
Learning Minimal Abstractions

Percy Liang
UC Berkeley

pliang@cs.berkeley.edu

Omer Tripp
Tel-Aviv University

omertrip@post.tau.ac.il

Mayur Naik
Intel Labs Berkeley

mayur.naik@intel.com

Abstract
Static analyses are generally parametrized by an abstraction
which is chosen from a family of abstractions. We are inter-
ested in flexible families of abstractions with many param-
eters, as these families can allow one to increase precision
in ways tailored to the client without sacrificing scalability.
For example, we consider k-limited points-to analyses where
each call site and allocation site in a program can have a dif-
ferent k value. We then ask a natural question in this paper:
What is the minimal (coarsest) abstraction in a given family
which is able to prove a set of client queries? In addressing
this question, we make the following two contributions: (i)
we introduce two machine learning algorithms for efficiently
finding a minimal abstraction; and (ii) for a static race detec-
tor backed by a k-limited points-to analysis, we show empir-
ically that minimal abstractions are actually quite coarse: it
suffices to provide context/object sensitivity to a very small
fraction (0.4–2.3%) of the sites to yield equally precise re-
sults as providing context/object sensitivity uniformly to all
sites.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Measurement, Experimentation, Verifica-
tion

Keywords heap abstractions, static analysis, concurrency,
machine learning, randomization

1. Introduction
Static analyses typically have parameters that control the
tradeoff between precision and scalability. For example, in a
k-CFA-based or k-object-sensitivity-based points-to analy-
sis [10–13, 20, 26], the parameter is the k value, which deter-
mines the amount of context sensitivity and object sensitiv-
ity. Increasing k yields more precise points-to information,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

but the complexity of the analysis also grows exponentially
with k. Shape analysis [19] and model checkers based on
predicate abstraction [3, 5] are parametrized by some num-
ber of predicates; these analyses also exhibit this tradeoff.

In many analyses, these tradeoffs are controlled by a
small number of parameters, for instance, a single k value.
Past studies (e.g., client-driven [7] and demand-driven [9]
approaches) have shown that it is often not necessary to pro-
vide context sensitivity to each call site or object sensitivity
to each allocation site. This motivates working with a larger
family of abstractions parametrized by a separate k value
for each site, akin to the parametric framework of Milanova
et al. [12, 13]. More generally, we represent an abstraction
as a binary vector (e.g., component j of the vector speci-
fies whether site j should be treated context-sensitively). But
how much context/object sensitivity is absolutely needed,
and where is it needed?

In this paper, we formulate and tackle the following prob-
lem: Given a family of abstractions, find a minimal (coars-
est) abstraction sufficient to prove all the queries provable by
the finest abstraction in the family. Studying this problem is
important for two reasons: (i) a minimal abstraction provides
insight into which aspects of a program need to be modeled
precisely for a given client; and (ii) reducing the complex-
ity of the abstraction along some components could enable
us to increase the complexity of the abstraction along other
components more than before. For example, keeping the k
values of most sites at zero enables us to use higher k values
for a select subset of sites.

To find these minimal abstractions, we introduce two ma-
chine learning algorithms. Both treat the static analysis as
a black box which takes an abstraction (and a set of client
queries) as input and produces the set of proven queries
as output. The first algorithm, STATREFINE, starts with the
coarsest abstraction, runs the static analysis on randomly
chosen abstractions, and from these training examples de-
tects statistical correlations between components of the ab-
straction and whether a query is proven; components highly
correlated with proven queries are added (Section 4.1). The
second algorithm, ACTIVECOARSEN, starts with the finest
abstraction and samples coarser abstractions at random, in-
crementally reducing the abstraction to a minimal one (Sec-
tion 4.2).

We also provide a theoretical analysis of our algorithms.
Let p be the number of components of the abstraction family
and s be the number of components in the largest minimal
abstraction. We show that although the number of abstrac-
tions considered is exponential in p, we only needO(s log p)
calls to the static analysis to find a minimal abstraction. The
significance of this result is that when a very small abstrac-
tion suffices to prove the queries (s � p), our algorithms
are much more efficient than a naı̈ve approach, which would
require O(p) calls. Empirically, we found that minimal ab-
stractions are indeed very small. This is an instance of spar-
sity, an important property in machine learning and statistics
[4, 24], that very few components of an unknown vector are
non-zero.

Our approach represents a significant departure from tra-
ditional program analysis, where iterative refinement tech-
niques are the norm [2, 7, 22]. In particular, our methods
exploit randomness to generate information in the form of
statistical correlations. Also note that iterative refinement
is in general not guaranteed to find a minimal abstraction,
whereas our techniques do have this guarantee. We present
one iterative refinement technique (DATALOGREFINE in
Section 3.1) and show that it refines 18–85% of the com-
ponents whereas the minimal abstractions found by our ap-
proach only refine 0.4–2.3% (Section 6).

All our empirical results are for a static race detection
client [14] backed by a k-limited points-to analysis. Points-
to information is used extensively by the race detector to
determine which statements may be reachable, which state-
ments may access the same memory locations, which state-
ments may access thread-shared memory locations, and
which statements may happen in parallel. Our points-to
analysis is both context-sensitive and object-sensitive (see
Section 5 for details).

2. Problem Formulation
Let (A,�) be a poset corresponding to a family of abstrac-
tions, and let Q be a set of queries that we would like
to prove. We assume we have access to a static analysis,
F : A 7→ {0, 1}Q, which maps an abstraction a ∈ A to
a binary vector F(a) where component q is 0 if query q is
proven and 1 if it is not.

We assume that F is monotone with respect to the ab-
straction family (A,�), that is, if a � a′, then F(a) �
F(a′). In other words, refining an abstraction (increasing a)
can only enable us to prove more queries (decrease F(a)).

The focus of this paper is on the following problem:

Definition 1 (Minimal Abstraction Problem). Given a fam-
ily of abstractions A with a unique top element 1 (the most
precise), output an abstraction a � 1 such that

1. a is correct—that is, F(a) = F(1); and
2. a is minimal—that is, such that {a′ � a : F(a′) =

F(a)} = {a}.

In general, there could be multiple minimal abstractions,
but we are content with choosing any one of them. Further-
more, we would like to find a minimal abstraction efficiently,
i.e., minimizing the number of calls to F.

2.1 Binary Abstractions
We now specialize to abstractions representable by binary
vectors, that is, A = {0, 1}J for some index set of compo-
nents J, where the partial order is component-wise inequality
(a � a′ iff aj ≤ a′j for all j ∈ J). The idea is that for an
abstraction a ∈ A, aj denotes whether component j ∈ J has
been refined or not. It will also be convenient to treat a ∈ A
directly as a set of components (namely, {j ∈ J : aj = 1}),
so that we can use set notation (e.g., a ∪ {j}). We use ∅ and
J to denote the coarsest and finest abstractions in the family,
and we denote the size of abstraction a by |a|.

Many commonly-used abstraction families are binary. In
predicate abstraction [3, 5], J is the set of candidate abstrac-
tion predicates, and an abstraction a would specify a subset
of these predicates to include in the analysis. Shape analy-
sis [19] uses predicates on the heap graph, e.g., reachability
from a variable. Similar to predicate abstraction, aj = 1 if
predicate j is to be treated as an abstraction predicate.

2.2 k-limited Abstractions
In this paper, we focus on k-limited abstractions. Let H be
the set of allocation sites and I be the set of call sites in a
program. We use S = H∪ I to denote the set of sites of both
types. Consider the family of abstractions defined by setting
a non-negative integer k for each site s ∈ S. In the case of k-
CFA, this integer specifies that the k most recent elements of
the call stack should be used to distinguish method calls and
objects allocated at various sites. We denote this abstraction
family as AK = {0, 1, . . . , kmax}S, where kmax is the largest
allowed k value.

At first glance, it may not be evident that the k-limited
abstraction family AK is a binary abstraction family. How-
ever, we can represent AK using binary vectors as follows:
Let J = S × {1, . . . kmax} be the set of components. We
map each element a ∈ A = {0, 1}J in the binary abstrac-
tion family to a unique element aK ∈ AK in the original
k-limited abstraction family by aK

s =
∑kmax
k=1 a(s,k). Essen-

tially a ∈ A is a unary encoding of the k values of aK ∈ AK.
Note that multiple binary vectors a map onto the same aK

(i.e., (1, 1, 0) and (1, 0, 1) both represent k = 2), but this is
not important. It is crucial, however, that the mapping from
A to AK respects the partial ordering within each family.

3. Deterministic Approaches
In this section, we discuss two deterministic approaches
for finding small abstractions. Conceptually, there are two
ways to proceed: start with the coarsest abstraction and re-
fine, or start with the finest abstraction and coarsen. We
present two algorithms: DATALOGREFINE (Section 3.1) and

SCANCOARSEN (Section 3.2), which operate in these two
directions.

3.1 Refinement via Datalog Analysis
We first present the DATALOGREFINE algorithm, which as-
sumes that static analysis F is expressed as a Datalog pro-
gram P . The basic idea behind the algorithm is as follows:
run the static analysis with the coarsest abstraction ∅ and
look at queries which were not proven. DATALOGREFINE
then inspects P to find all the components of the abstraction
which could affect the unproven queries and refines exactly
these components.

A Datalog program P consists of (i) a set of relations R
(e.g., ptsV ∈ R, where ptsV(v, o) denotes whether variable
v may point to abstract object o); (ii) a set of input tuples I
(for example, ptsV(v5, o7) ∈ I); and (iii) a set of rules of
the following form:

R0(w0)⇐ R1(w1), . . . , Rm(wm), (1)

where for each i = 0, . . . ,m, we have a relationRi ∈ R and
a tuple of variables wi of the appropriate arity (e.g., when
R0 = ptsV, w0 = (v, o)).

Given a Datalog program, we derive new tuples from the
input tuples I by using the rules. Formally, let a derivation
be a sequence t1, . . . , tn of tuples satisfying the following
two conditions: (i) for each i = 1, . . . , n, either ti is an input
tuple (ti ∈ I) or there exist indices j1, . . . , jm all smaller
than i such that ti ⇐ tj1 , . . . , tjm is an instantiation of a
rule; and (ii) for each j = 1, . . . , n − 1, tuple tj appears on
the right-hand side of an instantiation of a rule with some ti
(i > j) on the left-hand side.

In this formalism, each query q ∈ Q is a tuple. In race
detection, the set of queries is

Q = {race(p1, p2) : p1, p2 ∈ P}, (2)

where P is the set of program points. For each query q, we
define F(a)q = 1 if and only if there exists a derivation of
q. In other words, F(a)q = 0 if and only if q is proven.

The abstraction a determines the input tuples I. More
specifically, let A(t, j) denote whether the value aj of
component j affects the input tuple t ∈ I. For example,
A(ptsV(v, o), j) = 1 for any j = (s, k) and abstract ob-
ject o where o can represent a concrete object allocated at
allocation site s ∈ H. Given A, let JA denote the compo-
nents which are involved in a derivation of some (unproven)
query:

JA , {j ∈ J : ∃t ∈ I, q ∈ Q,A(t, j) = 1 ∧ t q}, (3)

where t q denotes that there exists some derivation
t1, . . . , tn where ti = t for some i and tn = q. The key
point is that a component not in JA cannot eliminate existing
derivations of q, which would be necessary to prove q. Such
a component is therefore irrelevant and not refined.

Computation via a Datalog Program Transformation We
now define the DATALOGREFINE algorithm, which com-
putes and returns JA as the abstraction. DATALOGREFINE
works by taking a Datalog program P as input and trans-
forming it into another Datalog program P ′ whose output
contains JA. Having this general transformation allows us
to leverage existing Datalog solvers [25] to efficiently com-
pute the set of relevant components JA to refine.

The new program P ′ contains all the rules of P plus
additional ones. For each Datalog rule of P taking the form
given in (1), P ′ will contain m rules, one for each i =
1, . . . ,m:

R′i(ti)⇐ R′0(t0), R1(t1), . . . , Rm(tm). (4)

R′i(ti) is true iff Ri(ti) q for any query q ∈ Q. We also
add the following rule for eachR ∈ R, which aggregates the
relevant components:

JA(j)⇐ R′(t),A(t, j). (5)

It can be verified that JA(j) is true exactly when j ∈ JA,
where JA is defined in (3).

Note that DATALOGREFINE is correct in that it outputs
an abstraction a which is guaranteed to prove all the queries
that 1 can, but a will most likely not be minimal.

k-limited Abstractions We now describe how we use
DATALOGREFINE for k-limited abstractions. Recall that in
our binary representation of k-limited abstractions (Sec-
tion 2.2), the components are (s, k), where s ∈ S is
a site and 0 ≤ k ≤ kmax. We start with the abstrac-
tion a0 = 0, corresponding to 0-CFA. We then iterate
k = 1, . . . , kmax, where at each iteration, we use ak−1 to
construct the input tuples and call DATALOGREFINE to pro-
duce a set JA. We refine the sites specified by JA, setting
ak = ak−1 ∪ {(s, k′) : (s, k) ∈ JA, k = k′}. In this way,
in each iteration we increase the k value of each site by
at most one. Because we always refine all relevant compo-
nents, after k iterations, ak is guaranteed to prove the same
subset of queries as k-CFA. The approach is the same for
k-object-sensitivity.

3.2 Coarsening via Scanning
In the previous section, we started with the coarsest abstrac-
tion and refined it. We now introduce a simple algorithm,
SCANCOARSEN, which does the opposite: it takes the most
refined abstraction a and coarsens it, preserving correctness
(Definition 1) along the way. To simplify presentation, sup-
pose we have one query. We will revisit the issue of multiple
queries in Section 4.4.

The idea behind the algorithm is quite simple: for each
component, try removing it from the abstraction; if the re-
sulting abstraction no longer proves the query, add the com-
ponent back. The pseudocode of the algorithm is given in
Figure 1. The algorithm maintains the invariant that aL is a

Coarsening via Scanning

SCANCOARSEN(aL,aU):
−if aL = aU: return aU

−choose any component j ∈ aU\aL

−if F(aU\{j}) = 0: [try coarsening j]
−−return SCANCOARSEN(aL,aU\{j}) [don’t need j]
−else:
−−return SCANCOARSEN(aL ∪ {j},aU) [need j]

Figure 1: Algorithm that finds a minimal abstraction.

subset of some minimal abstraction and aU is a superset suf-
ficient to prove the query. The algorithm requires |J| calls to
F, and therefore is only practical when the number of com-
ponents under consideration is small.

Theorem 1 (Properties of SCANCOARSEN). The algorithm
SCANCOARSEN(∅, J) returns a minimal abstraction a with
O(|J|) calls to F.

Proof. Let a be the returned abstraction. It suffices to show
that F(a\{j}) = 1 for all j ∈ a (that is, we fail to prove the
query with removal of any j). Take any j ∈ a. Since j was
kept, F(aU\{j}) = 1, where aU corresponds to the value
when j was considered. However, we also have a ⊂ aU, so
F(a\{j}) = 1 by monotonicity of F.

4. Machine Learning Approaches
We now present two machine learning algorithms for finding
minimal abstractions, which is the main theoretical contri-
bution of this paper. The two algorithms are STATREFINE,
which refines an abstraction by iteratively adding compo-
nents (Section 4.1) and ACTIVECOARSEN, which coarsens
an abstraction by removing components (Section 4.2).

At a high level, these two algorithms parallel their deter-
ministic counterparts, DATALOGREFINE and SCANCOARSEN,
presented in the previous section. However, there are two
important distinctions worth noting: (i) the machine learning
algorithms find a minimal abstraction much more effectively
by exploiting sparsity, the property that a minimal abstrac-
tion contains a small fraction of the full set of components;
and (ii) randomization is used to exploit this sparsity.

For clarity of presentation, we again focus on the case
where we have a single query; Section 4.4 addresses the
multiple-query setting.

4.1 Refinement via Statistical Learning
We call a component j ∈ J dependent if j appears in any
minimal abstraction. Let D ⊂ J be the set of dependent
components and let d = |D|. Note that D is the union of all
minimal abstractions. Define s to be the size of the largest
minimal abstraction, observing that s ≤ d. STATREFINE
identifies dependent components by sampling n independent

Refinement via Statistical Learning

Parameters:
−α: refinement probability
−s: size of largest minimal abstraction
−n: number of training examples per iteration

SAMPLE(α,aL,aU):
−a← aL

−for each component j ∈ aU\aL:
−−aj ← 1 with probability α
−return a

STATREFINE(aL):
−if F(aL) = 0 or |aL| = s: return aL

−for i = 1, . . . , n: [create training examples]
−−a(i) ← SAMPLE(α,aL, J)
−for each j 6∈ aL: [compute a score for each component]
−−nj ← |{i : a(i)

j = 1,F(a(i)) = 0}|
−j∗ ← argmaxj 6∈aL nj [choose best component]
−return STATREFINE(aL ∪ {j∗})

Figure 2: Algorithm for finding a minimal abstraction by it-
eratively adding dependent components determined via sta-
tistical learning.

random abstractions and running the static analysis F on
them. The component j associated with the most number
of proven queries is then added to the abstraction, and we
iterate. The pseudocode of the algorithm is given in Figure 2.

While DATALOGREFINE inspects the Datalog program
backing F to compute the set of relevant components,
STATREFINE relies instead on correlations with the output
of F to find dependent components.1 As Theorem 2 will
show, with high probability, a dependent component can be
found with n calls to F, where n is only logarithmic in the
total number of components |J|.

We must also ensure that n depends only polynomially on
s and d. The main technical challenge is to set the refinement
probability α properly to achieve this. To appreciate this
problem, suppose that s = d, so that F(a) consists of a
simple conjunction (F(a) = 0 iff aj = 1 for each j in
the minimal abstraction). If we set α to a constant, then
it would take an exponential number of examples ((1

α)s

in expectation) to even see an example where F(a) = 0.
Fortunately, the following theorem shows that if α is set
properly, then we obtain the desired polynomial dependence
(see Appendix A for the proof):

Theorem 2 (Properties of STATREFINE). Let d be the num-
ber of dependent components in J and s be the size of the
largest minimal abstraction. Suppose we set the refinement
probability α = (d

d+1)d and obtain n = Θ(d2(log |J| +

1 Note that dependent components are a subset of relevant components.

Coarsening via Active Learning

Parameters:
−α: refinement probability
−s: size of largest minimal abstraction

ACTIVECOARSEN(aU):
−if |aU| ≤ s+ 1: return SCANCOARSEN(∅,aU)
−a← SAMPLE(α, ∅,aU)
−if F(a) = 0: [run static analysis]
−−return ACTIVECOARSEN(a) [reduced]
−else:
−−return ACTIVECOARSEN(aU) [try again]

Figure 3: ACTIVECOARSEN returns a minimal abstraction
a by iteratively removing a random α-fraction of the compo-
nents from an upper bound. SAMPLE is defined in Figure 2.

log(s/δ))) training examples from F each iteration. Then
with probability 1 − δ, STATREFINE(∅) outputs a minimal
abstraction with O(sd2(log |J|+ log(s/δ))) total calls to F.

4.2 Coarsening via Active Learning
We now present our second machine learning algorithm,
ACTIVECOARSEN. Like SCANCOARSEN, it starts from the
finest abstraction J and tries to remove components from J.
But instead of doing this one at a time, ACTIVECOARSEN
tries to remove a random constant fraction of the compo-
nents at once. As we shall see, this allows us to hone in on a
minimal abstraction much more quickly.

The pseudocode of the algorithm is given in Figure 3. It
maintains an upper bound aU which is guaranteed to prove
the query. It repeatedly tries random abstraction a � aU.
until a can prove the query (F(a) = 0). Then we set aU to a
and repeat.

Recall that SCANCOARSEN, which removes one compo-
nent at a time, requires an exorbitantO(|J|) calls to the static
analysis. The key idea behind ACTIVECOARSEN is to re-
move a constant fraction of components each iteration. Then
we would hope to need only O(log1/α |J|) iterations.

However, the only wrinkle is that it might take a lot of
trials to sample an a that proves the query (F(a) = 0).
To appreciate the severity of this problem, suppose F(a) =
¬(a∗ � a) for some unknown set a∗ with |a∗| = s; that is,
we prove the query if all the components in a∗ are refined by
a. Then there is only a αs probability of sampling a random
abstraction a that proves the query. The expected number
of trials until we prove the query is thus (1

α)s, which has an
unfortunate exponential dependence on s. On the other hand,
when we succeed, we reduce the number of components by
a factor of α. There is therefore a tradeoff here: setting α
too small results in too many trials per iteration, but setting
α too large results in too many iterations. Fortunately, the

following theorem shows that we can balance the two to
yield an efficient algorithm (see Appendix A for the proof):

Theorem 3 (Properties of ACTIVECOARSEN). Let s be the
size of the largest minimal abstraction. If we set the re-
finement probability α = e−1/s, the expected number of
calls to the analysis F made by ACTIVECOARSEN(J) is
O(s log |J|).

4.3 Adapting the Refinement Probability
Until now, we have assumed that the size of the largest
minimal abstraction s is known, and indeed Theorems 2
and 3 depend crucially on setting α properly in terms of s. In
practice, s is unknown, so we seek a mechanism for setting
α without this knowledge.

The intuition is that setting α properly ensures that
queries are proven with a probability p(F(a) = 0) bounded
away from 0 by a constant. Indeed, in STATREFINE, fol-
lowing the prescribed setting of α, we get p(F(a) = 0) =
(d
d+1)d; in ACTIVECOARSEN, we have p(F(a) = 0) =

(e−1/s)s = e−1. (Interestingly, (d
d+1)d is lower bounded by

e−1 and tends exactly to e−1 as d→∞.)
The preceding discussion motivates a method that keeps

p(F(a) = 0) u e−1 , t, which we call the target proba-
bility. We can accomplish this by adapting α as we get new
examples from F. The adaptive strategy we will derive is
simple: if F(a) = 0, we decrease α; otherwise, we increase
α. But by how much?

To avoid boundary conditions, we parametrize α =
σ(θ) = (1 + e−θ)−1, which maps −∞ < θ < ∞ to 0 <
α < 1. For convenience, let us define g(θ) = p(F(a) = 0).
Now consider minimizing the following function:

O(θ) =
1
2

(g(θ)− t)2. (6)

Clearly, the optimum value (zero) is obtained by setting θ
so that g(θ) = t. We can optimize O(θ) by updating its
gradient:

θ ← θ − η dO
dθ
,

dO
dθ

= (g(θ)− t)dg(θ)
dθ

, (7)

where η is the step size. Of course we cannot evaluate g(θ),
but the key is that we can obtain unbiased samples of g(θ)
by evaluating F(a) (which we needed to do anyway); specif-
ically, E[1 − F(a)] = g(θ). We can therefore replace the
gradient with a stochastic gradient, a classic technique with
a rich theory [18]. We note that dg(θ)dθ > 0, so we absorb it
into the step size η.2 This leaves us with the following rule
for updating θ given a random a:

θ ← θ − η(1− F (a)− t). (8)

2 Note that we have not verified the step size conditions that guarantee
convergence. Instead, we simply set η = 0.1 for our experiments, which
worked well in practice.

4.4 Multiple Queries and Parallelization
So far, we have presented all our algorithms for one query.
Given multiple queries, we could just solve each query in-
dependently, but this is quite wasteful, since the informa-
tion obtained from answering one query is not used for other
queries. We therefore adopt a lazy splitting strategy, where
we initially place all the queries in one group and parti-
tion the groups over time as we run either STATREFINE or
ACTIVECOARSEN. More specifically, we maintain a parti-
tion of Q into a collection of groups G, where each g ∈ G is
a subset of Q. We run the algorithm independently for each
g ∈ G. After each call to F(a), we create two new groups,
g0 = {q ∈ g : F(a)q = 0} and g1 = {q ∈ g : F(a)q = 1},
and set G to (G\{g}) ∪ {g0, g1}, throwing away empty
groups. In g0, we take the F(a) = 0 branch of the algorithm
and in g1, we take the F(a) = 1 branch.

We thus maintain the invariant that for any two queries
q1, q2 ∈ g, we have F(a)q1 = F(a)q2 for any a that we have
run F on for g or any of g’s ancestral groups. Conceptually,
from the point of view of a fixed q ∈ Q, it is as if we had
run the algorithm on q alone, but all of the calls to F are
shared by other queries. When the algorithm terminates, all
the queries in one group share the same minimal abstraction.
In Section 6, we will see that the number of groups is much
smaller than the number of queries.

Our algorithms have been presented as sequential algo-
rithms, but parallelization is possible. STATREFINE is trivial
to parallelize because the n training examples are generated
independently. Parallelizing ACTIVECOARSEN is slightly
more intricate because of the sequential dependence of calls
to F. With one processor, we set α so that the target proba-
bility is e−1. When we have m processors, we set the target
probability to e−1/m, so that the expected time until a re-
duction is approximately the same. The upshot of this is that
α (monotonically related to t) is now smaller and thus we
obtain larger reductions.

4.5 Discussion of Algorithms
Table 1 summarizes the properties of the four algorithms
we have presented in this paper. One of the key advan-
tages of the learning-based approaches (STATREFINE and
ACTIVECOARSEN) is that they have a logarithmic depen-
dence on |J| since they take advantage of sparsity, the prop-
erty that a minimal abstraction has at most s components.

Both algorithms sample random abstractions by includ-
ing each component with probability α, and to avoid an ex-
ponential dependence on s, it is important to set the proba-
bility α properly—for STATREFINE, so that the profile of an
irrelevant component is sufficiently different from that of a
relevant component; for ACTIVECOARSEN, so that the prob-
ability of obtaining a successful reduction of the abstraction
is sufficiently large.

The algorithms are also complementary in several re-
spects: STATREFINE is a Monte Carlo algorithm (the run-

ning time is fixed, but there is some probability that it does
not find a minimal abstraction), whereas ACTIVECOARSEN
is a Las Vegas algorithm (the running time is random, but
we are guaranteed to find a minimal abstraction). Note that
STATREFINE has an extra factor of d2, because it implic-
itly tries to reason globally about all possible minimal ab-
stractions which involve d dependent components, whereas
ACTIVECOARSEN tries to hone in on one minimal abstrac-
tion. In practice, we found ACTIVECOARSEN to be more
effective, and thus used it to obtain our empirical results.

5. Site-varying k-limited Points-to Analysis
We now present the static analysis (F(a) in our general nota-
tion) for the abstraction family AK (defined in Section 2.2),
which allows each allocation and call site to have a separate
k value. Figure 4 describes the basic analysis. Each node in
the control-flow graph of each method m ∈ M is associated
with a simple statement (e.g., v2 = v1). We omit statements
that have no effect on our analysis (e.g., operations on data
of primitive type). For simplicity, we assume each method
has a single argument and no return value. Our actual imple-
mentation is a straightforward extension of this simplified
analysis which handles multiple arguments, return values,
class initializers, and objects allocated through reflection.

Our analysis uses sequences of call sites (in the case of k-
CFA) or allocation sites (in the case of k-object-sensitivity)
to represent method contexts. In either case, abstract objects
are represented by an allocation site plus the context of the
containing method in which the object was allocated. Our
abstraction a maps each site s ∈ S to the maximum length as
of the context or abstract object to maintain. For example, k-
CFA (with heap specialization) is represented by ah = k+1
for each allocation site h ∈ H and ai = k for each call site
i ∈ I; k-object-sensitivity is represented by ah = k for each
allocation site h ∈ H. The abstraction determines the input
tuples ext(s, c, c′), where prepending s to c and truncating
at length as yields c′. For example, if ah2 = 2 then we have
ext(h2, [i3, i7], [h2, i3]).

Our analysis computes the reachable methods (reachM),
reachable statements (reachP), and points-to sets of lo-
cal variables (ptsV), each with the associated context; the
context-insensitive points-to sets of static fields (ptsG) and
heap graph (heap); and a context-sensitive call graph (cg).

We briefly describe the analysis rules in Datalog. Rule
(1) states that the main method mmain is reachable in a dis-
tinguished context []. Rule (2) states that a target method of
a reachable call site is also reachable. Rule (3) states that ev-
ery statement in a reachable method is also reachable. Rules
(4) through (9) implement the transfer function associated
with each kind of statement. Rules (10a) and (10b) popu-
late the call graph while rules (11a) and (11b) propagate the
points-to set from the argument of a call site to the formal
argument of each target method. Rules (10a) and (11a) are
used in the case of k-CFA whereas rules (10b) and (11b)

Algorithm Minimal Correct # calls to F
DATALOGREFINE no yes O(1)
SCANCOARSEN yes yes O(|J|)
STATREFINE prob. 1− δ prob. 1− δ O(sd2(log |J|+ log(s/δ))
ACTIVECOARSEN yes yes O(s log |J|) [in expectation]

Table 1: Summary showing the two properties of Definition 1 for the four algorithms we have presented in this paper. Note
that the two machine learning algorithms have only a logarithmic dependence on |J|, the total number of components, and a
linear dependence on the size of the largest minimal abstraction s.

are used in the case of k-object-sensitivity. As dictated by
k-object-sensitivity, rule (10b) analyzes the target methodm
in a separate context o for each abstract object o to which the
distinguished this argument of method m points, and rule
(11b) sets the points-to set of the this argument of method
m in context o to the singleton {o}.

Race Detection We use the points-to information com-
puted above to answer datarace queries of the form presented
in (2), where we include pairs of program points correspond-
ing to heap-accessing statements of the same field in which
at least one statement is a write. We implemented the static
race detector of [14], which declares a (p1, p2) pair as rac-
ing if both statements may be reachable, may access thread-
escaping data, may point to the same object, and may happen
in parallel. All four components rely heavily on the context-
and object-sensitive points-to analysis.

6. Experiments
In this section, we apply our algorithms (Sections 3 and 4)
to the k-limited analysis for race detection (Section 5) to
answer the main question we started out with: how small
are minimal abstractions empirically?

6.1 Setup
Our experiments were performed using IBM J9VM 1.6.0 on
32-bit Linux machines. All the analyses (the basic k-limited
analysis, DATALOGREFINE, and the race detector) were im-
plemented in Chord, an extensible program analysis frame-
work for Java bytecode.3 The machine learning algorithms
simply use the race detector as a black box.

The experiments were applied to five multi-threaded Java
benchmarks: an implementation of the Traveling Sales-
man Problem (tsp), a discrete event simulation program
(elevator), a web crawler (hedc), a website download-
ing and mirroring tool (weblech), and a text search tool
(lusearch).

Table 2 provides the number of classes, number of meth-
ods, number of bytecodes of methods, and number of al-
location/call sites deemed reachable by 0-CFA in these
benchmarks. Table 3 shows the number of races (unproven
queries) reported by the coarsest and finest abstractions.

3 http://code.google.com/p/jchord/

classes # methods # bytecodes |H| |I|
tsp 167 635 40K 656 1,721
elevator 170 637 42K 663 1,893
hedc 335 1,965 153K 1,580 7,195
weblech 559 3,181 225K 2,584 12,405
lusearch 627 3,798 266K 2,873 13,928

Table 2: Benchmark characteristics. |H| is the number of
allocation sites, and |I| is the number of call sites. Together,
these determine the number of components in the abstraction
family |J|. For k-CFA, |J| = k(|H| + |I|); for k-object-
sensitivity, |J| = (k − 1)|H|.
a tsp elevator hedc weblech lusearch
∅ (CFA) 570 510 21,335 27,941 37,632
J (CFA) 494 441 17,837 8,208 31,866
diff. (|Q|) 76 69 3,498 19,733 5,766
∅ (OBJ) 536 475 17,137 8,063 31,428
J (OBJ) 489 437 16,124 5,523 20,929
diff. (|Q|) 47 38 1,013 2,540 10,499

Table 3: Number of races (unproven queries) reported us-
ing the coarsest abstraction ∅ (0-CFA/1-object-sensitivity)
and the finest abstraction J (2-CFA/3-object-sensitivity
for tsp, elevator and 1-CFA/2-object-sensitivity for
hedc, weblech, lusearch). The difference is the set of
queries under consideration (those provable by J but not by
∅).

Their difference is the set of queries Q that we want to prove
with a minimal abstraction.

6.2 Results
Table 4 summarizes the basic results for DATALOGREFINE
and ACTIVECOARSEN. While both find abstractions which
prove the same set of queries, ACTIVECOARSEN obtains
this precision using an abstraction which is minimal and an
order of magnitude smaller than the abstraction found by
DATALOGREFINE, which is not guaranteed to be minimal
(and is, in fact, far from minimal in our experiments).

Algorithms aside, it is noteworthy in itself that very small
abstractions exist. For example, on tsp, we can get the same
precision as 2-CFA by essentially using a “0.01-CFA” anal-
ysis. Indeed, our static analysis using this minimal abstrac-
tion was as fast as using 0-CFA, whereas 2-CFA took signif-
icantly longer.

Domains:

(method) m ∈ M = {mmain, ...}
(local variable) v ∈ V

(global variable) g ∈ G
(object field) f ∈ F

(method call site) i ∈ I
(allocation site) h ∈ H

(allocation/call site) s ∈ S = H ∪ I
(statement) p ∈ P

(method context) c ∈ C =
⋃
k≥0 Sk

(abstract object) o ∈ O = H× C
(abstraction) a ∈ AK = {0, 1, . . . }S

Input relations:

body ⊂ M× P (method contains statement)
trgt ⊂ I×M (call site resolves to method)
argI ⊂ I× V (call site’s argument variable)
argM ⊂ M× V (method’s formal argument variable)
ext ⊂ S× C× C (extend context with site)

= {(s, c, (s, c)[1..min{as, 1+|c|}]) : s ∈ S, c ∈ C}

Output relations:

reachM ⊂ C×M (reachable methods)
reachP ⊂ C× P (reachable statements)
ptsV ⊂ C× V×O (points-to sets of local variables)
ptsG ⊂ G×O (points-to sets of static fields)
heap ⊂ O× F×O (heap graph)
cg ⊂ C× I× C×M (call graph)

p ::= v = newh | v2 = v1 | g = v | v = g | v2.f = v1 | v2 = v1.f | i(v)

Rules:

reachM([],mmain). (1)
reachM(c,m) ⇐ cg(∗, ∗, c,m). (2)
reachP(c, p) ⇐ reachM(c,m), body(m, p). (3)

ptsV(c, v, o) ⇐ reachP(c, v = newh), ext(h, c, o). (4)
ptsV(c, v2, o) ⇐ reachP(c, v2 = v1), ptsV(c, v1, o). (5)
ptsG(g, o) ⇐ reachP(c, g = v), ptsV(c, v, o). (6)
ptsV(c, v, o) ⇐ reachP(c, v = g), ptsG(g, o). (7)
heap(o2, f, o1) ⇐ reachP(c, v2.f = v1), ptsV(c, v1, o1), ptsV(c, v2, o2). (8)
ptsV(c, v2, o2) ⇐ reachP(c, v2 = v1.f), ptsV(c, v1, o1), heap(o1, f, o2). (9)

cg(c1, i, c2,m) ⇐ reachP(c1, i), trgt(i,m), ext(i, c1, c2). (10a)
cg(c, i, o,m) ⇐ reachP(c, i), trgt(i,m), argI(i, v), ptsV(c, v, o). (10b)
ptsV(c2, v2, o) ⇐ cg(c1, i, c2,m), argI(i, v1), argM(m, v2), ptsV(c1, v1, o). (11a)
ptsV(c, v, c) ⇐ reachM(c,m), argM(m, v). (11b)

Figure 4: Datalog implementation of our k-limited points-to analysis with call-graph construction. Our abstraction a affects
the analysis solely through ext, which specifies that when we prepend s to c, we truncate the resulting sequence to length as.
If we use rules (10a) and (11a), we get k-CFA; if we use (10b) and (11b), we get k-object-sensitivity.

Query Groups Recall from Section 4.4 that to deal with
multiple queries, we partition the queries into groups and
find one minimal abstraction for each group. The abstraction
sizes reported so far are the union of the abstractions over all
groups. We now take a closer look at the abstractions for
individual queries in a group.

First, Table 5 shows that the number of groups is much
smaller than the number of queries, which means that many
queries share the same minimal abstraction. This is intuitive
since many queries depend on the same data and control
properties of a program.

Next, Figure 5 shows a histogram of the abstraction sizes
across queries. Most queries required a tiny abstraction, only
requiring a handful of sites to be refined. For example, for

object-sensitivity on hedc, over 80% of the queries require
just a single allocation site to be refined. Even the most
demanding query requires only 9 of the 1,580 sites to be
refined. Recall that refining 37 sites suffices to prove all the
queries (Table 4). For comparison, DATALOGREFINE refines
906 sites.

7. Related Work
One of the key algorithmic tools that we used to find minimal
abstractions is randomization. Randomization, a powerful
idea, has been previously applied in program analysis, e.g.,
in random testing [8] and random interpretation [6].

1 2 3 4 5 6 7 8

|a|

8
16
24
32
40

#
qu

er
ie

s
tsp (cfa)

1 2 3 4 5 6 7 8 9

|a|

600
1200
1800
2400
3000

#
qu

er
ie

s

hedc (cfa)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

|a|

5000
10000
15000
20000
25000

#
qu

er
ie

s

weblech (cfa)

1 2 3 4 5 6 7

|a|

9
18
27
36
45

#
qu

er
ie

s

tsp (obj)

1 2 3 4 5 6 7 8 9

|a|

180
360
540
720
900

#
qu

er
ie

s

hedc (obj)

1 2 3 4 5 6 7

|a|

300
600
900

1200
1500

#
qu

er
ie

s

weblech (obj)

Figure 5: A histogram showing for each abstraction size |a|, the number of queries that have a minimal abstraction of that size
(for three of the five benchmarks). Note that most queries need very small abstractions (some need only one site to be refined).

|J| DATALOGREFINE Minimal
tsp (CFA) 4,754 3,170 (67%) 27 (0.6%)
tsp (OBJ) 1,312 236 (18%) 7 (0.5%)
elevator (CFA) 5,112 3,541 (69%) 18 (0.4%)
elevator (OBJ) 1,326 291 (22%) 6 (0.5%)
hedc (CFA) 8,775 7,270 (83%) 90 (1.0%)
hedc (OBJ) 1,580 906 (57%) 37 (2.3%)
weblech (CFA) 14,989 12,737 (85%) 157 (1.0%)
weblech (OBJ) 2,584 1,768 (68%) 48 (1.9%)
lusearch (CFA) 16,801 14,864 (88%) 250 (1.5%)
lusearch (OBJ) 2,873 2,085 (73%) 56 (1.9%)

Table 4: This table shows our main results. |J| is the number
of components (the size of the finest abstraction). The next
two columns show abstraction sizes (absolute and fraction
of |J|) for the abstraction found by DATALOGREFINE and
a minimal abstraction found by ACTIVECOARSEN. All ab-
stractions prove the same set of queries. DATALOGREFINE
refines anywhere between 18%–85% of the components,
while the minimal abstraction is an order of magnitude
smaller (0.4%–2.3% of the components).

Our approach is perhaps more closely associated with
machine learning, although there is an important difference
in our goals. Machine learning, as exemplified by the PAC
learning model [23], is largely concerned with prediction—
that is, an algorithm is evaluated on how accurately it can
learn a function that predicts well on future inputs. We are
instead concerned with finding the smallest input on which
a function evaluates to 0. As a result, many of the results, for
example on learning monotone DNF formulae [1], are not
directly applicable, though many of the bounding techniques
used are similar.

groups min. mean. max.
tsp (CFA) 10 1 8 26
tsp (OBJ) 5 1 9 22
elevator (CFA) 6 3 12 22
elevator (OBJ) 4 1 10 18
hedc (CFA) 63 1 56 546
hedc (OBJ) 43 1 24 300
weblech (CFA) 79 1 250 17,164
weblech (OBJ) 49 1 52 899
lusearch (CFA) 140 1 41 1,346
lusearch (OBJ) 72 1 146 5,104

Table 5: Recall that our learning algorithms group the
queries (Section 4.4) so that all the queries in one group
share the same minimal abstraction. The minimum, mean,
and maximum size of a group is reported. In all cases, there
is large spread of the number of queries in a group.

One of the key properties that our approach exploited was
sparsity—that only a small subset of the components of the
abstraction actually matters for proving the desired query.
This enabled us to use a logarithmic rather than linear num-
ber of examples. Sparsity is one of the main themes in ma-
chine learning, signal processing, and statistics. For exam-
ple, in the area of compressed sensing [4], one also needs
a logarithmic number of linear measurements to recover a
sparse signal.

Past research in program analysis, and pointer analy-
sis specifically, has proposed various ways to reduce the
cost of the analysis while still providing accurate results.
Parametrization frameworks provide a mechanism for the
user to control the tradeoff between cost and precision of the
analysis. Client-driven approaches are capable of computing
an exhaustive solution of varying precision while demand-

driven approaches are capable of computing a partial solu-
tion of fixed precision. Below we expand upon each of these
topics in relation to our work.

Milanova et al. [12, 13] present a parametrized frame-
work for a k-object-sensitive points-to analysis, where each
local variable can be separately treated context-sensitively or
context-insensitively, and different k values can be chosen
for different allocation sites. Instantiations of the framework
using k=1 and k=2 are evaluated on side-effect analysis, call-
graph construction and virtual-call resolution, and are shown
to be significantly more precise than 1-CFA while being
comparable to 0-CFA in performance, if not better. Lhoták
and Hendren [10, 11] present Paddle, a parametrized frame-
work for BDD-based, k-limited alias analysis. They empir-
ically evaluate various instantiations of Paddle, including
conventional k-CFA, k-object-sensitivity and k-CFA with
heap cloning, on the monomorphic-call-site and cast-safety
clients, as well as using traditional metrics, and show that
k-object-sensitivity is superior to other approaches both in
performance and in precision.

Plevyak and Chien [15] use a refinement-based algorithm
to determine the concrete types of objects in programs writ-
ten in the Concurrent Aggregates object-oriented language.
When imprecision in the analysis causes a type conflict,
the algorithm can improve context sensitivity by performing
function splitting, and object sensitivity through container
splitting, which divides object creation sites and thus en-
ables the creation of objects of different types at a single site.
In a more recent study, Sridharan and Bodik [21] present a
demand-driven, refinement-based alias analysis for Java, and
apply it to a cast-safety client. Their algorithm computes an
overapproximation of the points-to relation, which is succes-
sively refined in response to client demand. At each stage of
refinement, the algorithm simultaneously refines handling of
heap accesses and method calls along paths, establishing the
points-to sets of variables that are relevant for evaluating the
client’s query.

Guyer and Lin [7] present a client-driven pointer analysis
for C that adjusts its precision in response to inaccuracies in
the client analysis. Their analysis is a two-pass algorithm: In
the first pass, a low-precision pointer analysis is run to detect
which statements lead to imprecision in the client analysis;
based on this information, a fine-grained precision policy is
built for the second pass, which treats these statements with
greater context and flow sensitivity. This is similar to our
DATALOGREFINE in spirit, but DATALOGREFINE is more
general.

In contrast to client-driven analyses, which compute an
exhaustive solution of varying precision, demand-driven
approaches compute a partial solution of fixed precision.
Heintze and Tardieu’s demand-driven alias analysis for C [9]
performs a provably optimal computation to determine the
points-to sets of variables queried by the client. Their anal-
ysis is applied to call-graph construction in the presence of

function pointers. A more recent alias analysis developed by
Zheng and Rugina [27] uses a demand-driven algorithm that
is capable of answering alias queries without constructing
points-to sets.

Reps [16, 17] shows how to automatically obtain demand-
driven versions of program analyses from their exhaustive
counterparts by applying the “magic-sets transformation”
developed in the logic-programming and deductive-database
communities. The exhaustive analysis is expressed in Dat-
alog, akin to that in our DATALOGREFINE approach, but
unlike us, they are interested in answering specific queries
of interest in the program being analyzed as opposed to all
queries. For instance, while we are interested in finding all
pairs of points (p1, p2) in a given program that may be in-
volved in a race, they may be interested in finding all points
that may be involved in a race with the statement at point
p42 in the given program. The magic-set transformation
takes as input a Datalog program which performs the ex-
haustive analysis along with a set of specified queries. It
produces as output the demand-driven version of the analy-
sis, also in Datalog, but which eliminates computation from
the original analysis that is unnecessary for evaluating the
specified queries. In contrast, our transformation takes as
input a parametrized analysis expressed in Datalog and pro-
duces as output another analysis, also in Datalog, whose goal
is to compute all possible parameters that may affect the out-
put of the original analysis, for instance, all possible sites in
a given program whose small k values may be responsible
for a set of races being reported by the original analysis.

8. Conclusion
We started this study with a basic question: what is the
minimal abstraction needed to prove a set of queries of
interest? To answer this question, we developed two machine
learning algorithms and applied them to find minimal k
values of call/allocation sites for a static race detector. The
key theme in this work is sparsity, the property that very few
components of an abstraction are needed to prove a query.
The ramifications are two-fold: Theoretically, we show that
our algorithms are efficient under sparsity; empirically, we
found that the minimal abstractions are quite small—only
0.4–2.3% of the sites are needed to prove all the queries of
interest.

A. Proofs
Proof of Theorem 2. Note that the algorithm will run for at
most s iterations, where s is the size of the largest minimal
abstraction. If we set n so that STATREFINE chooses a de-
pendent component each iteration with probability at least
1− δ/s, then the algorithm will succeed with probability at
least 1− δ (by a union bound).

Let us now focus on one iteration. The main idea is that a
dependent component j is more correlated with proving the
query (F(a) = 0) than one that is independent. This enables

picking it out with high probability given sufficiently large
n.

Recall that D is the set of dependent components with
|D| = d. Fix a dependent component j+ ∈ D. Let Bj−
be the event that nj− > nj+ , and B be the event that Bj−
holds for any independent component j− ∈ J\D. Note that
if B does not happen, then the algorithm will correctly pick
a dependent component (possibly j+). Thus, the main focus
is on showing that P (B) ≤ δ/s. First, by a union bound, we
have

P (B) ≤
∑
j−

P (Bj−) ≤ |J|max
j−

P (Bj−). (9)

For each training example a(i), define Xi = (1 −
F(a(i)))(a(i)

j− − a(i)
j+). Observe that Bj− happens exactly

when 1
n (nj−−nj+) = 1

n

∑n
i=1Xi > 0. We now bound this

quantity using Hoeffding’s inequality,4 where the mean is

E[Xi] = p(F(a) = 0,aj− = 1)− p(F(a) = 0,aj+ = 1),

and the bounds are a = −1 and b = +1. Setting ε =
−E[Xi], we get:

p(Bj−) ≤ e−nε
2/2, j+ ∈ D, j− 6∈ D. (10)

Substituting (10) into (9) and rearranging terms, we can
solve for n:

δ/s ≤ |J|e−nε
2/2 ⇒ n ≥ 2(log |J|+ log(s/δ))

ε2
. (11)

Now it remains to lower bound ε, which intuitively repre-
sents the gap (in the amount of correlation with proving the
query) between a dependent component and an independent
one. Note that p(aj = 1) = α for any j ∈ J. Also, j− is in-
dependent of F(a), so p(F(a) = 0 | aj− = 1) = p(F(a) =
0). Using these two facts, we have:

ε = α(p(F(a) = 0 | aj+ = 1)− p(F(a) = 0)). (12)

Let C be the set of minimal abstractions of F. We can
think of C as a set of clauses in a DNF formula: F(a;C) =
¬

∨
c∈C

∧
j∈c aj , where we explicitly mark the dependence

of F on the clauses C. For example, C = {{1, 2}, {3}}
corresponds to F(a) = ¬[(a1 ∧ a2) ∨ a3]. Next, let Cj =
{c ∈ C : j ∈ c} be the clauses containing j. Rewrite
p(F(a) = 0) as the sum of two parts, one that depends on
j+ and one that does not:

p(F(a) = 0) = p(F(a;Cj+) = 0,F(a;C\Cj+) = 1)+

p(F(a;C\Cj+) = 0). (13)

Computing p(F(a) = 0 | aj+ = 1) is similar; the only
difference due to conditioning on aj+ = 1 is that the first

4 Hoeffding’s inequality: if X1, . . . , Xn are i.i.d. random variables with
a ≤ Xi ≤ b, then p(1

n

Pn
i=1Xi > E[Xi] + ε) ≤ exp

n
− 2nε2

(b−a)2

o
.

term has an additional factor of 1
α because conditioning

divides by p(aj+ = 1) = α. The second term is unchanged
because no c 6∈ Cj+ depends on aj+ . Plugging these two
results back into (12) yields:

ε = (1− α)p(F(a;Cj+) = 0,F(a;C\Cj+) = 1). (14)

Now we want to lower bound (14) over all possible F
(equivalently, C), where j+ is allowed to depend on C. It
turns out that the worst possible C is obtained by either
having d disjoint clauses (C = {{j} : j ∈ D}) or one
clause (C = {D} if s = d). The intuition is that if C has
d clauses, there are many opportunities (d − 1 of them) for
some c 6∈ Cj+ to activate, making it hard to realize that j+

is a dependent component; in this case, ε = (1 − α)α(1 −
α)d−1. If C has one clause, then it is very hard (probability
αd) to even activate this clause; in this case, ε = (1− α)αd.

Let us focus on the case where C has d clauses. We
can maximize ε with respect to α by setting the derivative
dε
dα = 0 and solving for α. Doing this yields α = 1

d+1 as the
optimal value. Plugging this value back into the expression
for ε, we get that ε = 1

d+1 (d
d+1)d. The second factor can

be lower bounded by e−1, so ε−2 = O(d2). Combining this
with (11) completes the proof.

Proof of Theorem 3. Let T (aU) be the expected number of
calls that ACTIVECOARSEN(aU) makes to F. The recursive
computation of this quantity parallels the pseudocode of
Figure 3:

T (aU) (15)

=

{
|aU| if |aU| ≤ s+ 1
1+E[(1−F(a))T (a)+F(a)T (aU)] otherwise,

where a ← SAMPLE(∅,aU) is a random binary vector. By
assumption, there exists an abstraction a∗ � aU of size s
that proves the query. Define G(a) = ¬(a∗ � a), which
is 0 when all components in a∗ are active under the random
a. We have p(G(a) = 0) = p(a∗ � a) = αs. Note that
G(a) ≥ F(a), as activating a∗ suffices to prove the query.
We assume T (a) ≤ T (aU) (T is monotonic), so we get an
upper bound by replacing F with G and performing some
algebra:

T (aU) ≤ 1 + E[(1−G(a))T (a) + G(a)T (aU)] (16)

≤ 1 + αsE[T (a) | a∗ � a] + (1− αs)T (aU) (17)

≤ E[T (a) | a∗ � a] + α−s. (18)

Overloading notation, we write T (n) = max|a|=n T (a) to
be the maximum over abstractions of size n. Note that |a|
given a∗ � a is s plus a binomial random variable N with
expectation α(n− s).

Using the crude bound T (n) ≤ (1 − αn)T (n − 1) +
αnT (n)α−s, we see that T (n) ≤ α−s

1−αn · n; in particu-
lar, T (n) is sublinear. Moreover, T (n) is concave for large

enough n, so we can use Jensen’s inequality to swap T and
E:

T (n) ≤ T (E[s+N]) + α−s = T (s+ α(n− s)) + α−s.
(19)

Solving the recurrence, we obtain:

T (n) ≤ α−s log n
logα−1

+ s+ 1. (20)

From (20), we can see the tradeoff between reducing the
number of iterations (by increasing logα−1) versus reducing
the number of trials (by decreasing α−s).

We now set α to minimize the upper bound. Differentiate
with respect to x = α−1 and set the derivative to zero:
sxs−1

log x −
xs−1

log2 x
= 0. Solving this equation yields α = e−1/s.

Plugging this value back into (20) yields T (n) = es log n+
s+ 1 = O(s log n).

References
[1] D. Angluin. Queries and concept learning. Machine Learning,

2(4):319–342, 1988.

[2] T. Ball and S. Rajamani. The SLAM project: debugging sys-
tem software via static analysis. In Proceedings of ACM Symp.
on Principles of Programming Languages (POPL), pages 1–3,
2002.

[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Auto-
matic predicate abstraction of C programs. In Proceedings
of ACM Conf. on Programming Language Design and Imple-
mentation (PLDI), pages 203–213, 2001.

[4] D. Donoho. Compressed sensing. IEEE Trans. on Information
Theory, 52(4):1289–1306, 2006.

[5] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. pages 72–83, 1997.

[6] S. Gulwani. Program Analysis using Random Interpretation.
PhD thesis, UC Berkeley, 2005.

[7] S. Guyer and C. Lin. Client-driven pointer analysis. In
Proceedings of Intl. Static Analysis Symposium, pages 214–
236, 2003.

[8] D. Hamlet. Random testing. In Encyclopedia of Software
Engineering, pages 970–978, 1994.

[9] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In Proceedings of ACM Conf. on Programming Language
Design and Implementation (PLDI), pages 24–34, 2001.

[10] O. Lhoták and L. Hendren. Context-sensitive points-to anal-
ysis: is it worth it? In Proceedings of Intl. Conf. on Compiler
Construction, pages 47–64, 2006.

[11] O. Lhoták and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implemen-
tation. ACM Transactions on Software Engineering and
Methodology, 18(1):1–53, 2008.

[12] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In
Proceedings of ACM Intl. Symp. on Software Testing and
Analysis, pages 1–11, 2002.

[13] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transactions
on Software Engineering and Methodology, 14(1):1–41, 2005.

[14] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for Java. In Proceedings of ACM Conf. on Programming
Language Design and Implementation (PLDI), pages 308–
319.

[15] J. Plevyak and A. Chien. Precise concrete type inference
for object-oriented languages. In Proceedings of ACM Conf.
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 324–340.

[16] T. W. Reps. Demand interprocedural program analysis using
logic databases. In Workshop on Programming with Logic
Databases, pages 163–196, 1993.

[17] T. W. Reps. Solving demand versions of interprocedural
analysis problems. In Proceedings of Intl. Conf. on Compiler
Construction, pages 389–403, 1994.

[18] H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics, 22(3):400–407,
1951.

[19] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3):217–298, 2002.

[20] O. Shivers. Control-flow analysis in Scheme. In Proceedings
of ACM Conf. on Programming Language Design and Imple-
mentation (PLDI), pages 164–174, 1988.

[21] M. Sridharan and R. Bodı́k. Refinement-based context-
sensitive points-to analysis for Java. In Proceedings of ACM
Conf. on Programming Language Design and Implementa-
tion, pages 387–400, 2006.

[22] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-
driven points-to analysis for Java. In Proceedings of ACM
Conf. on Object-Oriented Programming, Systems, Languages,
and Applications, pages 59–76, 2005.

[23] L. Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984.

[24] M. J. Wainwright. Sharp thresholds for noisy and
high-dimensional recovery of sparsity using `1-constrained
quadratic programming (lasso). IEEE Transactions on Infor-
mation Theory, 55:2183–2202, 2009.

[25] J. Whaley. Context-Sensitive Pointer Analysis using Binary
Decision Diagrams. PhD thesis, Stanford University, 2007.

[26] J. Whaley and M. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Pro-
ceedings of ACM Conf. on Programming Language Design
and Implementation (PLDI), pages 131–144, 2004.

[27] X. Zheng and R. Rugina. Demand-driven alias analysis for C.
In Proceedings of ACM Symp. on Principles of Programming
Languages (POPL), pages 197–208, 1998.

