to be made to abstract states. The ⊗ operation
incorporates such changes by taking intersection, and ⊕ does
the same by taking the union. We require that these operations
satisfy the conditions below: for all σ ∈ S and δ, δ′ ∈ ∆,

(σ ⊗ d)⊗ d′ = σ ⊗ (d u d′) σ ⊗> = σ

(σ ⊕ d)⊕ d′ = σ ⊕ (d t d′) σ ⊗⊥ = σ

(σ ⊕ d)⊗ d′ = (σ ⊗ d′)⊕ (d u d′)
The first two conditions say that ⊗ and ⊕ are the right monoid
actions with respect to (>,u) and (⊥,t), respectively. The last
condition expresses a form of distributivity of ⊗ over ⊕.

2. A collection A of unary predicates on S, i.e., functions of type

S→ {true, false}.
We require that A contain the always-true predicate φtrue, and
be closed under conjunction: for all φ1, φ2 ∈ A, there exists
φ ∈ A such that

∀σ ∈ S. (φ(σ) = true ⇐⇒ φ1(σ) = φ2(σ) = true).

We write φ(σ) instead of φ(σ) = true, when the omission can
be easily recognized.

DEFN B.1. A function f from S to 2S is simple iff

f(σ) = {σi | φi(σ)∧ i ∈ I} ∪ {(σ⊗ δj)⊕ δ′j | φ′j(σ)∧ j ∈ J}.

Here I, J are fixed finite sets of indices, σi is an abstract state,
δj , δ

′
j are elements from ∆, and φi, φ′j are predicates in A.

DEFN B.2. The set A of predicates is wp-closed iff

∀δ, δ′ ∈ ∆. ∀φ ∈ A. (λσ. φ((σ ⊗ δ)⊕ δ′)) ∈ A.

DEFN B.3. The analysis (S, trans) is simple when trans(c) is
simple for every primitive command c.

LEMMA B.4. If (S, trans) is simple and A is wp-closed, then
λσ. JCK({σ}) is simple for every command C.

Proof. We prove the lemma by induction on the structure of C.
When C is a primitive command c, we has the desired weak

input dependency by the assumption that the analysis has weak
input dependency.

The next case is that C = C1;C2. Let f = λσ. JC1K({σ}) and
g = λσ. JC2K({σ}). By induction hypothesis, there exist

I, J,K,L, δi, δ
′
j , εk, ε

′
l, σi, σ

′
k, φi, φ

′
j , ψk, ψ

′
l

such that

f(σ) = {σi | φi(σ) ∧ i ∈ I} ∪ {(σ ⊗ δj)⊕ δ′j | φ′j(σ) ∧ j ∈ J},
g(σ) = {σ′k | ψk(σ) ∧ k ∈ K} ∪ {(σ ⊗ εl)⊕ ε′l | ψ′l(σ) ∧ l ∈ L}.

Then, JC1;C2K({σ}) =
⋃
{g(σ′) | σ′ ∈ f(σ)}. Since JC1;C2K

preserves set union, it can be expressed as follows:

JC1;C2K({σ}) =

{σ′k | φi(σ) ∧ ψk(σi) ∧ (i, k) ∈ I ×K} ∪
{σ′k | φ′j(σ) ∧ ψk((σ ⊗ δj)⊕ δ′j) ∧ (j, k) ∈ J ×K} ∪
{(σi ⊗ εl)⊕ ε′l | φi(σ) ∧ ψ′l(σi) ∧ (i, l) ∈ I × L} ∪
{(((σ ⊗ δj)⊕ δ′j)⊗ εl)⊕ ε′l |

φ′j(σ) ∧ ψ′l((σ ⊗ δj)⊕ δ′j) ∧ (j, l) ∈ J × L}.

Since A is wp-closed and

(((σ ⊗ δj)⊕ δ′j)⊗ εl)⊕ ε′l = (σ ⊗ (δj u εl))⊕ (δ′j u εl t εl),

the above expression JC1;C2K shows that λσ. JC1;C2K({σ}) is
simple.

We move on to the case that C = C1 + C2. Let f =
λσ. JC1K({σ}) and g = λσ. JC2K({σ}). By induction hypothe-
sis, there are

I, J,K,L, δi, δ
′
j , εk, ε

′
l, σi, σ

′
k, φi, φ

′
j , ψk, ψ

′
l,

such that

f(σ) = {σi | φi(σ) ∧ i ∈ I} ∪ {(σ ⊗ δj)⊕ δ′j | φ′j(σ) ∧ j ∈ J},
g(σ) = {σ′k | ψk(σ) ∧ k ∈ K} ∪ {(σ ⊗ εl)⊕ ε′l | ψ′l(σ) ∧ l ∈ L}.

Using the entities in the above expressions, we represent JC1 + C2K
as follows:

JC1 + C2K({σ}) =

{σi | φi(σ) ∧ i ∈ I} ∪ {σ′k | ψ′k(σ) ∧ k ∈ K} ∪
{(σ ⊗ δj)⊕ δ′j | φ′j(σ) ∧ j ∈ J} ∪
{(σ ⊗ εl)⊕ ε′l | φ′l(σ) ∧ l ∈ L}.

Hence, λσ. JC1 + C2K({σ}) is simple.
The remaining case is that C = C∗1 . Define a function F :

F (T ) = λΣ.Σ ∪ (JC1K ◦ T )(Σ).



where T is a monotone function on 2S preserving set union and
such T ’s are ordered pointwise. It is well-known that

JCK = lfixF.

Call a function T : 2S → 2S simple if T preserves set union and
λσ. T ({σ}) is simple. Then, by the reasoning similar to the one for
the sequencing case above, we can show that F preserves simplic-
ity. Also, the set of simple functions on 2S is closed under the join
operation, which can be proved as in the case of nondeterministic
choice. From these two results follows that the least fixpoint of F
is also simple. �

B.2 Bottom-Up Analysis
The main feature of the top-down analysis described above is that
the transfer function of each primitive command has a particular
form. This feature allows us to construct an equivalent bottom-up
analysis that treats the incoming abstract state symbolically.

Suppose we are given a top-down analysis (S, trans,∆,⊗,⊕,A).
We build a corresponding bottom-up analysis (R, rtrans, id], apply)
as follows:

1. We define a set T:
T = ∆×∆.

Elements t = (δ, δ′) in T describe transformers for abstract
states. We use γ to explain the meaning formally:

γ : T→ (S→ S) γ(δ, δ′)(σ) = (σ ⊗ δ)⊕ δ′.

2. Using T, we construct the domain R of abstract relations

R = (S ∪ T)× A.
Then, we define the function apply, which provides the formal
meaning to these abstract relations in terms of nondeterministic
functions on S:

apply((σ0, φ), σ) = {σ0 | φ(σ)},
apply((t, φ), σ) = {γ(t)(σ) | φ(σ)}.

3. We use the following element in R as the abstract identity
relation:

id] = ((>,⊥), φtrue).

This meets the requirement for id]:

apply(id], σ) = {(σ ⊗>)⊕⊥ | φtrue(σ)} = {σ}.

4. Finally, we specify a transfer function for each primitive com-
mand c:

rtrans(c) : R→ 2R.
Let the transfer function for c in the top-down analysis have the
following shape:

trans(c)(σ) = {σi | φi(σ) ∧ i ∈ I}
∪ {(σ ⊗ δj)⊕ δ′j | φ′j(σ) ∧ j ∈ J}.

The corresponding transfer function rtrans is given as follows:

rtrans(c)(σ, φ) = {(σi, φ) | φi(σ) ∧ i ∈ I}
∪ {((σ ⊗ δj)⊕ δ′j , φ) | φ′j(σ) ∧ j ∈ J}

rtrans(c)((δ, δ′), φ) =

{(σi, ψ ∧ φ) | i ∈ I ∧ ψ = λσ. φi((σ ⊗ δ)⊕ δ′)}
∪ {((δ u δj , (δ′ u δj) t δ′j), ψ ∧ φ)

| j ∈ J ∧ ψ = λσ. φ′j((σ ⊗ δ)⊕ δ′)}.

LEMMA B.5. For all primitive commands c, sets of abstract states
Σ, and sets of abstract relations R,

trans(c)†(apply†(R,Σ)) = apply†(rtrans(c)†(R),Σ).

Proof. Pick a primitive command c. It suffices to prove that for all
abstract states σ and abstract relations r.

trans(c)†(apply(r, σ)) = apply†(rtrans(c)(r), {σ}). (6)

Assume that the transfer function for c have the following form:

trans(c)(σ) = {σi | φi(σ) ∧ i ∈ I} ∪
{σ ⊗ δj ⊕ δ′j | φ′j(σ) ∧ j ∈ J}.

Then, by the definition of rtrans(c),

rtrans(c)(σ, φ) = {(σi, φ) | φi(σ) ∧ i ∈ I} ∪
{(σ ⊗ δj ⊕ δ′j , φ) | φ′j(σ) ∧ j ∈ J}

rtrans(c)((δ, δ′), φ) =

{(σi, λσ.φi(σ ⊗ δ ⊕ δ′) ∧ φ(σ)) | i ∈ I} ∪
{((δ u δj , δ′ u δj t δ′j), λσ.φ′j(σ ⊗ δj ⊕ δ′j) ∧ φ(σ)) | j ∈ J}.

First, we consider the case that r in (6) is a pair (σ′, φ′) ∈ S×A,
and prove the lemma as follows:

trans(c)†(apply((σ′, φ′), σ))

= trans(c)†({σ′ | φ′(σ)})
= {σi | φi(σ′) ∧ φ′(σ) ∧ i ∈ I} ∪
{(σ′ ⊗ δj)⊕ δ′j | φ′j(σ′) ∧ φ′(σ) ∧ j ∈ J}

= apply†({(σi, φ′) | φi(σ′) ∧ i ∈ I}, {σ}) ∪
apply†({((σ′ ⊗ δj)⊕ δ′j , φ′) | φ′j(σ′) ∧ j ∈ J}, {σ})

= apply†(rtrans(c)(σ′, φ′), {σ}).
The first and the third equalities hold because of the definition of
apply. The second equality is just the unrolling of the definition of
trans(c). The last equality uses both the preservation of union by
apply† and the definition of rtrans(c).

Next, we handle the other case that r is ((δ, δ′), φ′):

trans(c)†(apply((δ, δ′), φ′), σ))

= trans(c)†({σ ⊗ δ ⊕ δ′ | φ′(σ)})
= {σi | φi(σ ⊗ δ ⊕ δ′) ∧ φ′(σ) ∧ i ∈ I} ∪
{(σ ⊗ δ ⊕ δ′)⊗ δj ⊕ δ′j | φ′j(σ ⊗ δ ⊕ δ′) ∧ φ′(σ) ∧ j ∈ J}

= {σi | φi(σ ⊗ δ ⊕ δ′) ∧ φ′(σ) ∧ i ∈ I} ∪
{σ ⊗ (δ u δj)⊕ (δ′ u δj t δ′j) |

φ′j(σ ⊗ δ ⊕ δ′) ∧ φ′(σ) ∧ j ∈ J}
= apply†({(σi, λσ.φi(σ ⊗ δ ⊕ δ′) ∧ φ′(σ)) | i ∈ I}, {σ}) ∪

apply†({σ ⊗ (δ u δj)⊕ (δ′ u δj t δ′j) |
φ′j(σ ⊗ δ ⊕ δ′) ∧ φ′(σ) ∧ j ∈ J}, {σ})

= apply†(rtrans(c)((δ, δ′), φ′), {σ}).
The first and fourth equalities hold because of the definition of
apply, and the second equality unrolls the definition of trans(c)†.
The third equality uses the properties assumed for the ⊗ and ⊕
operators. The fifth equality holds because of the preservation of
the set union by apply† and the definition of rtrans(c). �


