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Abstract
We propose a new optimization problem “Q-MAXSAT”, an exten-
sion of the well-known Maximum Satisfiability or MAXSAT prob-
lem. In contrast to MAXSAT, which aims to find an assignment to
all variables in the formula, Q-MAXSAT computes an assignment
to a desired subset of variables (or queries) in the formula. Indeed,
many problems in diverse domains such as program reasoning, in-
formation retrieval, and mathematical optimization can be naturally
encoded as Q-MAXSAT instances.

We describe an iterative algorithm for solving Q-MAXSAT. In
each iteration, the algorithm solves a subproblem that is relevant
to the queries, and applies a novel technique to check whether the
partial assignment found is a solution to the Q-MAXSAT problem.
If the check fails, the algorithm grows the subproblem with a new
set of clauses identified as relevant to the queries.

Our empirical evaluation shows that our Q-MAXSAT solver
PILOT achieves significant improvements in runtime and mem-
ory consumption over conventional MAXSAT solvers on several
Q-MAXSAT instances generated from real-world problems in pro-
gram analysis and information retrieval.

Categories and Subject Descriptors G.1.6 [optimization]: con-
strained optimization

General Terms Algorithms, Theory

Keywords Optimization, Maximum Satisfiability, Partial Model,
Query-Guided Approach, Program Analysis, Information Retrieval

1. Introduction
The maximum satisfiability or MAXSAT problem [47] is an opti-
mization extension of the well-known satisfiability or SAT prob-
lem [13, 17]. A MAXSAT formula consists of a set of conventional
SAT or hard clauses together with a set of soft or weighted clauses.
The solution to a MAXSAT formula is an assignment to its vari-
ables that satisfies all the hard clauses, and maximizes the sum
of the weights of satisfied soft clauses. A number of interesting
problems that span across a diverse set of areas such as program
reasoning [24, 25, 35, 58], information retrieval [14, 29, 45, 48],
databases [5, 40], circuit design [56], bioinformatics [16, 52], plan-
ning and scheduling [26, 53, 57], and many others can be naturally
encoded as MAXSAT formulae. Many of these problems specify

hard constraints that encode various soundness conditions, and soft
constraints that specify objectives to optimize.

MAXSAT solvers have made remarkable strides in performance
over the last decade [4, 8, 20, 22, 37, 39, 41, 42, 44]. This in turn has
motivated even more demanding and emerging applications to be
formulated using MAXSAT. Real-world instances of many of these
problems, however, result in very large MAXSAT formulae [36].
These formulae, comprising millions of clauses or more, are be-
yond the scope of existing MAXSAT solvers. Fortunately, for many
of these problems, one is interested in a small set of queries that
constitute a very small fraction of the entire MAXSAT solution. For
instance, in program analysis, a query could be analysis informa-
tion for a particular variable in the program—intuitively, one would
expect the computational cost for answering a small set of queries
to be much smaller than the cost of computing analysis information
for all program variables. In the MAXSAT setting, the notion of a
query translates to the value of a specific variable in a MAXSAT
solution. Given a MAXSAT formula ϕ and a set of queries Q,
one obvious method for answering queries in Q is to compute the
MAXSAT solution to ϕ and project it to variables in Q. Needless
to say, especially for very large MAXSAT formulae, this is a non-
scalable solution. Therefore, it is interesting to ask the following
question: “Given a MAXSAT formula ϕ and a set of queries Q, is
it possible to answer Q by only computing information relevant to
Q?”. We call this question the query-guided maximum satisfiability
or Q-MAXSAT problem (ϕ,Q).

Our main technical insight is that a Q-MAXSAT instance (ϕ,Q)
can be solved by computing a MAXSAT solution of a small subset
of the clauses in ϕ. The main challenge, however, is how to effi-
ciently determine whether the answers to Q indeed correspond to
a MAXSAT solution of ϕ. We propose an iterative algorithm for
solving a Q-MAXSAT instance (ϕ,Q) (Algorithm 1 in Section 4).
In each iteration, the algorithm computes a MAXSAT solution to a
subset of clauses in ϕ that are relevant toQ. We also define an algo-
rithm (Algorithm 2 in Section 4.1) that efficiently checks whether
the current assignment to variables inQ corresponds to a MAXSAT
solution to ϕ. In particular, our algorithm constructs a small set of
clauses that succinctly summarize the effect of the clauses in ϕ that
are not considered by our algorithm, and then uses it to overesti-
mate the gap between the optimum objective value of ϕ under the
current assignment and the optimum objective value of ϕ.

We have implemented our approach in a tool called PILOT and
applied it to 19 large MAXSAT instances ranging in size from 100
thousand to 22 million clauses generated from real-world problems
in program analysis and information retrieval. Our empirical eval-
uation shows that PILOT achieves significant improvements in run-
time and memory over conventional MAXSAT solvers: on these
instances, PILOT used only 285 MB of memory on average and
terminated in 107 seconds on average. In contrast, conventional
MAXSAT solvers timed out for eight of the instances.
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Figure 1: Graph representation of a large MAXSAT formula ϕ.
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Figure 2: Graph representation of each iteration in our algorithm
when it solves the Q-MAXSAT instance (ϕ, {v6}).

In summary, the main contributions of this paper are as follows:

1. We introduce and formalize a new optimization problem called
Q-MAXSAT. In contrast to traditional MAXSAT, where one is
interested in an assignment to all variables, for Q-MAXSAT,
we are interested only in an assignment to a subset of variables,
called queries.

2. We propose an iterative algorithm for Q-MAXSAT that has the
desirable property of being able to efficiently check whether an
assignment to queries is an optimal solution to Q-MAXSAT.

3. We present empirical results showing the effectiveness of our
approach by applying PILOT to several Q-MAXSAT instances
generated from real-world problems in program analysis and
information retrieval.

2. Example
We illustrate the Q-MAXSAT instance and our solution with the
help of an example. Figure 1 represents a large MAXSAT formula
ϕ in conjunctive form. Each variable vi in ϕ is represented as
a node in the graph labeled by its subscript i. Each clause is a
disjunction of literals with a positive weight. Nodes marked as T
(or F) indicate soft clauses of the form (100, vi) (or (100,¬vi))
while each edge from node i to a node j represents a soft clause of
the form (5,¬vi ∨ vj).

Suppose we are interested in the assignment to the query v6 in
ϕ (shown by the dashed node in Figure 1). Then, the Q-MAXSAT
instance that we want to solve is (ϕ, {v6}). A solution to this
Q-MAXSAT instance is a partial model which maps v6 to true or
false such that there is a completion of this partial model maximiz-
ing the objective value of ϕ.

A naive approach to solve this problem is to directly feed ϕ
into a MAXSAT solver and extract the assignment to v6 from the

solution. However, this approach is highly inefficient due to the
large size of practical instances.

Our approach exploits the fact that the Q-MAXSAT instance
only requires assignment to specific query variables, and solves the
problem lazily in an iterative manner. The high level strategy of
our approach (see Section 4 for details) is to only solve a subset
of clauses relevant to the query in each iteration, and terminate
when the current solution can be proven to be the solution to the
Q-MAXSAT instance. In particular, our approach proceeds in the
following four steps.

Initialize. Given a Q-MAXSAT instance, our query-guided ap-
proach constructs an initial set of clauses that includes all the
clauses containing a query variable. We refer to these relevant
clauses as the workset of our algorithm.

Solve. The next step is to solve the MAXSAT instance in-
duced by the workset. Our approach uses an existing off-the-shelf
MAXSAT solver for this purpose. This produces a partial model of
the original instance.

Check. The key step in our approach is to check whether the
current partial model can be completed to a model of the original
MAXSAT instance. Since the workset only includes a small subset
of clauses from the complete instance, the challenge here is to sum-
marize the effect of the unexplored clauses on the assignment to the
query variables. We propose a novel technique for performing this
check efficiently without actually considering all the unexplored
clauses (see Section 4.1 for formal details).

Expand. If the check in the previous step fails, it indicates that
we need to grow our workset of relevant clauses. Based on the
check failure, in this step, our approach identifies the set of clauses
to be added to the workset for the next iteration.

As long as the Q-MAXSAT instance is finite, our iterative ap-
proach is guaranteed to terminate since it only grows the workset
in each iteration.

We next describe how our approach solves the Q-MAXSAT in-
stance (ϕ, {v6}). To resolve v6, our approach initially constructs
the workset ϕ′ that includes all the clauses containing v6. We rep-
resent ϕ′ by the subgraph contained within the dotted area in Fig-
ure 2(a). By invoking a MAXSAT solver on ϕ′, we get a partial
model αϕ′ = [v4 7→ false, v5 7→ false, v6 7→ false, v7 7→
false, v8 7→ false] as shown in Figure 2(a), with an objective value
of 20. Our approach next checks if the current partial model found
is a solution to the Q-MAXSAT instance (ϕ, {v6}). It constructs
a set of clauses ψ which succinctly summarizes the effect of the
clauses that are not present in the workset. We refer to this set as
the summarization set, and use the following expression to overes-
timate the gap between the optimum objective value of ϕ under the
current partial model and the optimum objective value of ϕ:

max
α

eval(ϕ′ ∪ ψ, α)−max
α

eval(ϕ′, α),

where maxα eval(ϕ
′ ∪ ψ, α) and maxα eval(ϕ

′, α) are the opti-
mum objective values of ϕ′ ∪ ψ and ϕ′, respectively.

To construct such a summarization set, our insight is that the
clauses that are not present in the workset can only affect the query
assignment via clauses sharing variables with the workset. We
call such clauses as the frontier clauses. Furthermore, if a frontier
clause is already satisfied by the current partial model, expanding
the workset with such a clause cannot further improve the partial
model. We now try to construct a summarization set ψ by taking
all frontier clauses not satisfied by αϕ′ . As a result, our algorithm
produces ψ = {(100, v4), (100, v8)}. The check comparing the
optimum objective values of ϕ′ and ϕ′ ∪ ψ fails in this case. In
particular, by solving ϕ′ ∪ ψ, we get a partial model αϕ′∪ψ =
[v4 7→ true, v5 7→ true, v6 7→ true, v7 7→ true, v8 7→ true]
with 220 as the objective value, which is greater than the optimum
objective value of ϕ′. As a consequence, our approach expands the



(variable) v ∈ V
(clause) c ::=

∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j | 1 | 0

(weight) w ∈ R+

(soft clause) s ::= (w, c)
(formula) ϕ ::= {s1, ..., sn}

(model) α ∈ V → {0, 1}

fst = λ(w, c).w, snd = λ(w, c).c

∀α : α |= 1, ∀α : α 6|= 0

α |=
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j ⇔ ∃i : α(vi) = 1 or ∃j : α(v′j) = 0

eval({s1, ..., sn}, α) = Σni {fst(si) | α |= snd(si)}
MaxSAT (ϕ) = argmaxα eval(ϕ, α)

Figure 3: Syntax and interpretation of MAXSAT formulae.

workset ϕ′ with (100, v4) and (100, v8) and proceeds to the next
iteration. We include these two clauses as these are not satisfied by
αϕ′ in the last iteration, but satisfied by αϕ′∪ψ , which indicates
they are likely responsible for the failure of the previous check.

In iteration 2, invoking a MAXSAT solver on the new workset,
ϕ′, produces αϕ′ = [v4 7→ true, v5 7→ true, v6 7→ true, v7 7→
true, v8 7→ true], as shown in Figure 2(b), with 220 as the objec-
tive value. The violated frontier clauses in this case are (100,¬v7),
(5,¬v5 ∨ v2), and (5,¬v5 ∨ v3). However, if this set of violated
frontier clauses were to be used as the summarization set ψ, the
newly added variables v2 and v3 will cause the check comparing
the optimum objective values of ϕ′ and ϕ′ ∪ ψ to trivially fail.
To address this problem, and further improve the precision of our
check, we modify the summarization set as ψ = {(100,¬v7),
(5,¬v5), (5,¬v5)} by removing v2 and v3 and strengthening the
corresponding clauses. In this case, it is equivalent to setting v2
and v3 to false (marked as F in the graph). Intuitively, by setting
these variables to false , we are overestimating the effects of the
unexplored clauses, by assuming these frontier clauses will not be
satisfied by unexplored variables like v2 and v3. By solving ϕ′∪ψ,
we get a partial model αϕ′∪ψ = [v4 7→ true, v5 7→ false, v6 7→
true, v7 7→ false, v8 7→ true] with 320 as the objective value,
which is greater than the optimum objective value of ϕ′.

In iteration 3, as shown in Figure 2(c), our approach expands
the workset ϕ′ with (100,¬v7), (5,¬v5 ∨ v2) and (5,¬v5 ∨ v3).
By invoking a MAXSAT solver on ϕ′, we produce αϕ′ = [v2 7→
true, v3 7→ true, v4 7→ true, v5 7→ true, v6 7→ true, v7 7→
false, v8 7→ true] with an objective value of 325. We omit the
edges representing frontiers clauses that are already satisfied by
αϕ′ in Figure 2(c). To check the whether current partial model
is a solution to the Q-MAXSAT instance, we construct strength-
ened summarization set ψ = {(5,¬v3)} from the frontier clause
(5,¬v3∨v1). By invoking MAXSAT on ϕ′∪ψ, we get an optimum
objective value of 325 which is the same as that of ϕ′. As a result,
our algorithm terminates and extracts [v6 7→ true] as the solution
to the Q-MAXSAT instance.

Despite the fact that many clauses and variables can reach v6
in the graph (i.e, they might affect the assignment to the query),
our approach successfully resolves v6 in three iterations and only
explores a very small, local subset of the graph, while successfully
summarizing the effects of the unexplored clauses.

3. The Q-MAXSAT Problem
First, we describe the standard MAXSAT problem [47]. The syntax
of a MAXSAT formula is shown in Figure 3. A MAXSAT formula
ϕ consists of a set of soft clauses. Each soft clause s = (w, c) is a
pair that consists of a positive weight w ∈ R+, and a clause c that

Algorithm 1

1: INPUT: A Q-MAXSAT instance (ϕ,Q), where ϕ is a MAXSAT
formula, andQ is a set of queries.

2: OUTPUT: A solution to the Q-MAXSAT instance (ϕ,Q).
3: ϕ′ := INIT(ϕ,Q)
4: while true do
5: αϕ′ := MAXSAT(ϕ′)
6: ϕ′′ := CHECK((ϕ,Q), ϕ′, αϕ′), where ϕ′′ ⊆ ϕ \ ϕ′
7: if ϕ′′ = ∅ then
8: return λv.αϕ′(v),where v ∈ Q
9: else

10: ϕ′ := ϕ′ ∪ ϕ′′
11: end if
12: end while

is a disjunctive form over a set of variables V 1. We use 1 to denote
true and 0 to denote false . Given an assignment α : V → {0, 1}
to each variable in a MAXSAT formula ϕ, we use eval(ϕ, α) to
denote the sum of the weights of the soft clauses in the formula
that are satisfied by the assignment. We call this sum the objective
value of the formula under that assignment. The space of models
MaxSAT (ϕ) of a MAXSAT formula ϕ is the set of all assignments
that maximize the objective value of ϕ.

The query-guided maximum satisfiability or Q-MAXSAT prob-
lem is an extension to the MAXSAT problem, that augments the
MAXSAT formula with a set of queries Q ⊆ V . In contrast to the
MAXSAT problem, where the objective is to find an assignment
to all variables V , Q-MAXSAT only aims to find a partial model
αQ : Q → {0, 1}. In particular, given a MAXSAT formula ϕ and
a set of queries Q, the Q-MAXSAT problem seeks a partial model
αQ : Q → {0, 1} for ϕ, that is, an assignment to the variables in
Q such that there exists a completion α : V → {0, 1} of αQ that is
a model of the MAXSAT formula ϕ. Formally:

Definition 1 (Q-MAXSAT problem). Given a MAXSAT formula
ϕ, and a set of queriesQ ⊆ V , a model of the Q-MAXSAT instance
(ϕ,Q) is a partial model αQ : Q → {0, 1} such that

∃α ∈ MaxSAT (ϕ).(∀v ∈ Q.αQ(v) = α(v)).

Example. Let (ϕ,Q) where ϕ = {(5,¬a∨b), (5,¬b∨c), (5,¬c∨
d), (5,¬d)} and Q = {a} be a Q-MAXSAT instance. A model
of this instance is given by αQ = [a 7→ 0]. Indeed, there is a
completion α = [a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 0] that belongs to
MaxSAT (ϕ) (in other words, α maximizes the objective value of
ϕ, which is equal to 20), and agrees with αQ on the variable a (that
is, α(a) = αQ(a) = 0).

Hereafter, we use Var(ϕ) to denote the set of variables occurring
in MAXSAT formula ϕ. For a set of variables U ⊆ V , we denote the
partial model α : U → {0, 1} by αU . Also, we use αϕ as shorthand
for αVar(ϕ). Throughout the paper, we assume that for eval(ϕ, α),
the assignment α is well-defined for all variables in Var(ϕ).

4. Solving a Q-MAXSAT Instance
Algorithm 1 describes our technique for solving the Q-MAXSAT

problem. It takes as input a Q-MAXSAT instance (ϕ,Q), and re-
turns a solution to (ϕ,Q) as output. The main idea in the algorithm
is to iteratively identify and solve a subset of clauses in ϕ that are
relevant to the set of queriesQ, which we refer to as the workset of
our algorithm.

1 Without loss of generality, we assume that MAXSAT formulae contain
only soft clauses. Every hard clause can be converted into a soft clause with
a sufficiently high weight.



Algorithm 2 CHECK((ϕ,Q), ϕ′, αϕ′)

1: INPUT: A Q-MAXSAT instance (ϕ,Q), a MAXSAT formula
ϕ′ ⊆ ϕ, and a model αϕ′ ∈ MaxSAT (ϕ′).

2: OUTPUT: A set of clauses ϕ′′ ⊆ ϕ \ ϕ′.
3: ψ := APPROX(ϕ,ϕ′, αϕ′)
4: ϕ′′ := ϕ′ ∪ ψ
5: αϕ′′ := MAXSAT(ϕ′′)
6: if eval(ϕ′′, αϕ′′)− eval(ϕ′, αϕ′) = 0 then
7: return ∅
8: else
9: ϕs := {(w, c) | (w, c) ∈ ψ ∧ αϕ′′ |= c}

10: return REFINE(ϕs, ϕ, ϕ
′, αϕ′)

11: end if

The algorithm starts by invoking function INIT (line 3) which
returns an initial set of clauses ϕ′ ⊆ ϕ. Specifically, ϕ′ is the set of
clauses in ϕ which contain variables in the query setQ.

In each iteration (lines 4–12), Algorithm 1 first computes a
model αϕ′ of the MAXSAT formula ϕ′ (line 5). Next, in line 6,
the function CHECK checks whether the model αϕ′ is sufficient
to compute a model of the Q-MAXSAT instance (ϕ,Q). If αϕ′

is sufficient, then the algorithm returns a model which is αϕ′

restricted to the variables in Q (line 8). Otherwise, CHECK returns
a set of clauses ϕ′′ that is added to the set ϕ′ (line 10). It is easy to
see that Algorithm 1 always terminates if ϕ is finite.

The main and interesting challenge is the implementation of the
CHECK function so that it is sound (that is, when CHECK returns
∅, then the model αϕ′ restricted to the variables in Q is indeed a
model of the Q-MAXSAT instance), yet efficient.

4.1 Implementing an Efficient CHECK Function
Algorithm 2 describes our implementation of the CHECK func-

tion. The input to the CHECK function is a Q-MAXSAT instance
(ϕ,Q), a MAXSAT formula ϕ′ ⊆ ϕ as described in Algorithm 1,
and a model αϕ′ ∈ MaxSAT (ϕ′). The output is a set of clauses
ϕ′′ that are required to be added toϕ′ so that the resulting MAXSAT
formula ϕ′ ∪ ϕ′′ is solved in the next iteration of Algorithm 1. If
ϕ′′ is empty, then this means that Algorithm 1 can stop and return
the appropriate model (as described in line 8 of Algorithm 1).

CHECK starts by calling the function APPROX (line 3) which
takes ϕ, ϕ′ and αϕ′ as inputs, and returns a new set of clauses
ψ, which we refer to as the summarization set. APPROX analyzes
clauses in ϕ \ ϕ′, and returns a much smaller formula ψ which
allows us to overestimate the gap between the optimum objec-
tive value under current partial model αϕ′ and the optimum ob-
jective value of ϕ. In line 5, CHECK computes a model αϕ′′ of
the MAXSAT formula ϕ′′ = ϕ′ ∪ ψ. Next, in line 6, CHECK com-
pares the objective value of ϕ′ with respect to αϕ′ and the objective
value of ϕ′′ with respect to αϕ′′ . If these objective values are equal,
CHECK concludes that the partial assignment for the queries in αϕ′

is a model to the Q-MAXSAT problem and returns an empty set
(line 7). Otherwise, it computes ϕs in line 9 which is the set of
clauses satisfied by αϕ′′ in ψ. Finally, in line 10, CHECK returns
the set of clauses to be added to the MAXSAT formula ϕ′. This is
computed by REFINE, which takes ϕs, ϕ, ϕ′, and αϕ′ as input. Es-
sentially, REFINE identifies the clauses in ϕ \ ϕ′ which are likely
responsible for failing the check in line 6, and uses them to expand
the MAXSAT formula ϕ′.

Optimality check via APPROX. The core step of CHECK is line 6,
which uses eval(ϕ′′, αϕ′′)−eval(ϕ′, αϕ′) to overestimate the gap
between the optimum objective value under current partial model
αϕ′ and the optimum objective value of ϕ. The key idea here is to
apply APPROX to generate a small set of clauses ψ which succinctly

summarizes the effect of the unexplored clauses ϕ \ ϕ′. We next
describe the specification of the APPROX function, and formally
prove the soundness of the optimality check in line 6.

Given a set of variables U ⊆ Var(ϕ), and an assignment αU ,
we define a substitution operation ϕ[αU ] which simplifies ϕ by
replacing all occurrences of variables in U with their corresponding
values in assignment αU . Formally,

{s1, ..., sn}[αU ] = {s1[αU ], ..., sn[αU ]}
(w, c)[αU ] = (w, c[αU ])

1[αU ] = 1
0[αU ] = 0

(
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j)[αU ] =

1, if αU |=
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j ,

0, if {v1, .., vn} ⊆ U ∧ {v′1, ..., v′m} ⊆ U ∧
αU 6|=

∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j ,∨

v∈{v1,...,vn}\U v ∨
∨
v′∈{v′1,...,v′n}\U

¬v′, otherwise.

Definition 2 (Summarizing unexplored clauses). Given two
MAXSAT formulae ϕ and ϕ′ such that ϕ′ ⊆ ϕ, and αϕ′ ∈
MaxSAT (ϕ′), we say ψ = APPROX(ϕ,ϕ′, αϕ′) summarizes the
effect of ϕ \ ϕ′ with respect to αϕ′ if and only if:

maxα eval(ϕ
′ ∪ ψ, α) ≥ maxα eval(ϕ, α) −

maxα eval((ϕ \ ϕ′)[αϕ′ ], α)

We state two useful facts about eval before proving soundness.
Proposition 3. Let ϕ and ϕ′ be two MAXSAT formulae such that
ϕ∩ϕ′ = ∅. Then, ∀α.eval(ϕ∪ϕ′, α) = eval(ϕ, α)+eval(ϕ′, α).
Proposition 4. Let ϕ and ϕ′ be two MAXSAT formulae. Then,

maxα eval(ϕ, α) + maxα eval(ϕ′, α) ≥
maxα (eval(ϕ, α) + eval(ϕ′, α)).

The theorem below states the soundness of the optimality check
performed in line 6 in CHECK.

Theorem 5 (Soundness of optimality check). Given a Q-MAXSAT
instance (ϕ,Q), a MAXSAT formula ϕ′ ⊆ ϕ s.t. Vars(ϕ′) ⊇ Q,
a model αϕ′ ∈ MaxSAT (ϕ′), and ψ = APPROX(ϕ,ϕ′, αϕ′) such
that the following condition holds:

max
α

eval(ϕ′ ∪ ψ, α) = max
α

eval(ϕ′, α).

Then, λv.αϕ′(v),where v ∈ Q is a model of the Q-MAXSAT
instance (ϕ,Q).

Proof. Let αQ = λv.αϕ′(v), where v ∈ Q. Let ϕ′′ = ϕ[αϕ′ ].
Construct a completion αϕ of αQ as follows:

αϕ = αϕ′ ] αϕ′′ , where αϕ′′ ∈ MaxSAT (ϕ′′)

It suffices to show that αϕ ∈ MaxSAT (ϕ), that is, eval(ϕ, αϕ) =
maxα eval(ϕ, α). We have:
eval(ϕ, αϕ)

= eval(ϕ, αϕ′ ] αϕ′′)

= eval(ϕ[αϕ′ ], αϕ′′)

= max
α

eval(ϕ[αϕ′ ], α)

[since ϕ′′ = ϕ[αϕ′ ] and αϕ′′ ∈ MaxSAT (ϕ′′)]

= max
α

eval(ϕ′[αϕ′ ] ∪ (ϕ \ ϕ′)[αϕ′ ], α)

= max
α

(eval(ϕ′[αϕ′ ], α) + eval((ϕ \ ϕ′)[αϕ′ ], α)) [from Prop. 3]

= max
α

(eval(ϕ′, αϕ′) + eval((ϕ \ ϕ′)[αϕ′ ], α))

[since αϕ′ ∈ MaxSAT (ϕ′)]



= eval(ϕ′, αϕ′) + max
α

eval((ϕ \ ϕ′)[αϕ′ ], α)

≥ eval(ϕ′, αϕ′) + max
α

eval(ϕ, α)−max
α

eval(ϕ′ ∪ ψ, α)

[since ψ = APPROX(ϕ,ϕ′, αϕ′), see Defn. 2]

= max
α

eval(ϕ′, α) + max
α

eval(ϕ, α)−max
α

eval(ϕ′ ∪ ψ, α)

[since αϕ′ ∈ MaxSAT (ϕ′)]

= max
α

eval(ϕ′∪ψ, α)+ max
α

eval(ϕ, α)−max
α

eval(ϕ′∪ψ, α)

[from the condition defined in the theorem statement]
= max

α
eval(ϕ, α)

Discussion. There are number of possibilities for the APPROX
function that satisfy the specification in Definition 2. The qual-
ity of such an APPROX function can be measured by two criteria:
the efficiency and the precision of the optimality check (lines 3 and
6 in Algorithm 2).

Given that eval can be efficiently computed, the cost of the
optimality check primarily depends on the cost of computing ψ
via APPROX, and the cost of invoking the MAXSAT solver on
ϕ′ ∪ ψ. Since MAXSAT is known to be a computationally hard
problem, a simple ψ returned by APPROX can significantly speedup
the optimality check.

On the other hand, a precise optimality check can significantly
reduce the number of iterations of Algorithm 1. We define a partial
order � on APPROX functions that compares the precision of the
optimality check via them. We say APPROX1 is more precise than
APPROX2 (denoted by APPROX2 � APPROX1), if for any given
MAXSAT formulae ϕ, ϕ′ ⊆ ϕ, and αϕ′ ∈ MaxSAT (ϕ′), the
optimum objective value of ϕ′ ∪ APPROX1(ϕ,ϕ′, αϕ′) is no larger
than that of ϕ′ ∪ APPROX2(ϕ,ϕ′, αϕ′). More formally:

APPROX2 � APPROX1 ⇔ ∀ϕ,ϕ′ ⊆ ϕ, αϕ′ ∈ MaxSAT (ϕ′) :
maxα eval(ϕ

′ ∪ ψ1, α) ≤ maxα eval(ϕ
′ ∪ ψ2, α),

where ψ1 = APPROX1(ϕ,ϕ′, αϕ′), ψ2 = APPROX2(ϕ,ϕ′, αϕ′).

In Section 4.2 we introduce three different APPROX functions
with increasing order of precision. While the more precise APPROX
operators reduce the number of iterations in our algorithm, they are
more expensive to compute.

Expanding relevant clauses via REFINE. The REFINE function
finds a new set of clauses that are relevant to the queries, and adds
them to the workset when the optimality check fails. To guarantee
the termination of our approach, when the optimality check fails,
REFINE should always return a nonempty set. We describe the
details of various REFINE functions in Section 4.2.

4.2 Efficient Optimality Check via Distinct APPROX Functions
We introduce three different APPROX functions and their corre-
sponding REFINE functions to construct efficient CHECK functions.
These three functions are the ID-APPROX function, the π-APPROX
function, and the γ-APPROX function. Each function is constructed
by extending the previous one, and their precision order is:

ID-APPROX � π-APPROX � γ-APPROX.

The cost of executing each of these APPROX functions also in-
creases with precision. After defining each function and proving
that it satisfies the specification of an APPROX function, we discuss
the efficiency and the precision of the optimality check using it.

4.2.1 The ID-APPROX Function
The ID-APPROX function is based on the following observation:
for a Q-MAXSAT instance, the clauses not explored by Algorithm 1

can only affect the assignments to the queries via the clauses shar-
ing variables with the workset. We refer to such unexplored clauses
as frontier clauses. If all the frontier clauses are satisfied by the
current partial model, or they cannot further improve the objective
value of the workset, we can construct a model of the Q-MAXSAT
instance from the current partial model. Based on these observa-
tions, the ID-APPROX function constructs the summarization set
by adding all the frontier clauses that are not satisfied by the cur-
rent partial model.

To define ID-APPROX, we first define what it means to say that
a clause is satisfied by a partial model. A clause is satisfied by
a partial model over a set of variables U , if it is satisfied by all
completions under that partial model. In other words:

αU |=
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j ⇔ (∃i : (vi ∈ U) ∧ αU (vi) = 1)

or (∃j : (v′j ∈ U) ∧ αU (v′j) = 0).

Definition 6 (ID-APPROX). Given formulae ϕ, ϕ′ ⊆ ϕ, and a
partial model αϕ′ ∈ MaxSAT (ϕ′), ID-APPROX is defined as
follows:

ID-APPROX(ϕ,ϕ′, αϕ′) = {(w, c) | (w, c) ∈ (ϕ \ ϕ′) ∧
Var({(w, c)}) ∩Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c)}.

The corresponding REFINE function is:

ID-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = ϕs.

Example. Let (ϕ,Q) be a Q-MAXSAT instance, where ϕ =
{(2, x), (5,¬x ∨ y), (5, y ∨ z), (1,¬y)} and Q = {x, y}. As-
sume that the workset is ϕ′ = {(2, x), (5,¬x ∨ y)}. By in-
voking a MAXSAT solver on ϕ′, we get a model αQ = [x 7→
1, y 7→ 1]. Both clauses in ϕ \ ϕ′ contain y, where ϕ \ ϕ′ =
{(5, y ∨ z), (1,¬y)}. Since (1,¬y) is not satisfied by αQ,
ID-APPROX(ϕ,ϕ′, αϕ′) produces ψ = {(1,¬y)}. As the opti-
mum objective values of both ϕ′ and ϕ′ ∪ ψ are 7, we conclude
[x 7→ 1, y 7→ 1] is a model of the given Q-MAXSAT instance.
Indeed, its completion [x 7→ 1, y 7→ 1, z 7→ 0] is a model of the
MAXSAT formula ϕ.

Theorem 7 (Soundness of ID-APPROX). ID-APPROX(ϕ,ϕ′, αϕ′)
summarizes the effect of ϕ \ ϕ′ with respect to αϕ′ .

Proof. Letψ=ID-APPROX(ϕ,ϕ′, αϕ′). We show that ID-APPROX
satisfies the specification of an APPROX function in Definition 2 by
proving the inequality below:

max
α

eval(ϕ′∪ψ, α)+max
α

eval(ϕ\ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

We use ϕ1 to represent the set of frontier clauses, and ϕ2 to
represent the rest of the clauses in ϕ \ ϕ′:
ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | V ar({(w, c)}) ∩ V ar(ϕ′) 6= ∅}
ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | V ar({(w, c)}) ∩ V ar(ϕ′) = ∅}

We further split the set of frontier clauses ϕ1 into two sets:

ϕ′1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c}, ϕ′′1 = {(w, c) ∈ ϕ1 | αϕ′ |= c}
ϕ′1 is effectively what is returned by ID-APPROX(ϕ,ϕ′, αϕ′). We
first prove the following claim:

∀α.eval(ϕ′′1 [αϕ′ ] ∪ ϕ2, α) ≥ eval(ϕ′′1 ∪ ϕ2, α) (1)

We have:
eval(ϕ′′1 [αϕ′ ] ∪ ϕ2, α)

= eval(ϕ′′1 [αϕ′ ], α) + eval(ϕ2, α) [from Prop. 3]

= max
α

eval(ϕ′′1 , α) + eval(ϕ2, α) [since ∀(w, c) ∈ ϕ′′1 .αϕ′ |= c]

≥ eval(ϕ′′1 , α) + eval(ϕ2, α)

= eval(ϕ′′1 ∪ ϕ2, α) [from Prop. 3]



Now we prove the theorem. We have:
maxα eval(ϕ′ ∪ ψ, α) + maxα eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

[since ψ = ID-APPROX(ϕ,ϕ′, αϕ′), see Defn. 6]

= max
α

eval(ϕ′ ∪ ϕ′1, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ′′1 [αϕ′ ] ∪ ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ′′1 [αϕ′ ] ∪ ϕ2[αϕ′ ], α)

[since ∀ϕ,ϕ′.max
α

eval(ϕ ∪ ϕ′) ≥ max
α

eval(ϕ)]

= max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ′′1 [αϕ′ ] ∪ ϕ2, α)

[since V ar(ϕ′) ∩ V ar(ϕ2) = ∅]
≥ max

α
eval(ϕ′ ∪ ϕ′1, α) + max

α
eval(ϕ′′1 ∪ ϕ2, α) [from (1)]

≥ max
α

(eval(ϕ′ ∪ ϕ′1, α) + eval(ϕ′′1 ∪ ϕ2, α)) [from Prop. 4]

= max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ′′1 ∪ ϕ2, α) [from Prop. 3]

= max
α

eval(ϕ, α)

Discussion. The ID-APPROX function effectively exploits the ob-
servation that, in a potentially very large Q-MAXSAT instance, the
unexplored part of the formula can only impact the assignments to
the queries via the frontier clauses. In practice, the set of frontier
clauses is usually much smaller compared to the set of all unex-
plored clauses, resulting in an efficient invocation of the MAXSAT
solver in the optimality check. Moreover, ID-APPROX is cheap to
compute as it can be implemented via a linear scan of the unex-
plored clauses. However, the precision of ID-APPROX may not be
satisfactory, causing the optimality check to be overly conservative.
One such scenario is that, if the clauses in the summarization set
generated from ID-APPROX contain any variable that is not used
in any clause in the workset, then the check will fail. To overcome
this limitation, we next introduce the π-APPROX function.

4.2.2 The π-APPROX Function
π-APPROX improves the precision of ID-APPROX by exploiting
the following observation: if the frontier clauses violated by the
current partial model have relatively low weights, even though they
may contain new variables, it is very likely the case that we can
resolve the queries with the workset. To overcome the limitation
of ID-APPROX, π-APPROX generates the summarization set by
applying a strengthening function on the frontier clauses violated
by the current partial model.

We define the strengthening function retain below.

Definition 8 (retain). We define retain(c,V) as follows:

retain(1,V) = 1
retain(0,V) = 0

retain(
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j ,V) =

let V1 = V ∩ {v1, .., vn} and V2 = V ∩ {v′1, ..., v′m}

in
(

0 if V1 = V2 = ∅∨
u∈V1 u ∨

∨
u′∈V2 ¬u

′ otherwise

)
Definition 9 (π-APPROX). Given a formula ϕ, a formula ϕ′ ⊆ ϕ,
and αϕ′ ∈ MaxSAT (ϕ′), π-APPROX is defined as follows:

π-APPROX(ϕ,ϕ′, αϕ′) = { (w, retain(c,Var(ϕ′))) |
(w, c) ∈ ϕ \ ϕ′ ∧ Var({(w, c)}) ∩Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c) }

The corresponding REFINE function is:

π-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = {(w, c) ∈ ϕ \ ϕ′ |

(w, retain(c,Var(ϕ′))) ∈ ϕs}

Example. Let (ϕ,Q) where ϕ = {(5, x), (5,¬x ∨ y), (1,¬y ∨
z), (5,¬z)} and Q = {x, y} be a Q-MAXSAT instance. Assume
that the workset is ϕ′ = {(5, x), (5,¬x ∨ y)}. By invoking a
MAXSAT solver on ϕ′, we get αQ = [x 7→ 1, y 7→ 1] with the
objective value of ϕ′ being 10. The only clause in ϕ \ ϕ′ that uses
x or y is (1,¬y ∨ z), which is not satisfied by αQ. By applying
π-APPROX, we generate the summarization set ψ = {(1,¬y)}.
By invoking a MAXSAT solver on ϕ′ ∪ ψ, we find its optimum
objective value to be 10, which is the same as that of ϕ′. Thus, we
conclude that αQ is a solution of Q-MAXSAT instance (ϕ, {x, y}).
Indeed, model [x 7→ 1, y 7→ 1, z 7→ 0] which is a completion of
αQ, is a solution of the MAXSAT formula ϕ. On the other hand,
the optimality check using the ID-APPROX function will return
ψ′ = {(1,¬y ∨ z)} as the summarization set. By invoking the
MAXSAT solver on φ′ ∪ ψ′, we get an optimum objective value
of 11 with [x 7→ 1, y 7→ 1, z 7→ 1]. As a result, the optimality
check with ID-APPROX fails here because of the presence of z in
the summarization set.

To prove that π-APPROX satisfies the specification of APPROX
in Definition 2, we first introduce a decomposition function.

Definition 10 (π-DECOMP). Given a formula ϕ and set of vari-
ables V ⊆ Var(ϕ), let V ′ = V ar(ϕ) \ V . Then, we define
π-DECOMP(ϕ,V) = (ϕ1, ϕ2) such that:

ϕ1 ={ (w,retain(c,V)) | (w, c) ∈ ϕ ∧Var({(w, c)}) ∩ V 6= ∅ }
ϕ2 ={ (w,retain(c,V ′)) | (w, c) ∈ ϕ ∧

(Var({(w, c)}) ∩ V ′ 6= ∅ ∨ c = 1 ∨ c = 0) }.
Lemma 11. Let π-DECOMP(ϕ,V) = (ϕ1, ϕ2), where V ⊆
Var(ϕ). We have eval(ϕ1 ∪ ϕ2, α) ≥ eval(ϕ, α) for all α.

Proof. To simplify the proof, we first remove the clauses with no
variables from both ϕ and ϕ1 ∪ ϕ2. We use the following two sets
to represent such clauses:

ϕ3 = {(w, c) ∈ ϕ | c = 1}, ϕ4 = {(w, c) ∈ ϕ | c = 0}.
We also define the following two sets:

ϕ′3 = {(w, c) ∈ ϕ2 | c = 1}, ϕ′4 = {(w, c) ∈ ϕ2 | c = 0}.
Based on the definition of ϕ2, we have ϕ3 = ϕ′3 and ϕ4 = ϕ′4.
Therefore, the inequality in the lemma can be rewritten as:

eval(ϕ1 ∪ ϕ2 \ (ϕ′3 ∪ ϕ′4), α) ≥ eval(ϕ \ (ϕ3 ∪ ϕ4), α).

From this point on, we assume ϕ = ϕ \ (ϕ3 ∪ ϕ4) and ϕ2 =
ϕ2 \ (ϕ′3 ∪ ϕ′4). Let V ′ = Var(ϕ) \ V . We prove the lemma by
showing that for any s ∈ ϕ, where s = (w, c) and α,

eval({(w, retain(c,V))}, α) + eval({(w, retain(c,V ′))}, α)
≥ eval({(w, c}, α) (1)

Let S = {(w, c)}, S1 = {(w, retain(c,V))}, S2 =
{(w, retain(c,V ′))}. We prove the above claim with respect to
the three different cases:
1. If Var(S) ∩ V = ∅, then we have S1 = {(w, 0)}, S2 = S.

Since ∀w,α . eval({w, 0}, α) = 0, we have ∀α . eval(S1, α)+
eval(S2, α) = eval(S, α).

2. If Var(S) ∩ V ′ = ∅, then we have S1 = S, S2 = {(w, 0)}.
Similar to Case 1, we have ∀α . eval(S1, α) + eval(S2, α) =
eval(S, α).

3. If Var(S)∩V 6= ∅ and Var(S)∩V ′ 6= ∅, we prove the case by
converting S, S1 and S2 into their equivalent pseudo-Boolean
functions. A pseudo-Boolean function f is a multi-linear poly-
nomial, which maps the assignment of a set of Boolean variables
to a real number:

f(v1, ..., vn) = a0 +

m∑
i=1

(ai

p∏
j=1

vj), where ai ∈ R+.



Any MAXSAT formula can be converted into a pseudo-Boolean
function. The conversion 〈·〉 is as follows:

〈{s1, ..., sn}〉 =
∑n
i=1(fst(si)− fst(si)〈snd(si)〉)

〈
∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j〉 =

∏n
i=1 (1− vi) ∗

∏m
j=1 v

′
j

〈1〉 = 0
〈0〉 = 1

For example, the MAXSAT formula {(5,¬w∨x), (3, y ∨ z)} is
converted into function 5− 5w(1− x) + 3− 3(1− y)(1− z).
We use eval(f, α) to denote the evaluation of pseudo-Boolean
function f under model α. From the conversion, we can con-
clude that ∀ϕ, α . eval(ϕ, α) = eval(〈ϕ〉, α).
We now prove the claim (1) under the third case above. We
rewrite c =

∨n
i=1 vi ∨

∨m
j=1 ¬v

′
j as below:

c =
∨
x∈V1 x ∨

∨
x′∈V2 ¬x

′ ∨
∨
y∈V3 y ∨

∨
y′∈V4 ¬y

′

where V1 = V ∩ {v1, .., vn}, V2 = V ∩ {v′1, .., v′m}, V3 =
V ′ ∩ {v1, .., vn} and V4 = V ′ ∩ {v′1, .., v′m}.
Let c1 =

∨
x∈V1 x ∨

∨
x′∈V2 ¬x

′ and c2 =
∨
y∈V3 y ∨∨

y′∈V4 ¬y
′. Then, we have S1={(w, c1)} and S2={(w, c2)}.

It suffices to prove that 〈S1〉+ 〈S2〉 − 〈S〉 ≥ 0. We have:
〈S1〉+ 〈S2〉 − 〈S〉

= w − w
∏
x∈V1

(1− x)
∏

x′∈V2
x′ + w − w

∏
y∈V3

(1− y)
∏

y′∈V4
y′

−(w − w
∏
x∈V1

(1− x)
∏

x′∈V2
x′

∏
y∈V3

(1− y)
∏

y′∈V4
y′)

= w(1−
∏
x∈V1

(1− x)
∏

x′∈V2
x′)−

w
∏
y∈V3

(1− y)
∏

y′∈V4
y′(1−

∏
x∈V1

(1− x)
∏

x′∈V2
x′)

= w(1−
∏
x∈V1

(1− x)
∏

x′∈V2
x′)(1−

∏
y∈V3

(1− y)
∏

y′∈V4
y′)

Since all variables are Boolean variables, we have

1−
∏
x∈V1(1− x) ∗

∏
x′∈V2 x

′ ≥ 0 and
1−

∏
y∈V3(1− y) ∗

∏
y′∈V4 y

′ ≥ 0.

From Lemma 11, Propositions 3 and 4, we can also conclude that

maxα eval(ϕ1, α) + maxα eval(ϕ2, α)
≥ maxα eval(ϕ1 ∪ ϕ2, α) ≥ maxα eval(ϕ, α)

where π-DECOMP(ϕ,V) = (ϕ1, ϕ2).
We now use the lemma to prove that π-APPROX is a APPROX

function as defined in Definition 2.

Theorem 12 (Soundness of π-APPROX). π-APPROX(ϕ,ϕ′, αϕ′)
summarizes the effect of ϕ \ ϕ′ with respect to αϕ′ .

Proof. Let ψ = π-APPROX(ϕ,ϕ′, αϕ′). We show that π-APPROX
satisfies the specification of an APPROX function in Definition 2 by
proving the inequality below:

max
α

eval(ϕ′∪ψ, α)+max
α

eval(ϕ\ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

Without loss of generality, we assume that ϕ does not contain any
clause (w, c) where c = 0 or c = 1. Otherwise, we can rewrite the
inequality above by removing these clauses from ϕ, ϕ′, and ϕ\ϕ′.

As in the soundness proof for ID-APPROX, we define ϕ1,ϕ2,
ϕ′1, and ϕ′′1 as follows:

ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩Var(ϕ′) 6=∅},
ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩Var(ϕ′)=∅},
ϕ′1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c},
ϕ′′1 = {(w, c) ∈ ϕ1 | αϕ′ |= c}.

We have:
maxα eval(ϕ

′ ∪ ψ, α) + maxα eval((ϕ \ ϕ′)[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ′′1 [αϕ′ ] ∪ ϕ2[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

(eval(ϕ′′1 [αϕ′ ], α) +

eval(ϕ′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)) [from Prop. 3]

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1 , α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α) [since ∀(w, c) ∈ ϕ′′1 .αϕ′ |= c]

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1 , α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2, α) [since Var(ϕ′) ∩Var(ϕ2) = ∅]

Next, we show that π-DECOMP(ϕ′ ∪ ϕ′1 ∪ ϕ2,Var(ϕ′)) = (ϕ′ ∪
ψ,ϕ′1[αϕ′ ] ∪ ϕ2). Let V1 = Var(ϕ′) and V2 = Var(ϕ) \ V1.
For a given clause (w, c) ∈ ϕ′ ∪ ϕ′1 ∪ ϕ2, we show the result
of (w, retain(c,V1)) and (w, retain(c,V2)) under the following
cases:
1. When (w, c) ∈ ϕ′, retain(c,V) = c and retain(c,V ′) = 0.

Hence we have ϕ′ = {(w, retain(c,V)) | (w, c) ∈ ϕ′ ∧
retain(c,V) 6= 0}

2. When (w, c) ∈ ϕ2, retain(c,V) = 0 and retain(c,V ′) = c.
Hence we have ϕ2 = {(w, retain(c,V ′)) | (w, c) ∈ ϕ2 ∧
retain(c,V ′) 6= 0}

3. When (w, c) ∈ ϕ′1, based on the definition of ψ and ϕ′1, we have
ψ = {(w, retain(c,V)) | (w, c) ∈ ϕ′1 ∧ retain(c,V) 6= 0} and
ϕ′1[αϕ′ ] = {(w, retain(c,V ′)) | (w, c) ∈ ϕ′1 ∧ retain(c,V ′) 6=
0}.
Therefore, π-DECOMP(ϕ′ ∪ ϕ′1 ∪ ϕ2,Var(ϕ′)) = (ϕ′ ∪

ψ,ϕ′1[αϕ′ ] ∪ ϕ2).
By applying Lemma 11, we can derive

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ1[αϕ′ ] ∪ ϕ2, α)

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α).
(1)

Thus, we can prove the theorem as follows:
maxα eval(ϕ

′ ∪ ψ, α) + maxα eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1 , α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2, α)

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α) + max
α

eval(ϕ′′1 , α) [from (1)]

≥ max
α

[eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α) + eval(ϕ′′1 , α)] [from Prop. 4]

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ′′1 ∪ ϕ2, α) [from Prop. 3]

= max
α

eval(ϕ, α)

Discussion. Similar to ID-APPROX, π-APPROX generates the
summarization set from the frontier clauses that are not satisfied
by the current solution. Consequently, the performance of the
MAXSAT invocation in the optimality check is similar for both
π-APPROX and ID-APPROX. π-APPROX further improves the pre-
cision of the check by applying the retain operator to strengthen
the clauses generated. The retain operator does incur modest over-
heads when computing π-APPROX. In practice, however, we find
that the additional precision provided by π-APPROX function im-
proves the overall performance of the algorithm by terminating the
iterative process earlier.



4.2.3 The γ-APPROX Function
While both the ID-APPROX function and the π-APPROX func-
tion only consider information on the frontier clauses, γ-APPROX
further improves precision by considering information from non-
frontier clauses. Similar to the π-APPROX function, γ-APPROX
also generates the summarization set by applying the retain func-
tion on the frontier clauses violated by the current partial model.
The key improvement is that γ-APPROX tries to reduce the weights
of generated clauses by exploiting information from the non-
frontier clauses.

Before defining the γ-APPROX function, we first introduce
some definitions:
PV (

∨n
i=1 vi ∨

∨m
i=1 ¬v

′
i)={v1, ..., vn}, PV (0)=PV (1)=∅

NV (
∨n
i=1 vi ∨

∨m
i=1 ¬v

′
i)={v′1, ..., v′m}, NV (0)=NV (1)=∅

link(v, u, ϕ)⇔ ∃(w, c) ∈ ϕ : v ∈ NV (c) ∧ u ∈ PV (c)
tReachable(v, ϕ) = {v} ∪ {u | (v, u) ∈ R+},

where R = {(v, u) | link(v, u, ϕ)}
fReachable(v, ϕ) = {v} ∪ {u | v ∈ tReachable(u, ϕ)}
tPenalty(v, ϕ) =

∑
{w | (w,

∨m
i=1 ¬v

′
i) ∈ ϕ ∧

{v′1, ..., v′m} ∩ tReachable(v, ϕ) 6= ∅}
fPenalty(v, ϕ) =

∑
{w | (w,

∨n
i=1 vi) ∈ ϕ ∧

{v1, ..., vn} ∩ fReachable(v, ϕ) 6= ∅}
Intuitively, tPenalty(v, ϕ) overestimates the penalty incurred

on the objective value of ϕ by setting variable v to true , while
fPenalty(v, ϕ) overestimates the penalty incurred on the objec-
tive value of ϕ by setting variable v to false .

We next introduce the γ-APPROX approximation function.

Definition 13 (γ-APPROX). Given ϕ, ϕ′ ⊆ ϕ, and a partial model
αϕ′ ∈ MaxSAT (ϕ′), γ-APPROX is defined as below:

γ-APPROX(ϕ,ϕ′, αϕ′) = {(w′, c′) | (w, c) ∈ ϕ \ ϕ′∧
Var({(w, c)}) ∩Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c ∧ c′ =
retain(c,Var(ϕ′)) ∧ w′ = reduce(w, c, ϕ, ϕ′, αϕ′).}

We next define the reduce function. Let c′′ = retain(c,Var(ϕ) \
Var(ϕ′)). Then, function reduce is defined as follows:

1. If c′′ = 0, reduce(w, c, ϕ, ϕ′, αϕ′) = w.
2. If PV (c′′) 6= ∅ and NV (c′′) = ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =
min(w, minv∈PV (c′′)tPenalty(v, (ϕ \ ϕ′)[αϕ′ ])).

3. If PV (c′′) = ∅ and NV (c′′) 6= ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =
min(w, minv∈NV (c′′)fPenalty(v, (ϕ \ ϕ′)[αϕ′ ])).

4. If PV (c′′) 6= ∅ and NV (c′′) 6= ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =
min(min(w, minv∈PV (c′′)tPenalty(v, (ϕ\ϕ′)[αϕ′ ])),
minv∈NV (c′′)fPenalty(v, (ϕ \ ϕ′)[αϕ′ ])).

The corresponding REFINE function is:

γ-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = {(w, c) | (w, c) ∈ ϕ \ ϕ′∧

(reduce(w, c, ϕ, ϕ′, αϕ′), retain(c,Var(ϕ′))) ∈ ϕs}

Example. Let (ϕ,Q) where ϕ = {(5, x), (5,¬x∨ y), (100,¬y ∨
z), (1,¬z)} and Q = {x, y} be a Q-MAXSAT instance. Sup-
pose that the workset is ϕ′ = {(5, x), (5,¬x ∨ y)}. By invoking
a MAXSAT solver on ϕ′, we get αQ = [x 7→ 1, y 7→ 1] with
the objective value of ϕ′ being 10. The only clause in ϕ \ ϕ′ that
uses x or y is (100,¬y ∨ z), which is not satisfied by αQ. By ap-
plying the retain operator, γ-APPROX strengthens (100,¬y ∨ z)
into (100,¬y). It further transforms it into (1,¬y) via reduce . By
comparing the optimum objective value of ϕ′ and ϕ′ ∪ {(1,¬y)},
CHECK concludes that ϕQ is a solution of the Q-MAXSAT in-
stance. Indeed, [x 7→ 1, y 7→ 1, z 7→ 1] which is a completion
of αϕ′ is a solution of the MAXSAT formula ϕ. On the other hand,
applying π-APPROX will fail the check due to the high weight of
the clause generated via retain.

We explain how reduce works on this example. We first gener-
ate c′′ = retain(¬y ∨ z, {x, y, z} \ {x, y}) = z. Then, we com-
pute (ϕ \ϕ′)[αQ] = {(100,¬y ∨ z), (1,¬z)}[[x 7→ 1, y 7→ 1]] =
{(100, z), (1,¬z)}. As evident, setting z to 1 only violates (1,¬z),
incurring a penalty of 1 on the objective value of (ϕ \ ϕ′)[αQ]. As
a result, tPenalty(z, (ϕ \ ϕ′)[αQ]) = 1, which is lower than the
weight of the summarization clause (100,¬y). Hence, reduce re-
turns 1 as the new weight for the summarization clause.

To prove that γ-APPROX satisfies the specification of APPROX
in Definition 2, we first prove two lemmas.

Lemma 14. Given (w, c) ∈ ϕ, v ∈ PV (c), and tPenalty(v, ϕ)
< w, we construct ϕ′ as follows:

ϕ′ = ϕ \ {(w, c)} ∪ {(w′, c)},where w′ = tPenalty(v, ϕ).

Then we have

max
α

eval(ϕ, α) = max
α′

eval(ϕ′, α′) + w − w′.
Proof. We first prove a claim:

∃α : (eval(ϕ, α) = max
α′

eval(ϕ, α′)) ∧ α |= c.

We prove this by contradiction. Suppose we can only find a model
α that maximizes the objective value of ϕ, such that α 6|= c. We
can construct a model α1 in the following way:

α1(u) =

{
α(u) if u /∈ tReachable(v, ϕ),
1 otherwise.

Based on the definition of tPenalty, we have

eval(ϕ, α1) ≥ eval(ϕ, α)− tPenalty(v, ϕ) + w.

Since w ≥ tPenalty(v, ϕ), α1 yields no worse objective value
than α. Since α1 |= c as v ∈ PV (c) and α1(v) = 1, we proved
the claim.

Similarly, we can show

∃α′ : (eval(ϕ′, α′) = max
α′′

eval(ϕ′, α′′)) ∧ α′ |= c.

Based on the two claims, we can find α |= c and α′ |= c such that

max
α1

eval(ϕ, α1) = eval(ϕ, α) = w + eval(ϕ \ {(w, c)}, α),

max
α2

eval(ϕ′, α2) = eval(ϕ′, α′) = w′+eval(ϕ′\{(w′, c)}, α′).

We next show eval(ϕ \ {(w, c)}, α) = eval(ϕ′ \ {(w′, c)}, α′)
by contradiction. Assuming eval(ϕ \ {(w, c)}, α) > eval(ϕ′ \
{(w′, c)}, α′), we will have eval(ϕ′, α) > eval(ϕ′, α′). This is
because eval(ϕ′, α) = eval(ϕ′ \{(w′, c)}, α)+w′ and eval(ϕ′ \
{(w′, c)}, α) = eval(ϕ \ {(w, c)}, α). This contradicts with the
fact that maxα2 eval(ϕ′, α2) = eval(ϕ′, α′). Thus, we conclude
eval(ϕ\{(w, c)}, α) ≤ eval(ϕ′\{(w′, c)}, α′). Similarly,we can
show eval(ϕ \ {(w, c)}, α) ≥ eval(ϕ′ \ {(w′, c)}, α′)
Given eval(ϕ \ {(w, c)}, α) = eval(ϕ′ \ {(w′, c)}, α′), we have:

max
α1

eval(ϕ, α1) = eval(ϕ, α) = w + eval(ϕ \ {(w, c)}, α)

= w + eval(ϕ′ \ {(w′, c)}, α′) = eval(ϕ′, α′) + w − w′

= max
α2

eval(ϕ′, α2) + w − w′.

Lemma 15. Given (w, c) ∈ ϕ, v ∈ NV (c) and fPenalty(v, ϕ)
< w, we construct ϕ′ as follows:

ϕ′ = ϕ \ {(w, c)} ∪ {(w′, c)},where w′ = fPenalty(v, ϕ).

Then we have

max
α

eval(ϕ, α) = max
α′

eval(ϕ′, α′) + w − w′.

Proof. Analogous to the proof to Lemma 14; we omit the details.



We now prove that γ-APPROX satisfies the specification of
APPROX in Definition 2.

Theorem 16 (γ-APPROX). γ-APPROX(ϕ,ϕ′, αϕ′) summarizes
the effect of ϕ \ ϕ′ with respect to αϕ′ .
Proof. Let ψ = γ-APPROX(ϕ,ϕ′, αϕ′). We show that γ-APPROX
satisfies the specification of an APPROX function in Definition 2 by
proving the inequality below:
max
α

eval(ϕ′∪ψ, α)+max
α

eval(ϕ\ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

We define ϕ1 and ϕ2 as follows:

ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩Var(ϕ′) 6=∅},
ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩Var(ϕ′)=∅}.

ϕ1 is the set of frontier clauses and ϕ2 contains rest of the clauses
in ϕ \ ϕ′. We further split ϕ1 into the following disjoint sets:

ϕ1
1 = {(w, c) ∈ ϕ1 | αϕ′ |= c},

ϕ2
1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w},

ϕ3
1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c ∧ w′ < w ∧

∃v ∈ PV (c) : w′ = tPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧
reduce(w, c, ϕ, ϕ′, αϕ′) = w′},

ϕ4
1 = ϕ1 \ ( ϕ1

1 ∪ ϕ2
1 ∪ ϕ3

1).
Effectively, ϕ2

1, ϕ3
1, and ϕ4

1 contain all the clauses being strength-
ened in γ-APPROX: ϕ2

1 contains all the clauses whose weights are
not reduced; ϕ3

1 contains all the clauses whose weights are reduced
through positive literals in them; ϕ4

1 contains all the clauses whose
weights are reduced through negative literals in them.

Further, we define ϕ̂3
1 and ϕ̂4

1 as below:

ϕ̂3
1 = {(w′, c) | (w, c) ∈ ϕ3

1 ∧ ∃v ∈ PV (c) : w′ =
tPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w′},

ϕ̂4
1 = {(w′, c) | (w, c) ∈ ϕ4

1 ∧ ∃v ∈ NV (c) : w′ =
fPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w′}.

Using Lemmas 14 and 15, we prove the following claim (1):

max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ3
1[αϕ′ ]∪ϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ̂3
1[αϕ′ ]∪ ˆϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

Similar to the soundness proof for π-APPROX, we show:

π-DECOMP(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2,Var(ϕ′)) =

(ϕ′ ∪ ψ,ϕ2
1[αϕ′ ] ∪ ϕ̂3

1[αϕ′ ] ∪ ϕ̂4
1[αϕ′ ] ∪ ϕ2[αϕ′ ]).

Following Lemma 11, we can derive the following claim (2):

max
α

eval(ϕ′ ∪ ψ, α)+

max
α

eval(ϕ2
1[αϕ′ ] ∪ ϕ̂3

1[αϕ′ ] ∪ ϕ̂4
1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2, α).

By contradiction we can show the following claim (3) holds:

∀ϕ, (w, c) ∈ ϕ,w′ ≤ w.maxα eval(ϕ, α) ≤
maxα eval(ϕ \ {(w, c)} ∪ {(w′, c)}, α) + w − w′.

Combining Claim (1), (2), and (3), we have

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ψ, α)+

max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ̂3
1[αϕ′ ]∪ ˆϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ max
α

eval(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2, α) + max

α
eval(ϕ1

1, α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ max
α

eval(ϕ′ ∪ ϕ1
1 ∪ ϕ2

1 ∪ ϕ̂3
1 ∪ ϕ̂4

1 ∪ ϕ2, α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ maxα eval(ϕ, α).

Discussion. γ-APPROX is the most precise among the three func-
tions as it is the only one that considers the effects of non-frontier
clauses. This improved precision comes at the cost of computing
additional information from the non-frontier clauses. Such infor-
mation can be computed in polynomial time via graph reachability
algorithms. In practice, we find this overhead to be negligible com-
pared to the performance boost for the overall approach. There-
fore, in the empirical evaluation, we use γ-APPROX and its related
REFINE function in our implementation.

5. Empirical Evaluation
This section evaluates our approach on Q-MAXSAT instances gen-
erated from several real-world problems in program analysis and
information retrieval.

5.1 Experimental Setup
We implemented our algorithm for Q-MAXSAT in a tool PILOT.
In all our experiments, we used the MiFuMaX solver [23] as the
underlying MAXSAT solver, although PILOT allows using any off-
the-shelf MAXSAT solver. We also study the effect of different such
solvers on the overall performance of PILOT.

All our experiments were performed on a Linux machine with
8 GB RAM and a 3.0 GHz processor. We limited each invocation
of the MAXSAT solver to 3 GB RAM and one hour of CPU time.
Next, we describe the details of the Q-MAXSAT instances that we
considered for our evaluation.

Instances from program analysis. These are instances generated
from two fundamental static analyses for sequential and concurrent
programs: a pointer analysis and a datarace analysis. Both analy-
ses are expressed in a framework that combines conventional rules
specified by analysis writers with feedback on false alarms pro-
vided by analysis users [35]. The framework produces MAXSAT
instances whose hard clauses express soundness conditions of the
analysis, while soft clauses specify false alarms identified by users.
The goal is to automatically generalize user feedback to other false
alarms produced by the analysis on the same input program.

The pointer analysis is a flow-insensitive, context-insensitive,
and field-sensitive pointer analysis with allocation site heap ab-
straction [32]. Each query for this analysis is a Boolean variable
that represents whether an unsafe downcast identified by the anal-
ysis prior to feedback is a true positive or not.

The datarace analysis is a combination of four analyses de-
scribed in [43]: call-graph, may-alias, thread-escape, and lockset
analyses. A query for this analysis is a Boolean variable that repre-
sents whether a datarace reported by the analysis prior to feedback
is a true positive or not.

We generated Q-MAXSAT instances by running these two anal-
yses on nine Java benchmark programs. Table 1 shows the charac-
teristics of these programs. Except for the first three smaller pro-
grams in the table, all the other programs are from the DaCapo
suite [10]. Table 2 shows the numbers of queries, variables, and
clauses for the Q-MAXSAT instances corresponding to the above
two analyses on these benchmark programs.



benchmark brief description # classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

ftp Apache FTP server 93 414 471 2,206 29 118 13 130
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
weblech website download/mirror tool 11 576 78 3,326 6 208 12 194
antlr generates parsers and lexical analyzers 111 350 1,150 2,370 128 186 29 131
avrora AVR microcontroller simulator 1,158 1,544 4,234 6,247 222 325 64 193
chart plots graphs and render them as PDF 192 750 1,516 4,661 102 306 54 268
luindex document indexing tool 206 619 1,390 3,732 102 235 39 190
lusearch text searching tool 219 640 1,399 3,923 94 250 40 198
xalan XML to HTML transforming tool 423 897 3,247 6,044 188 352 129 285

Table 1: Characteristics of the benchmark programs . Columns “total” and “app” are with and without counting JDK library code, respectively.

datarace analysis pointer analysis
# queries # variables # clauses # queries # variables # clauses

ftp 338 1.2M 1.4M 55 2.3M 3M
hedc 203 0.8M 0.9M 36 3.8M 4.8M
weblech 7 0.5M 0.9M 25 5.8M 8.4M
antlr 0 - - 113 8.7M 13M
avrora 803 0.7M 1.5M 151 11.7M 16.3M
chart 0 - - 94 16M 22.3M
luindex 3,444 0.6M 1.1M 109 8.5M 11.9M
lusearch 206 0.5M 1M 248 7.8M 10.9M
xalan 11,410 2.6M 4.9M 754 12.4M 18.7M

Table 2: Number of queries, variables, and clauses in the MAXSAT
instances generated by running the datarace analysis and the pointer
analysis on each benchmark program. The datarace analysis has no
queries on antlr and chart as they are sequential programs.

Instances from information retrieval. These are instances gen-
erated from problems in information retrieval. In particular, we
consider problems in relational learning where the goal is to in-
fer new relationships that are likely present in the data based
on certain rules. Relational solvers such as Alchemy [29] and
Tuffy [45] solve such problems by solving a system of weighted
constraints generated from the data and the rules. The weight of
each clause represents the confidence in each inference rule. We
consider Q-MAXSAT instances generated from three standard re-
lational learning applications, described next, whose datasets are
publicly available [1, 2, 7].

The first application is an advisor recommendation system (AR),
which recommends advisors for first year graduate students. The
dataset for this application is generated from the AI genealogy
project [1] and DBLP [2]. The query specifies whether a professor
is a suitable advisor for a student. The Q-MAXSAT instance gen-
erated consists of 10 queries, 0.3 million variables, and 7.9 million
clauses.

The second application is Entity Resolution (ER), which identi-
fies duplicate entities in a database. The dataset is generated from
the Cora bibliographic dataset [7]. The queries in this applica-
tion specify whether two entities in the dataset are the same. The
Q-MAXSAT instance generated consists of 25 queries, 3 thousand
variables, and 0.1 million clauses.

The third application is Information Extraction (IE), which ex-
tracts information from text or semi-structured sources. The dataset
is also generated from the Cora dataset. The queries in this appli-
cation specify extractions of the author, title, and venue of a pub-
lication record. The Q-MAXSAT instance generated consists of 6
queries, 47 thousand variables, and 0.9 million clauses.

5.2 Evaluation Result
To evaluate the benefits of being query-guided, we measured the
running time and memory consumption of PILOT. We used MiFu-
MaX as the baseline by running it on MAXSAT instances generated

from our Q-MAXSAT instances by removing queries. To better un-
derstand the benefits of being query-guided, we also study the size
of clauses posed to the underlying MAXSAT solver in the last iter-
ation of PILOT, and the corresponding solver running time.

Further, to understand the cost of resolving each query, we
pick one Q-MAXSAT instance from both domains and evaluate the
performance of PILOT by resolving each query separately.

Finally, we study the sensitivity of PILOT’s performance to the
underlying MAXSAT solver by running PILOT using three different
solvers besides MiFuMaX.

Performance of our approach vs. baseline approach. Table 3
summarizes our evaluation results on Q-MAXSAT instances gen-
erated from both domains.

Our approach successfully terminated on all instances and sig-
nificantly outperformed the baseline approach in memory con-
sumption on all instances, while the baseline only finished on
twelve of the twenty instances in total. On the eight largest in-
stances, the baseline approach either ran out of memory (exceeded
3 GB), or timed out (exceeded one hour).

Column ‘peak memory’ shows the peak memory consumption
of our approach and the baseline approach on all instances. For
the instances on which both approaches terminated, our approach
consumed 55.7% less memory compared to the baseline. Moreover,
for large instances containing more than two million clauses, this
number further improves to 71.6%.

We next compare the running time of both approaches under
the ‘running time’ column. For most instances on which both ap-
proaches terminated, our approach does not outperform the base-
line in running time. One exception is IE where our approach ter-
minated in 2 seconds while the baseline approach spent 2,760 sec-
onds, yielding a 1,380X speedup. Due to the iterative nature of
PILOT, on simple instances where the baseline approach runs ef-
ficiently, the overall running time of PILOT can exceed that of the
baseline approach. As column ‘iteration’ shows, PILOT takes multi-
ple iterations on most instances. However, for challenging instances
like IE and other instances where the baseline approach failed to
finish, PILOT yields significant improvement in running time.

To better understand the gains of being query-guided, we study
the number of clauses PILOT explored under the ‘problem size’
column. Column ‘final’ shows the number of clauses PILOT posed
to the underlying solver in the last iteration, while column ‘max’
shows the total number of clauses in the Q-MAXSAT instances.
On average, PILOT only explored 35.2% clauses in each instance.
Moreover, for large instances containing over two million clauses,
this number improves to 19.4%. Being query-guided allows our ap-
proach to lazily explore the problem and only solve the clauses that
are relevant to the queries. As a result, our approach significantly
outperforms the baseline approach.

The benefit of being query-guided is also reflected by the run-
ning time of the underlying MAXSAT solver in our approach. Col-
umn ‘final solver time’ shows the running time of the underlying



application benchmark
running time peak memory problem size final

iterations(in seconds) (in MB) (in thousands) solver time
PILOT BASELINE PILOT BASELINE final max (in seconds)

datarace

ftp 53 5 387 589 892 1,400 3 7
hedc 45 4 260 387 586 925 2 6
weblech 2 1 199 340 561 937 1 1
avrora 55 5 416 576 991 1,521 2 6
luindex 72 4 278 441 657 1,120 2 6
lusearch 45 3 223 388 575 994 2 8
xalan 145 21 1,328 1,781 3,649 4,937 15 5

pointer
analysis

ftp 16 11 16 1,262 29 2,982 0.1 9
hedc 23 21 181 1,918 400 4,821 3 7
weblech 4 timeout 363 timeout 922 8,353 4 1
antlr 190 timeout 1,405 timeout 3,304 12,993 14 9
avrora 178 timeout 1,095 timeout 2,649 16,344 13 8
chart 253 timeout 721 timeout 1,770 22,325 8 6
luindex 169 timeout 944 timeout 2,175 11,882 12 8
lusearch 115 timeout 659 timeout 1,545 10,917 8 9
xalan 646 timeout 1,312 timeout 3,350 18,713 19 8

AR - 4 timeout 4 timeout 2 7,968 0.3 7
ER - 13 2 6 44 9 104 0.2 19
IE - 2 2,760 13 335 27 944 0.05 7

Table 3: Performance of our PILOT and the baseline approach (BASELINE). In all experiments, we used a memory limit of 3 GB and a time
limit of one hour for each invocation of the MAXSAT solver in both approaches. Experiments that timed out exceeded either of these limits.
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Figure 4: The memory consumption of PILOT when it resolves each
query separately on instances generated from (a) pointer analysis
and (b) AR. The dotted line represents the memory consumption of
PILOT when it resolves all queries together.

solver in the last iteration of PILOT. Despite the fact that the base-
line approach outperforms PILOT in overall running time for some
instances, the running time of the underlying solver is consistently
lower than that of the baseline approach. On average, this time is
only 42.1% of the time for solving the whole instance.

Effect of resolving queries separately. We studied the cost of
resolving each query by evaluating the memory consumption of
PILOT when applying it to each query separately. Figure 4 shows
the result on one instance generated from the pointer analysis and
the instance generated from AR. The program used in the pointer
analysis is avrora. For comparison, the dotted line in the figure
shows the memory consumed by PILOT when resolving all queries
together. The other instances yield similar trends and we omit
showing them for brevity.

instance solver running time (in sec.) peak memory (in MB)
PILOT BASELINE PILOT BASELINE

pointer
analysis

CCLS2akms timeout timeout timeout timeout
Eva500 2,267 timeout 1,379 timeout
MaxHS 555 timeout 1,296 timeout
WPM-2014.co 609 timeout 1,127 timeout
MiFuMaX 178 timeout 1,095 timeout

AR

CCLS2akms 148 timeout 13 timeout
Eva500 21 timeout 2 timeout
MaxHS 4 timeout 9 timeout
WPM-2014.co 6 timeout 2 timeout
MiFuMaX 4 timeout 4 timeout

Table 4: Performance of our approach and the baseline approach
with different underlying MAXSAT solvers.

For instances generated from the pointer analysis, when each
query is resolved separately, except for one outlier, PILOT uses less
than 30% of the memory it needs when all queries are resolved
together. The result shows that each query is decided by different
clauses in the program analysis instances. By resolving them sep-
arately, we further improve the performance of PILOT. This is in
line with locality in program analysis, which is exploited by vari-
ous query-driven approaches in program analysis.

For the instance generated from AR, we observed different re-
sults for each query. For eight queries, PILOT uses over 85% of
the memory it needs when all queries are resolved together. For the
other two queries, however, it uses less than 37% of that memory.
After further inspection, we found that PILOT uses a similar set of
clauses to produce the solution to the former eight queries. This in-
dicates that for queries correlated with each other, batching them
together in PILOT can improve the performance compared to the
cumulative performance of resolving them separately.

Effect of different underlying solvers. To study the effect of the
underlying MAXSAT solver, we evaluated the performance of PI-
LOT using CCLS2akms, Eva500, MaxHS, and wpm-2014.co as the
underlying solver. CCLS2akms and Eva500 were the winners in
the MaxSAT’14 competition for random instances and industrial
instances, respectively, while MaxHS ranked third for crafted in-
stances (neither of the solvers performing better than MaxHS is
publicly available). We used each solver itself as the baseline for



comparison. In the evaluation, we used two instances from differ-
ent domains, one generated from running the pointer analysis on
avrora, and the other generated from AR.

Table 4 shows the running time and memory consumption of
PILOT and the baseline approach under each setting. For conve-
nience, we also include the result with MiFuMaX as the underly-
ing solver in the table. As the table shows, except for the run with
CCLS2akms on the pointer analysis instance, PILOT terminated un-
der all the other settings, while none of the baseline approaches
finished on any instance. This shows that our approach consistently
gives improved performance regardless of the underlying MAXSAT
solver it invokes.

6. Related Work
The MAXSAT problem is one of the optimization extensions of the
SAT problem. The original form of the MAXSAT problem does not
allow any hard clauses, and requires each soft clause to have a unit
weight. A model of this problem is a complete assignment to the
variables that maximizes the number of satisfied clauses. Two im-
portant variations of this problem are the weighted MAXSAT prob-
lem and the partial MAXSAT problem. The weighted MAXSAT
problem allows each soft clause to have an arbitrary positive weight
instead of limiting it to a unit weight; a model of this problem is
a complete assignment that maximizes the sum of the weights of
satisfied soft clauses. The partial MAXSAT problem allows hard
clauses mixed with soft clauses; a model of this problem is a com-
plete assignment that satisfies all hard clauses and maximizes the
number of satisfied soft clauses. The combination of both these
variations yields the weighted partial MAXSAT problem, which is
commonly referred to simply as the MAXSAT problem, and is the
problem addressed in our work.

MAXSAT solvers are broadly classified into approximate and
exact. Approximate solvers are efficient but do not guarantee op-
timality (i.e., may not maximize the objective value) [38] or even
soundness (i.e., may falsify a hard clause) [27], although it is com-
mon to provide error bounds on optimality [54]. Our solver, on the
other hand, is exact as it guarantees optimality and soundness.

There are a number of different approaches for exact MAXSAT
solving, including branch-and-bound based, satisfiability-based,
unsatisfiability-based, and their combinations [4, 8, 20, 22, 37, 39,
41, 42, 44]. The most successful of these on real-world instances,
as witnessed in annual Max-SAT evaluations [3], perform iterative
solving using a SAT solver as an oracle in each iteration [4, 41].
Such solvers differ primarily in how they estimate the optimal cost
(e.g., linear or binary search), and the kind of information that
they use to estimate the cost (e.g. cores, the structure of cores,
or satisfying assignments). Many algorithms have been proposed
that perform search on either upper bound or lower bound of the
optimal cost [4, 41, 42, 44], Some algorithms efficiently perform
a combined search over two bounds [20, 22]. A drawback of the
most sophisticated combined search algorithms is that they modify
the formula using expensive Pseudo Boolean (PB) constraints that
increase the size of the formula and, potentially, slow down the
solver. A recent promising approach [8] avoids this problem by us-
ing succinct formula transformations that do not use PB constraints
and can be applied incrementally.

Our approach is similar in spirit to the above exact approaches
in aspects such as iterative solving and optimal cost estimation. But
we solve a new and fundamentally different optimization problem
Q-MAXSAT, which enables our approach to be demand-driven,
unlike existing approaches. In particular, it enables our approach to
entirely avoid exploring vast parts of a given, very large MAXSAT
formula that are irrelevant to deciding the values of a (small set
of) queries in some model of the original MAXSAT formula. For

this purpose, our approach invokes an off-the-shelf exact MAXSAT
solver on small sub-formulae of a much larger MAXSAT formula.
Our approach is thus also capable of leveraging advances in solvers
for the MAXSAT problem. Conversely, it would be interesting to
explore how to integrate our query-guided approach into search
algorithms of existing MAXSAT solvers.

The MAXSAT problem has also been addressed in the con-
text of probabilistic logics for information retrieval [15], such as
PSLs (Probabilistic Soft Logics) [28] and MLNs (Markov Logic
Networks) [48]. These logics seek to reason efficiently with very
large knowledge bases (KBs) of imperfect information. Examples
of such KBs are the AR, ER, and IE applications in our empirical
evaluation (Section 5). In particular, a fully grounded formula in
these logics is a MaxSAT formula, and finding a model of this for-
mula corresponds to solving the Maximum-a-Posteriori (MAP) in-
ference problem in those logics [11, 29, 45, 46, 49]. A query-guided
approach has been proposed for this problem [55] with the same
motivation as ours, namely, to reason about very large MAXSAT
formulae. However, this approach as well as all other (non-query-
guided) approaches in the literature on these probabilistic logics
sacrifice optimality as well as soundness.

In contrast, query-guided approaches have witnessed tremen-
dous success in the domain of program reasoning. For instances,
program slicing [21] is a popular technique to scale program analy-
ses by pruning away the program statements which do not affect an
assertion (query) of interest. Likewise, counter-example guided ab-
straction refinement (CEGAR) based model checkers [6, 12, 19]
and refinement-based pointer analyses [18, 34, 50, 51] compute
a cheap abstraction which is precise enough to answer a given
query. However, the vast majority of these approaches target con-
straint satisfaction problems (i.e., problems with only hard con-
straints) as opposed to constraint optimization problems (i.e., prob-
lems with mixed hard and soft constraints). To our knowledge, our
approach is the first to realize the benefits of query-guided reason-
ing for constraint optimization problems—problems that are be-
coming increasingly common in domains such as program reason-
ing [9, 30, 31, 33, 58].

7. Conclusion
We introduced a new optimization problem Q-MAXSAT that
extends the well-known MAXSAT problem with queries. The
Q-MAXSAT problem is motivated by the fact that many real-
world MAXSAT problems pose scalability challenges to MAXSAT
solvers, and the observation that many such problems are natu-
rally equipped with queries. We proposed efficient exact algo-
rithms for solving Q-MAXSAT instances. The algorithms lazily
construct small MAXSAT sub-problems that are relevant to an-
swering the given queries in a much larger MAXSAT problem. We
implemented our Q-MAXSAT solver in a tool PILOT that uses off-
the-shelf MAXSAT solvers to efficiently solve such sub-problems.
We demonstrated the effectiveness of PILOT in practice on a di-
verse set of 19 real-world Q-MAXSAT instances ranging in size
from 100 thousand to 22 million clauses. On these instances, PI-
LOT used only 285 MB of memory on average and terminated in
107 seconds on average, whereas conventional MAXSAT solvers
timed out for eight of the instances.
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