
From Symptom to Cause: Localizing Errors in
Counterexample Traces

Thomas Ball
Microsoft Research

tball@microsoft.com

Mayur Naik
∗

Purdue University

mnaik@cs.purdue.edu

Sriram K. Rajamani
Microsoft Research

sriram@microsoft.com

ABSTRACT
There is significant room for improving users’ experiences
with model checking tools. An error trace produced by a
model checker can be lengthy and is indicative of a symptom
of an error. As a result, users can spend considerable time
examining an error trace in order to understand the cause
of the error. Moreover, even state-of-the-art model check-
ers provide an experience akin to that provided by parsers
before syntactic error recovery was invented: they report a
single error trace per run. The user has to fix the error and
run the model checker again to find more error traces.

We present an algorithm that exploits the existence of
correct traces in order to localize the error cause in an error
trace, report a single error trace per error cause, and gen-
erate multiple error traces having independent causes. We
have implemented this algorithm in the context of Slam, a
software model checker that automatically verifies temporal
safety properties of C programs, and report on our experi-
ence using it to find and localize errors in device drivers. The
algorithm typically narrows the location of a cause down to
a few lines, even in traces consisting of hundreds of state-
ments.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; D.2.5 [Software Engineering]:
Testing and Debugging; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms
Algorithms, Verification

Keywords
software model checking, debugging

∗This author performed the work reported here during a
summer internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTION
In recent years, model checking has gained wider use in

checking properties of software [13, 7, 3]. Model checking is
attractive for two main reasons. First, it does not require the
user to provide annotations such as pre-conditions or loop
invariants. Second, when a property violation is detected, a
witness to the violation is produced in the form of an error
trace (a counterexample) at the source level.

Despite these advantages, we believe there is significant
room for improving users’ experiences with model checkers.
An error trace can be very lengthy and only indicates the
symptom of the error. Users may have to spend considerable
time inspecting an error trace to understand the cause of the
error. Moreover, even state-of-the-art model checkers report
a single error trace per run. The user has to fix the error
and run the model checker again to find more error traces.

In this paper, we present a technique that localizes the
error cause in an error trace, reports a single error trace
per error cause, and generates multiple error traces having
independent causes. Our technique requires no changes to
model checking machinery—it simply uses the model checker
as a subroutine.

Model checkers function by exhaustively exploring the
reachable state space of a model of a program. Upon detect-
ing a violation of a property, a model checker’s internal data
structures contain, in addition to the information needed to
produce an error trace, information about correct traces —
paths in which the property of interest is not violated. Our
insight is to use correct traces to localize the likely cause
of the error in an error trace. In particular, our algorithm
identifies the transitions of an error trace that are not in any
correct trace of the program. The program statements that
induce these transitions are likely to contain the causes of
the error. Next, the algorithm introduces halt statements
in the program at the location of each cause and re-runs the
model checker to produce additional error traces.

Example. Consider the example program in Figure 1.
We wish to check that the program uses AcquireLock and
ReleaseLock in strict alternation along all paths. We as-
sume that the lock is not held on entering main and require
that the lock not be held on exiting main.

When we input the above program and property to
Slam [3], it produces the error trace t1 = [1, 2, 4, 5]. Our
algorithm uses information about correct traces in the pro-
gram to localize the cause of the error. This program has
only one correct trace t2 = [1, 2, 3, 5, 6, 7, 9]. The only
portion of t1 that does not intersect with t2 is line 4 and
our algorithm highlights it as the likely cause. Indeed, the

97

main() {
1 AcquireLock();
2 if (...)
3 ReleaseLock();

else
4 ...;
5 AcquireLock();
6 if (...)
7 ReleaseLock();

else
8 ...;
9 return;

}

Figure 1: Example program with improper lock us-
age.

program is missing a call to ReleaseLock on line 4.
The algorithm then introduces a halt statement at line 4

and invokes the model checker again. The halt statement
instructs the model checker to stop exploring paths through
the statement at line 4. As a result, the model checker
reports a different error trace t3 = [1, 2, 3, 5, 6, 8, 9].
Again, by comparing t3 with the correct trace t2, line 8 is
highlighted as the potential cause of the error, another halt
statement is introduced at line 8, and the model checker is
invoked for the third time. At this point, it reports that
there are no more error traces.

In summary, our algorithm automatically produces two
error traces, namely, t1 = [1, 2, 4, 5] with line 4 as the
identified cause, and t3 = [1, 2, 3, 5, 6, 8, 9] with line 8 as
the identified cause. �

We present the following results in this paper:

• A technique for using a model checker as a subroutine
to localize the error cause in an error trace, report one
error trace per error cause, and generate multiple er-
ror traces having independent causes; the technique
exploits the existence of “correct” transitions (transi-
tions along correct traces) in the state space computed
by the model checker.

• Efficient algorithms for computing the complete set of
correct transitions in the intraprocedural and interpro-
cedural cases; the time complexity of the algorithms is
linear in the size of the state space computed by the
model checker.

• Experimental results in the context of the Slam toolkit
showing that these algorithms are effective at localiz-
ing the causes of errors in real-world programs.

Outline. The remainder of the paper is organized as fol-
lows. Section 2 presents background material. Section 3 de-
scribes our general framework for localizing causes in error
traces and generating multiple traces using a generic model
checker. Section 4 presents the algorithm to identify correct
transitions for the intraprocedural case and Section 5 ex-
tends it to the interprocedural case. Section 6 demonstrates
the performance of our technique in the context of analyz-
ing safety properties of Windows device drivers. Section 7
reviews related work, and Section 8 concludes with a note
on future work.

2. PRELIMINARIES

2.1 Control Flow Graphs
We represent programs abstractly via control flow graphs,

following [18].
Each procedure pi in program P = {p1, · · · , pn} is repre-

sented by a directed graph Gi = (Vi, Ei, ei, xi) with vertices
Vi, edges Ei, entry vertex ei and exit vertex xi. Vertices in Vi

corresponding to procedures calls are denoted by Calli ⊆ Vi.
Each vertex vc in Call i is paired with a unique return-site
vertex vr in RetPt i ⊆ Vi. Given a vertex vr in RetPt i, we
denote the corresponding call vertex by toCall(vr).

Program P is represented by a control flow supergraph
G∗ = (V ∗, E∗, emain) that is the union of the (vertex- and
edge-disjoint) control flow graphs of procedures, with addi-
tional edges representing the flow of control via procedure
calls and returns. Specifically,

• V ∗ =
�

1≤i≤n Vi, and

• E∗ = E0 ∪ E1

where E0 =
�

1≤i≤n Ei and E1 represents the flow of control

from caller to callee and vice versa. Edge (v, w) ∈ E1 iff
there is a procedure pi such that either:

(i) v ∈ Call i, the procedure called at v is pj , and w = ej ,
the entry vertex of Gj , or

(ii) w ∈ RetPt i, the procedure called at toCall(w) is pj ,
and v = xj , the exit vertex of Gj .

Finally, we define the following subsets of V ∗:

• Entry = { ei | 1 ≤ i ≤ n },
• Exit = {xi | 1 ≤ i ≤ n },
• Call =

�
1≤i≤n Call i, and

• RetPt =
�

1≤i≤n RetPt i.

2.2 Transitions and Traces
We assume that programs have global variables and pro-

cedures have local variables and formal parameters. A state
of the program at a vertex is a valuation to the variables
in scope at the vertex (before the execution of the state-
ment associated with the vertex). Let Θ denote the set of
all states.

Each vertex v ∈ V ∗ has an associated statement and a
transfer function δ(v) that maps a state to a set of states.
Intuitively, if the statement at v is executed in state Ω then
the resultant set of states is δ(v)(Ω).

A transition of G∗ is a pair 〈(v1,Ω1), (v2,Ω2)〉 such that
(v1, v2) ∈ E∗ and Ω2 ∈ δ(v1)(Ω1). A projection of a transi-
tion, project (〈(v1,Ω1), (v2,Ω2)〉), is the edge (v1, v2). Pro-
jections can be generalized to sets of transitions in the usual
way. We write (v1,Ω1) � (v2,Ω2) if 〈(v1,Ω1), (v2,Ω2)〉 is a
transition.

A sequence (v1,Ω1), (v2,Ω2), . . . , (vk,Ωk) is a trace of G∗

if (1) v1 = emain, (2) (vi,Ωi) � (vi+1,Ωi+1) for 0 < i < k,
and (3) the return vertices in the sequence are properly
matched with call vertices. (A formal definition of the
third condition requires associating a distinguished open
and closed parenthesis for each call and return, defining a
context-free grammar for the language of balanced paren-
theses [18, 2].)

98

procedure Localize(G∗, δ, v, f)
begin

while true do
switch ModelCheck(G∗, δ, v, f) of
case SUCCESS:

output “success”; break
case FAILURE(T):

let C = GetCorrectTransitions(G∗, δ, v, f) and
let Causes = project(T) \ project(C) in

output T as error trace with causes Causes
if Causes = Ø then

break
for each (vi, vj) ∈ Causes do

let vk = halt in
V ∗ := V ∗ ∪ { vk }
E∗ := E∗ − { (vi, vj) } ∪ { (vi, vk), (vk, vj) }

end

Figure 2: Error cause localization algorithm.

3. ERROR CAUSE LOCALIZATION AL-
GORITHM

We assume we are given a model checking function Mod-
elCheck that takes as input:

• a control flow supergraph G∗,

• a transfer function δ : V ∗ → Θ → 2Θ,

• a specified vertex v ∈ V ∗, and

• a “correctness” function f : Θ → bool.

This function can be used to check safety properties, since
safety checking can be transformed by a suitable product
construction to reachability. The ModelCheck function
determines if there is a trace T ending with (v,Ω) such
that f(Ω) = false. If there is no such trace, then it returns
SUCCESS. Otherwise, it returns FAILURE(T).

We assume that, as a side-effect, ModelCheck annotates
each vertex v with States(v), the set of reachable states of
v (i.e., Ω ∈ States(v) iff there is a trace that ends with
(v,Ω)).1

Of course, the existence of such a model checking function
presumes that the set of reachable states is computable in
finite time. If not, one must first construct a suitable ab-
straction of the program, such as a boolean program [2]. We
will discuss the impact of abstraction on our algorithm in
Section 6.

Figure 2 presents the high-level structure of our algo-
rithm in the procedure Localize. If ModelCheck re-
turns FAILURE(T), then the algorithm invokes the function
GetCorrectTransitions which uses the results of Mod-
elCheck to find the transitions that belong to correct traces
(with respect to vertex v and correctness function f). For-
mally, transition t ∈ GetCorrectTransitions(G∗,δ,v,f) iff
there is a trace T ′ containing t such that T ′ ends with (v,Ω)
and f(Ω) = true. As we shall see later, the complexity of
GetCorrectTransitions is linear in the size of the control

1For the interprocedural case, the ModelCheck function
will have to compute more auxiliary information, as dis-
cussed in Section 5.

function GetCorrectTransitions(G∗, δ, v, f)
begin

var worklist: set of (V ∗,Θ) :=
{(v,Ω) | Ω ∈ States(v) ∧ f(Ω) = true}

var visited : set of (V ∗,Θ) := Ø
var M : set of transition := Ø
while worklist
= Ø do

remove (vj ,Ωj) from worklist
if (vj ,Ωj) /∈ visited then

visited := visited ∪ {(vj ,Ωj)}
for each (vi, vj) ∈ E∗ do

for each Ωi ∈ States(vi) do
if Ωj ∈ δ(vi)(Ωi) then

worklist := worklist ∪ {(vi,Ωi)}
M := M ∪ {〈(vi,Ωi), (vj ,Ωj)〉}

return M
end

Figure 3: Intraprocedural algorithm for computing
correct transitions.

flow graph G∗ and the number of states (that is, it is of the
same complexity as ModelCheck).

Next, the cause of the error is computed as Causes =
project(T) \ project(C).2 That is, the cause lies along
edges that belong to the error trace T but do not belong
to any correct trace. If Causes is non-empty, the algorithm
introduces a halt statement along each edge in Causes, and
repeat the entire procedure. Since G∗ is finite and each iter-
ation introduces at least one halt statement, the algorithm
is guaranteed to terminate.

4. COMPUTING INTRAPROCEDURAL
CORRECT TRANSITIONS

Figure 3 presents the algorithm GetCorrectTransitions
for the intraprocedural case (a single-procedure program
without calls). The simple idea behind our algorithm is
to work backwards in the state space computed by Mod-
elCheck from the states at vertex v that satisfy the cor-
rectness function f (see the initialization of worklist). While
the worklist is not empty, a pair (vj ,Ωj) is removed. If this
pair has not been visited before, each pair (vi,Ωi) such that
(vi, vj) ∈ E∗ and Ωj ∈ δ(vi)(Ωi) is added to the worklist.
The transition (vi,Ωi) � (vj ,Ωj) is a correct transition and
is added to set M , which is returned from the function.

We now revisit the example of Figure 1 to illustrate the
operation of GetCorrectTransitions.

Figure 4(a) contains the example rewritten to replace each
call to AcquireLock and ReleaseLock with statements to
check the property that locks are alternately acquired and
released. The variable L is true at a vertex iff the last action
to execute was a lock acquisition. Figure 4(b) shows the
control flow graph of this program and Figure 4(c) shows
its reachable state-space graph (as computed by Mod-
elCheck). Let us focus on vertex 5 in the control flow
graph and determine whether or not the assert statement
at that vertex can fail (i.e., the correctness function f re-
turns true iff the expression !L is true). Given this query,

2In Section 6, we will discuss a variation of the algorithm
that computes Causes as project(T \ C), and its effect on
error cause localization.

99

1, L=false

2, L=true

3, L=true

5, L=false

4, L=true

5, L=true

6, L=true

7, L=true 8, L=true

9, L=false 9, L=true

(b) (c)

assert(L)
L := false

assert(!L)
L := true

assert(L)
L := false

assert(!L)

assert(!L)
L := true

1

2

3

7

6

9

8

4

5

main() {
assume(!L)
assert(!L); L := true;

if (…)
{assert(L); L := false;}

else
…;

assert(!L); L := true;
if (…)
{assert(L); L := false;}

else
…

assert(!L);
}

(a)

1

2
3

4
5
6
7

8
9

Figure 4: (a) The program of Figure 1 rewritten with assertions. (b) The control flow graph of this program.
(c) The reachable state-space graph of this program. The grey bold nodes represent error states (states in
which an assertion will fail).

ModelCheck produces the error trace T = (1, L=false) �

(2, L= true) � (4, L= true) � (5, L= true), which shows
how the assertion can fail.

Note that, in the reachable state-space graph, it is also
possible to reach vertex 5 in a state in which the assertion
does not fail. So, GetCorrectTransitions initializes its
worklist to the pair (5, L=false) and proceeds backwards in
the state space of the program, generating as its result the
set of correct transitions

(1, L= false) � (2, L=true)
(2, L=true) � (3, L=true)
(3, L=true) � (5, L=false)

Since the projection of the set of correct transitions is {(1, 2),
(2, 3), (3, 5)} and the projection of the set of transitions in
error trace T is {(1, 2), (2, 4), (4, 5)}, the value of Causes in
the Localize procedure of Figure 2 is {(2, 4), (4, 5)}, which
localizes the cause of the error to line 4 of the program.

Since there are only three feasible paths in this program
(see the program’s state space in Figure 4(c)), both error
traces could have been generated by a naive approach in
which the model checker generates all error traces. How-
ever, this approach will report multiple error traces having
the same cause. Consider the program from Figure 1 with
the extra conditional statement “if (...) A else B” inserted
before the first AcquireLock call. Neither branch of the
conditional alters the state of the lock. There are six fea-
sible paths in this program: two correct traces and four
error traces. The naive approach would report all four error
traces but our algorithm still reports two error traces, one
per cause. In practice, many branches in real-world pro-
grams are irrelevant to the property being checked. If we do
not identify error traces by causes, the model checker will
report huge numbers of error traces for the same cause.

5. COMPUTING INTERPROCEDURAL
CORRECT TRANSITIONS

Precise model checking and computation of correct tran-
sitions in the interprocedural case must take into account
the calling context of each called procedure. In particular,
the algorithms should only analyze paths in which each call
and return are properly matched.

5.1 Additional Model Checker Assumptions
The ModelCheck function must record at each vertex

v ∈ V ∗ more detailed information than States(v). In partic-
ular, we assume it stores a set of path edges at each vertex
and a set of summary edges at each call vertex [18, 2].

Intuitively, a path edge incident on vertex v ∈ V ∗ in pro-
cedure pg is a pair of states (Ωg ,Ω) such that there is a trace
from the entry vertex of main to the entry vertex of pg at
state Ωg and there is a continuation of the trace that reaches
(v,Ω) without exiting pg. Formally, a path edge incident on
vertex v ∈ V ∗ in procedure pg is a pair of states (Ωg ,Ω) such
that there is a trace T = T0.T1 where T0 = (v0,Ω1) � ... �
(vi,Ωi), and T1 = (vi,Ωi) � ... � (vj ,Ωj), and v0 = emain,
and (vi,Ωi) = (eg,Ωg) where eg is the entry vertex of the
procedure pg, and (vj ,Ωj) = (v,Ω), and for all i ≤ k < j,
vk
= xg where xg is the exit vertex of pg. Let PE(v) denote
the set of path edges incident on v.

Let vc be a call to a procedure pg. The set of summary
edges at vc represents the effect of pg as a transfer function.
Formally, the set of summary edges at vc is

Summary(vc) = { (Ω1,Ω2) | ∃ (Ωg,Ωi) ∈ PE(xg) and
Ωg ∈ δ(vc)(Ω1) and Ω2 ∈ δ(xg)(Ωi) }

For each vc ∈ Call , we define SE(vc)(Ω) = { Ω′ | (Ω,Ω′) ∈
Summary(vc) }.

100

function GetCorrectTransitions(G∗, δ, v, f): set of transition
begin

var M : set of transition := Ø
var visited: set of (V ∗,Θ,Θ) := Ø
var WL1, WL2: set of (V ∗,Θ,Θ)

WL1 := {(v,Ωg ,Ω) | (Ωg,Ω) ∈ PE(v) ∧ f(Ω) = true}
WL2 := Ø

// Phase 1: ascend to callers via call edges, don’t descend to callee via return edges
while WL1
= Ø do

remove (vj ,Ωg ,Ωj) from WL1

if (vj ,Ωg ,Ωj) /∈ visited then
visited := visited ∪ {(vj ,Ωg ,Ωj)}
if vj ∈ RetPt then

let (T,Wc,Wx) = PropagateToCallAndExit(vj,Ωg,Ωj) in
M := M ∪ T ; WL1 := WL1 ∪ Wc; WL2 := WL2 ∪ Wx

else
let (T,W) = Propagate(vj ,Ωg,Ωj) in

M := M ∪ T ; WL1 := WL1 ∪ W

// Phase 2: descend to callee via return edges, don’t ascend to callers via call edges
while WL2
= Ø do

remove (vj ,Ωg ,Ωj) from WL2

if (vj ,Ωg ,Ωj) /∈ visited then
visited := visited ∪ {(vj ,Ωg ,Ωj)}
if vj ∈ RetPt then

let (T,Wc,Wx) =PropagateToCallAndExit(vj ,Ωg ,Ωj) in
M := M ∪ T ; WL2 := WL2 ∪ Wc ∪ Wx

else if vj
∈ Entry then
let (T,W) = Propagate(vj ,Ωg,Ωj) in

M := M ∪ T ; WL2 := WL2 ∪ W
return M

end

Figure 5: Interprocedural algorithm for computing correct transitions.

5.2 Interprocedural Algorithm
Figures 5 and 6 presents the algorithm GetCorrect-

Transitions for the interprocedural case. The basic idea is
the same as that for the intraprocedural case: to work back-
wards in the state space computed by ModelCheck from
the states at vertex v that satisfy the correctness function
f . However, the algorithm must be context-sensitive, i.e.,
it must work backwards only along paths in which each call
and return are properly matched.

Our algorithm is similar to the interprocedural slicing al-
gorithm of Horowitz, Reps, and Binkley [14], having two
phases: Phase1 can “ascend” from the entry vertex of a pro-
cedure pg to the vertices that call pg, but it cannot “descend”
from a return point in RetPt to the corresponding callees’
procedure exit; Phase2, on the other hand, can descend to
procedure exits but cannot ascend to call vertices. (Both
phases use the summary edges to move across a call, while
properly accounting for its effect). The phases operate on
worklistsWL1 andWL2 respectively. Each worklist consists
of triples (vj ,Ωg ,Ωj) where vj ∈ V ∗ and (Ωg ,Ωj) ∈ PE(vj).
That is, the worklist consists of path edges incident on ver-
tices that are awaiting processing.

While WL1 is not empty, the first phase removes a triple
(vj ,Ωg ,Ωj) and processes it as follows:

• If vj ∈ RetPt , the PropagateToCallAndExit func-
tion (see Figure 6) is called. This function uses
the summary edges for the corresponding call vertex
toCall(vj) to propagate across the call, resulting in
new correct transitions in T and new triples Wc at the
call vertex. The function also computes new triples
Wx at the exit of the procedure called at toCall(vj).
The sets T and Wc are accumulated in M and WL1,
respectively, while Wx is accumulated in WL2 to await
processing in Phase 2 (recall that the first phase does
not descend to analyze callee procedures).

• If vj /∈ RetPt , the Propagate function is called, which
simply pushes triples backwards through all prede-
cessors of vj , identifying new correct transitions and
new triples. That is, for each predecessor vi of vj , if
(Ωg,Ωi) ∈ PE(vi) and Ωj ∈ δ(vi)(Ωi), then the transi-
tion (vi,Ωi) � (vj ,Ωj) is added to T and a new triple
(vi,Ωg,Ωi) is added to W . T and W are accumulated
in M and WL1, respectively.

While WL2 is not empty, the second phase removes a
triple (vj ,Ωg ,Ωj) and processes it as follows:

• If vj ∈ Entry , then nothing is done (recall that the
second phase does not ascend to callers).

101

function Propagate(vj : vertex, Ωg : Θ, Ωj : Θ): (set of transition, set of (V ∗,Θ,Θ))
begin

var T : set of transition := Ø
var W : set of (V ∗,Θ,Θ) := Ø
for each (vi, vj) ∈ E∗ do

for each (Ω′
g,Ωi) ∈ PE(vi) do

if (Ωg = Ω′
g) and (Ωj ∈ δ(vi)(Ωi)) then

T := T ∪ {〈(vi,Ωi), (vj ,Ωj)〉}; W := W ∪ {(vi,Ωg ,Ωi)}
return (T,W)

end

function PropagateToCallAndExit(vj : vertex, Ωg : Θ, Ωj : Θ):
(set of transition, set of (V ∗,Θ,Θ), set of (V ∗,Θ,Θ))

begin
var T : set of transition := Ø
var Wc: set of (V ∗,Θ,Θ) := Ø
var Wx: set of (V ∗,Θ,Θ) := Ø
let vc = toCall(vj) and xh = exit vertex of procedure ph called at vc in

for each (Ω′
g,Ωc) ∈ PE(vc) do

if (Ωg = Ω′
g) and (Ωj ∈ SE(vc)(Ωc)) then

T := T ∪ {〈(vc,Ωc), (vj ,Ωj)〉}; Wc := Wc ∪ {(vc,Ωg,Ωc)}
for each (Ωh,Ωi) ∈ PE(xh) do

if Ωh ∈ δ(vc)(Ωc) and Ωj ∈ δ(xh)(Ωi) then
Wx := Wx ∪ {(xh,Ωh,Ωi)}

return (T,Wc,Wx)
end

Figure 6: Propagation functions used by interprocedural algorithm for computing correct transitions.

• If vj ∈ RetPt , the PropagateToCallAndExit func-
tion is called. T , Wc, and Wx are computed as before.
T is accumulated in M while Wc and Wx are accumu-
lated in WL2.

• Otherwise, the Propagate function is called. T and
W are computed as before and accumulated in M and
WL2, respectively.

6. EXPERIMENTAL ASSESSMENT
We have implemented our algorithm in the Slam toolkit

[3], which checks temporal safety properties of sequential
C programs. We checked 30 Windows device drivers for 2
properties: (i) SpinLock which expresses that locks should
be acquired and released in strict alternation; it consists
of 2 assertions and 2 states, and (ii) IrpCompletion which
specifies how I/O request packets should be processed; it
consists of 18 assertions and more than 50 states.

Figure 7 presents the results of our experiments performed
on a 2.2 GHz Pentium PC with 1.5 GB RAM. In all, 15 er-
ror traces were reported for 8 of the drivers. Error trace
(15) was a violation of SpinLock; the rest were violations
of IrpCompletion. The cause was localized precisely in 11
of the error traces. All error traces had single causes; we
did not find any error trace with multiple causes. The cause
was not localized in each of error traces (1), (4), and (11)
because of coincidental correctness: a situation in which
every control-flow edge in the error trace is contained in
a correct trace. In this case, the variable Causes in Fig-
ure 2 is the empty set. We illustrate this problem by means
of two examples drawn from our experiments, and then
show how computing Causes as project(T \ C) instead of
project(T) \ project(C) solves this problem.

Consider the program in Figure 8. We wish to check if it
returns the same value as the function foo, which is called
exactly once along every path. The program has one error
trace t1 = [1, 2, 3, 7, 9, 4, 6]. The error cause lies on
lines 3 and 4: the value returned by foo is ignored at line
3 and the value SUCCESS is unconditionally assigned to the
variable status at line 4. The algorithm fails to localize this
cause since it belongs to a portion of t1 that intersects with
correct trace t2 = [1, 2, 3, 7, 8, 4, 6].3 Note, however, that
the transition

(4, g=FAILURE) � (6, g=FAILURE, status=SUCCESS)

in the error trace is not in any correct trace. In particular,
in the correct trace t2 the transition corresponding to the
control edge (4, 6) is

(4, g=SUCCESS) � (6, g=SUCCESS, status=SUCCESS).

in which both variabes g and status have the value SUCCESS

at line 6.
Consider the program in Figure 9. We wish to check

whether the function bar is called at most once along
every path. The program has one error trace t1 =
[1, 2, 3, 9, 10, 4, 5, 6, 7, 8] in which bar is called twice.
The error cause is on line 3: baz is called assuming that the
return value of foo is always SUCCESS. The algorithm fails
to localize this cause since it belongs to a portion of t1 that
intersects with correct trace t2 = [1, 2, 3, 9, 4, 5, 6, 7, 8].

For each of the above cases, localization can be success-
fully achieved by computing Causes as (1) project(T \ C)

3There are also two other correct traces that cover the con-
trol edges of t1 not covered by t2.

102

name of device driver LOC error trace number of transitions in: cumulative running time (sec.) for:
ID error cause error trace model checking cause localization

mouse packet filter 984 1 0 73 44.6 7.8
2 4 110

serial mouse port driver 7441 3 1 56 62.0 185.9
keyboard packet filter 1067 4 0 73 44.1 7.8

5 4 107
IEEE 1394 bus driver 5818 6 7 45 205.8 114.1

7 7 44
8 1 60
9 3 81
10 0 85

keyboard class driver 13161 11 0 158 365.4 97.8
i8042 port driver 22168 12 1 127 41.6 10.6

13 5 124
packet-based DMA driver 24971 14 1 75 40.0 5.4
serial port driver 30905 15 3 248 19.9 6.4

Figure 7: Results of analyzing Windows device drivers using SLAM. There is one row per error trace
discovered. Column two is the number of lines of code in the driver. Column five is the number of transitions
in the error trace, while column four is the number of transitions in the cause, as identified by our algorithm.
For each identified cause, we verified manually that the transitions reported in column four were indeed the
real cause of the error. Columns six and seven report, for each device driver, the total running time of the
model checker and the error cause localization algorithm respectively over all error traces reported for that
driver.

1 int g;
2 if (...) {
3 foo();
4 status := SUCCESS; // error: return value

} else // of foo is ignored
5 status := foo();
6 assert(status = g);

return status;

int foo() {
7 if (...) {
8 g := SUCCESS; return g;

} else {
9 g := FAILURE; return g;

}
}

Figure 8: Example of variable-value error.

instead of (2) project(T) \project(C) in Figure 2. In gen-
eral, approach (1) is more precise because it takes into ac-
count differences in the state components before projecting
the state away, while approach (2) projects away the state
components and then computes the difference.

However, a drawback of this approach is that it localizes
the error cause to an entire suffix of the error trace whose
first element is the actual cause. For instance, in each of the
above programs, it localizes the error cause to the suffix of
the error trace t1 beginning at line 3. It would be interesting
to explore ways of combining the two approaches to precisely
localize error causes.

The cause was not localized in error trace (10) because
the current implementation of our algorithm in the Slam
toolkit computes correct transitions using abstract states

1 int cnt := 0;
2 status := foo();
3 baz(); // error: baz should have been called
4 ... // only if status = SUCCESS
5 if (status = FAILURE)
6 bar();
7 ...
8 assert(cnt ≤ 1);

void baz() {
9 if (...)
10 bar();

}

void bar() { cnt++; }

Figure 9: Example of control flow error. Function
foo is defined in Figure 8.

as opposed to concrete states, namely, it computes correct
transitions in a boolean abstraction constructed from the C
program [1]. As a result, some of these transitions might
be infeasible in the C program and thereby misguide cause
localization. For instance, for the program in Figure 10,
Slam abstracts away the predicate on line 4 in the boolean
program. As a result, our algorithm finds the correct trace
t1 = [1, 2, 8, 10, 11, 3, 4, 5, 6, 7] which, while is infea-
sible in the C program, is feasible in the boolean program.
The model-checking phase of Slam detects the error trace
t2 = [1, 2, 8, 10, 11, 3, 4, 6, 7] in the boolean program,
which is confirmed to be a feasible trace in the C program.
The error cause lies on line 11. However, our algorithm fails
to localize it since line 11 is in correct trace t1. Such impre-
cision can be addressed by refining the boolean abstraction

103

1 int cnt := 0;
2 status := taz();
3 ...
4 if (status = SUCCESS)
5 bar();
6 ...
7 assert(cnt = 1);

void taz() {
8 if (...) {
9 return SUCCESS;

else {
10 ... // error: bar is not called
11 return FAILURE;

}
}
void bar() { cnt++; }

Figure 10: Example of model imprecision.

to include more predicates to rule out the infeasible correct
paths. In the above example, this would require adding the
predicate (status = SUCCESS) to the boolean abstraction.
Automating this idea is a topic for future work.

7. RELATED WORK

7.1 Multiple Counterexamples
There is little work on generating multiple counterexam-

ples during model checking. The most relevant work is em-
bodied in the Verisim testing tool for network protocols [5].
Verisim consists of a network simulator that generates traces
simulating a network and a trace checker that determines
whether a trace satisfies an extended LTL formula φ. If a
violation is detected, a technique called tuning is used to
replace the formula φ by a formula ψ that ignores the vio-
lation. Tuning is not fully automatic and does not attempt
to localize the cause of the violation.

In the context of detecting security violations in network
models, techniques have been proposed to generate a set
of counterexamples from a model checker as a graph [21].
Our work differs from this effort in that we localize causes
in counterexamples and generate one counterexample per
cause.

7.2 Error Cause Localization
There are several techniques for error cause localization

that are complementary to the approach presented in this
paper.

The work most closely related to ours is that of Groce
and Visser [10]. Given error trace T , their technique com-
putes a set of negatives, error traces (including T) that lead
to the same assertion violation as T , and a set of positives,
correct traces that lead to the assertion but do not violate
it. Analysis of the common features and the differences be-
tween positives and negatives provides succinct and useful
information about the error trace to the user.

Jin, Ravi, and Somenzi [15] present a game-theoretic tech-
nique that partitions an error trace into fated segments, con-
trolled by the environment attempting to force the system
into an error, and free segments, controlled by the system

attempting to avoid the error. Fated segments manifest
unavoidable progress towards the error while free segments
contain choices that, if avoided, might have prevented the
error.

There is a large body of work on locating the sources of
type errors in implicity typed, higher-order languages with
let-polymorphism like Haskell, Miranda, O’Caml, and Stan-
dard ML [23, 16, 4, 8, 22, 6]. These techniques usually
employ the underlying type inference algorithm to identify
the source of a type error as a program point or the program
subtree rooted at that point or, more recently, as a set of
program points (a slice) [22].

Program slicing [24] (especially dynamic slicing [17]) can
be used to find the set of statements in an error trace that
may be relevant to the cause of the error. Program slicing
uses data and control dependences to slice away statements
that do not directly affect a statement of interest. How-
ever, such slicing can be misleading when an error is one of
omission. For example, in Figure 4(a), program slicing with
respect to the assert statements will slice away the portion
of the code in which the omission may lie.

Algorithmic debugging [20] involves isolating an erroneous
procedure by starting from an external point of failure (e.g.,
an incorrect output value) and asking the user a series of
questions related to the behavior of procedures in the pro-
gram (e.g., “should concat([a b], [c d e]) return [a b d e]”?).
Algorithmic debugging is interactive and it does not localize
the cause of the error within a procedure it declares erro-
neous.

Delta debugging is a combinatorial testing algorithm that
narrows the difference in the program state between a pass-
ing run and a failing run to isolate the statements consti-
tuting the cause of the error [25]. Given a correct program
P and a set of changes C = {c1, · · · , cn} to P that yield an
incorrect program P ′, delta debugging applies subsets of C
to P and runs the resulting programs in order to determine
whether the same error is manifested as in P ′. In this man-
ner, delta debugging uses non-erroneous runs to determine
the set of changes responsible for the error.

7.3 Anomaly Detection
Static analysis techniques like Meta-Level Compilation

[11] and dynamic analysis tools like Daikon [9], DIDUCE
[12], and Eraser [19] all use the idea that consistent be-
havior in a program is correct behavior while inconsistent
behavior is a likely error. For example, if AcquireLock and
ReleaseLock are called in strict alternation 99 out of 100
times, then the single anomalous behavior is flagged as a
possible error. Our algorithm can be viewed as a static
technique that exploits consistent behavior to determine the
cause of a given error as opposed to the error itself.

8. CONCLUSIONS
Techniques such as model checking and dataflow analy-

sis have the capability to find subtle errors in programs.
Nonetheless, the problem of finding the cause of an error
is relegated to the user. We have shown how to localize
the cause in error traces generated by model checkers. The
key idea is to find transitions in the error trace that ap-
pear in no correct trace. Our techniques are quite general
and should be applicable to error detection tools based on
dataflow analysis as well.

A number of interesting research questions remain open.

104

First, is it possible (in some cases) to suggest a fix to an
erroneous program? For example, in the case of the program
in Figure 1, it would be fairly straightforward to enhance our
algorithm to output a suggested fix of introducing a call to
ReleaseLock at each of lines 4 and 8.

Second, what other kind of information can be used to
help localize the cause of an error? Program slicing and
algorithmic debugging provide information in the form of
dynamic data dependences and user input. Dynamic data
dependences from an error trace track the flow of values
between statements and could be very helpful in tracing
back from an assertion failure to the variable definitions that
caused it. Likewise, user input about which functions in a
program can be “trusted” (e.g., library functions) could be
used to guide the search for a cause.

9. REFERENCES
[1] T. Ball, R. Majumdar, T. Millstein, and S. K.

Rajamani. Automatic predicate abstraction of C
programs. In PLDI 01: Programming Language Design
and Implementation, pages 203–213. ACM, 2001.

[2] T. Ball and S. K. Rajamani. Bebop: A symbolic
model checker for Boolean programs. In SPIN 00:
SPIN Workshop, LNCS 1885, pages 113–130.
Springer-Verlag, 2000.

[3] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
POPL 02: Principles of Programming Languages,
pages 1–3. ACM, 2002.

[4] M. Beaven and R. Stansifer. Explaining type errors in
polymorphic languages. ACM Letters on Programming
Languages and Systems, 2(1-4):17–30, 1993.

[5] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee,
D. Obradovic, O. Sokolsky, and M. Viswanathan.
Verisim: Formal analysis of network simulations.
IEEE Transactions on Software Engineering,
28(2):129–145, Feb. 2002.

[6] O. Chitil. Compositional explanation of types and
algorithmic debugging of type errors. In ICFP 01:
International Conference on Functional Programming,
pages 193–204. ACM, 2001.

[7] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In ICSE 2000: International Conference on Software
Engineering, pages 439–448. ACM, 2000.

[8] D. Duggan and F. Bent. Explaining type inference.
Science of Computer Programming, 27(1):37–83, July
1996.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions in Software Engineering, 27(2):1–25,
February 2001.

[10] A. Groce and W. Visser. What went wrong:
Explaining counterexamples. Technical Report 02-08,
RIACS, USRA, 2002.

[11] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In PLDI 02: Programming Language Design
and Implementation, pages 69–82. ACM, 2002.

[12] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In ICSE
2000: International Conference on Software
Engineering, pages 291–301. ACM, 2002.

[13] G. Holzmann. Logic verification of ANSI-C code with
Spin. In SPIN 00: SPIN Workshop, LNCS 1885, pages
131–147. Springer-Verlag, 2000.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–60,
Jan. 1990.

[15] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in
error traces. In TACAS 02: Tools and Algorithms for
Construction and Analysis of Systems, LNCS 2031,
pages 445–459. Springer-Verlag, 2002.

[16] G. F. Johnson and J. A. Walz. A maximum flow
approach to anomaly isolation in unification-based
incremental type inference. In POPL 86: Principles of
Programming Languages, pages 44–57. ACM, 1986.

[17] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(10):155–163,
October 1988.

[18] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL 95: Principles of Programming
Languages, pages 49–61. ACM, 1995.

[19] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[20] E. Y. Shapiro. Algorithmic Program Debugging. MIT
Press, 1982. ACM Distinguished Dissertation.

[21] O. Sheyner, S. Jha, and J. M. Wing. Automated
generation and analysis of attack graphs. In IEEE
Symposium on Security and Privacy, pages 273–284.
IEEE, 2002.

[22] F. Tip and T. B. Dinesh. A slicing-based approach for
locating type errors. ACM Transactions on Software
Engineering and Methodology, 10(1):5–55, Jan. 2001.

[23] M. Wand. Finding the source of type errors. In POPL
86: Principles of Programming Languages, pages
38–43. ACM, 1986.

[24] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352–357, July 1984.

[25] A. Zeller. Yesterday, my program worked. today, it
does not. why? In FSE 99: Foundations of Software
Engineering, pages 253 – 267. ACM, 1999.

105

