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Abstract. Interprocedural analyses are compositional when they compute over-
approximations of procedures in a bottom-up fashion. These analyses are usu-
ally more scalable than top-down analyses, which compute a different procedure
summary for every calling context. However, compositional analyses are rare in
practice as it is difficult to develop them with enough precision.
We establish a connection between compositional analyses and modular lattices,
which require certain associativity between the lattice join and meet operations,
and use it to develop a compositional version of the connection analysis by Ghiya
and Hendren. Our version is slightly more conservative than the original top-
down analysis in order to meet our modularity requirement. When applied to real-
world Java programs our analysis scaled much better than the original top-down
version: The top-down analysis times out in the largest two of our five programs,
while ours incurred only 2-5% of precision loss in the remaining programs.

1 Introduction
Scaling program analysis to large programs is an ongoing challenge for program ver-
ification. Typical programs include many relatively small procedures. Therefore, a
promising direction for scalability is analyzing each procedure in isolation, using pre-
computed summaries for called procedures and computing a summary for the analyzed
procedure. Such analyses are called bottom-up interprocedural analysis or composi-
tional analysis. Notice that the analysis of the procedure itself need not be composi-
tional and can be costly. Indeed, bottom-up interprocedural analyses have been found
to scale well [3, 5, 11, 20, 32].

The theory of compositional analysis has been studied in [6, 10, 15, 16, 18]. How-
ever, designing and implementing such an analysis is challenging, for several reasons:
it requires accounting for all potential calling contexts of a procedure in a sound and
precise way; the summary of the procedures can be quite large leading to infeasible an-
alyzers; and it may be costly to instantiate procedure summaries. An example of these
challenges is the unsound original formulation of the compositional pointer analysis al-
gorithm in [32]. A modified version of the algorithm was subsequently proposed in [29]
and, more recently, proven sound in [23] using abstract interpretation. In contrast, top-
down interprocedural analysis [8, 27, 30] is much better understood and has been inte-
grated into existing tools such as SLAM [1], Soot [2], WALA [12], and Chord [26].

Our goal is to contribute to a better understanding of bottom-up interprocedural
analysis. Specifically, we aimed to characterize cases under which bottom-up and top-
down interprocedural analysis yield the same results when both analyses use the same



underlying abstract domains. We partially achieved our goal by formulating a suffi-
cient condition on the effect of primitive commands on abstract states that guarantees
bottom-up and top-down interprocedural analyses will yield the same results. The con-
dition is based on lattice theory. Informally, the idea is that the abstract semantics of
primitive commands can only use meet and join operations with constant elements, and
that elements used in the meet must be modular in a lattice theoretical sense [19].

The description of the general framework and proofs of soundness and precision can
be found in [4]. For space reasons, we do not provide the general theory here. Instead,
we present our results by means of an application: We present a variant of connection
analysis [14] which we developed using our approach. Connection analysis is a kind
of pointer analysis that aims to prove that two references can never point to the same
undirected heap component. It thus ignores the direction of pointers. This problem arose
from the need to automatically parallelize sequential programs. Despite its conceptual
simplicity, connection analysis is flow- and context-sensitive, and the effect of program
statements is non-distributive. In fact, the top-down interprocedural connection analysis
is exponential; indeed our experiments indicate that this analysis scales poorly.

More specifically, in this paper, we present a formulation of a variant of the con-
nection analysis in a way that satisfies the requirements of our general framework. Intu-
itively, the main difference from the original analysis is that we had to over-approximate
the treatment of variables that point to null in all program states that occur at a pro-
gram point. We implemented two versions of the top-down interprocedural connection
analysis for Java programs in order to measure the extra loss of precision of our over-
approximation. We also implemented the bottom-up interprocedural analysis for Java
programs. We report empirical results for five benchmarks of sizes 15K–310K byte-
codes for a total of 800K bytecodes. The original top-down analysis times out in over
six hours on the largest two benchmarks. For the remaining three benchmarks, only 2-
5% of precision was lost by our bottom-up analysis due to the modularity requirement.

2 Informal Overview and Running Example
In this section, we illustrate the use of modular lattices in the design of our composi-
tional connection analysis, focusing on the use of modular elements to ensure precision.

Definition 1. An element dp in a lattice D is (right) modular if

∀d, d′ ∈ D. d′ v dp ⇒ dp u (d t d′) = (dp u d) t d′ .
We call a lattice D modular if all of its elements are modular.

One way to understand the modularity condition in lattices is to think about it as a
requirement of commutativity between two operators (dp u −) and (− t d′) [19]. A
particular case in which this condition holds for every element dp is if the lattice meet
operation distributes over the join operation, e.g., as in the powerset lattice (P(S),⊆).

Consider a program in Fig. 1. It consists of procedures main() and p1(), . . . ,pn().
The main() procedure first allocates four objects and connects them into two disjoint
pairs. Then, it invokes p1() using either a0 or b0 as the actual parameter. This invo-
cation triggers subsequent calls to p2(), . . . ,pn(), where all the invoked procedures
behave almost the same as p1: procedure pi() assigns its formal parameter ci-1 either
to ai or to bi, and then calls pi+1 using ci-1 as the actual parameter, unless i = n.

2



static main() {
g1=new h1; g2=new h2;
a0=new h3; b0=new h4;
a0.f=g1; b0.f=g2;
if(*) p1(a0);
else p1(b0);}

pi(ci-1) {
if(*)

ai=ci-1;
else

bi=ci-1;
pi+1(ci-1);}

pn(cn-1) {
if(*)

an=cn-1;
else
bn=cn-1;}

d1 = {{g1,a0,c0}, {g2,b0},
{a1}, {b1}, . . . , {an}, {bn}}

d2 = {{g1,a0}, {g2,b0,c0},
{a1}, {b1}, . . . , {an}, {bn}}

Fig. 1. First row: example program. All of g1,g2,a1, . . . ,b1 . . . are global variables. Second
row: the concrete states at the entry of p1() and the corresponding connection abstractions.

We say that two heap objects are connected in a state when it is possible to reach
from one object to the other, following paths in the heap ignoring pointer direction. Two
variables are connected when they point to connected heap objects. Connection analysis
soundly estimates the connection relationships between variables. The abstract states d
of the analysis are families {Xi}i∈I of disjoint sets of variables ordered by refinement:
Two variables x, y are in the same set Xi, which we call a connection set, when x and
y may be connected, and d1 v d2 ⇐⇒ ∀X1 ∈ d1.∃X2 ∈ D2. X1 ⊆ X2.

Example 1. Fig. 1 depicts the two possible concrete states, σ1 and σ2, that can occur at the
entry to p1(), and their respective connection abstractions. In the concrete states, variables
a1, . . . ,b1 . . . point to null. Hence, they are represented by separate connection sets. The ab-
stract states α({σ1}) and α({σ2}) are incomparable. However, both are more precise than the
abstraction of a state in which all the variables point to the same object and less precise than that
of state where the values of all the variables is null.

A standard approach for an interprocedural analysis is to follow the execution flow
of a program top-down (i.e., from callers to callees), and to re-analyze each procedure
for every different calling context. This approach often suffers from the scalability is-
sue. One reason is the explosion of different calling contexts. Indeed, note that in our
example program, each procedure pi() calls the procedure pi+1() with two different
calling contexts. As a result, a top-down connection analysis, e.g., [14], computes 2i

abstract states at the entry to procedure pi().

Example 2. The abstract state dt shown below arises at the entry to pn() when the
then-branch is always selected, while de arises when only pn-1() selects the else-branch.
dt = {{g1,a0,a1, . . . ,an-2,an-1,cn-1}, {g2,b0}, {an}, {b1}, . . . , {bn-1}, {bn}}
de = {{g1,a0,a1, . . . ,an-2,bn-1,cn-1}, {g2,b0}, {an-1}, {an}, {b1}, . . . , {bn-2}, {bn}}

The bottom-up (compositional) approach avoids the explosion of the calling con-
texts that occur in the top-down analysis. It does so by analyzing each procedure inde-
pendently to compute a summary, which is then instantiated as a function of a calling
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context. Unfortunately, it is rather difficult to analyze a procedure independently of its
calling contexts and at the same time compute a summary that is sound and precise
enough. One of the reasons is that the abstract transformers may depend on the input
abstract state, which is often unavailable for the compositional analysis.

We formulate a precise compositional connection analysis. The key feature of the
analysis is that the abstract transformers of primitive commands a have the form

[[a]]] = λd. (d u dp) t dg ,
where dp and dg are some constant abstract states, independent of the input, and dp is
a modular element in the lattice of all abstract states. For example, the abstract trans-
former of the statement x = y has the form above with dp = Sx′ and dg = Ux′y′ ,
where Sx′ consists of two connection sets, {x′} and the set of all the other variables,
and Ux′y′ has the set {x′, y′} of x′, y′ and the singleton sets {z} for all variables z other
than x′, y′. Intuitively, taking the meet with Sx′ separates out the variable x from its
connection set in d, and joining the result with Ux′y′ adds x to the connection set of y.1

Note that the abstract domain is not distributive.2 However it does contain modular
elements. In particular, dp in the abstract transfer for a above is modular. This implies
that for all d, d′ ∈ D such that d′ v dp,

[[a]]](d t d′) = dp u (d t d′) t dg = (dp u d) t d′ t dg = [[a]]](d) t d′

where the modularity is used in the second equality. Intuitively, [[a]]](d t d′) represents
the computation of the top-down analysis, and [[a]]](d) t d′ that of the bottom-up anal-
ysis. In the former case, the analysis of a uses all the information available in the input
abstract state d t d′, whereas in the latter case, the analysis ignores the additional in-
formation recorded in d′ and just keeps d′ in its outcome using the join operation. The
equality between [[a]]](d t d′) and [[a]]](d) t d′ means that both approaches lead to the
same outcome, as long as d′ v dp holds. This equality is the basis of our coincidence
result between top-down and bottom-up analyses.

Concretely, consider the case that a is the assignment ai=ci-1 in the body of the
procedure pi. Let {dk}k be all the abstract states at the entry of pi encountered during
the top-down analysis. Suppose that there exists d such that ∀k : ∃d′k v Sa′

i
: dk =

d t d′k. Our compositional approach analyzes ai = ci-1 only once with the abstract
state d, and computes d′ = [[ai = ci-1]]](d). Later when pi gets called with dk’s,
the analysis adapts d′ by simply joining it with d′k, and returns this outcome of this
adaption as a result. This adaptation of the bottom-up approach gives the same result as
the top-down approach, which applies [[ai = ci-1]]] on dk directly:

[[ai=ci-1]]](dk) = (dk u Sa′
i
) t Ua′

ic
′
i-1

= ((d t d′k) u Sa′
i
) t Ua′

ic
′
i-1

= (d u Sa′
i
) t d′k t Ua′

ic
′
i-1

= [[ai=ci-1]]](d) t d′k .
The third equality holds due to the modularity property.

1 The subscripts p and g are used as mnemonics: dp is used to partition a connection set and dg
to group two connection sets together.

2 For example, let d1 = {{x, z}, {y}}, d2 = {{x, y}, {z}}, and d3 = {{y, z}, {x}}). Then
d1 u (d2 t d3) = d1 u {{x, y, z}} = d1, but (d1 u d2) t (d1 u d3) = {{x}, {y}, {z}}.

4



3 Programming Language
We formalize our results for a simple imperative procedural programming language.
Primitive commands a ::= x = null | x = new | x.f = y | x = y | x = y.f

Commands C ::= skip | a | C;C | C + C | C∗ | p()
Declarations D ::= proc p() = {var x;C}

Programs Pr ::= var g;C | D;Pr
We denote by PComm, G, L, and PName the sets of primitive commands, global

variables, local variables, and procedure names, respectively. We use the following sym-
bols to range over these sets: a ∈ PComm, g ∈ G, x, y, z ∈ G∪L, and p ∈ PName.We
assume that L and G are fixed arbitrary finite sets. Also, we consider only well-defined
programs where all the called procedures are defined.
Syntax. A program Pr in our language is a sequence of procedure declarations, followed
by a sequence of declarations of global variables and a main command. Commands
contain primitive commands a ∈ PComm, sequential composition C;C ′, nondeter-
ministic choice C + C ′, iteration C∗, and procedure calls p(). We use + and ∗ instead
of conditionals and while loops for theoretical simplicity: given appropriate primitive
commands, conditionals and loops can be easily defined. We use the standard primitive
commands for pointer programs.

Declarations D give the definitions of procedures. A procedure p is comprised of a
sequence of local variables declarations x and a command, denoted by Cbodyp, which
we refer to as procedure p’s body. Procedures do not take any parameters or return
any values explicitly; values can instead be passed to and from procedures using global
variables. To simplify presentation, we do not consider mutually recursive procedures
in our language; direct recursion is allowed.
Operational Semantics. A state σ = 〈sg, sl, h〉 is a triplet comprised of a global envi-
ronment sg , a local environment sl and an heap h mapping locations and field names to
values. For simplicity, values are either locations in the heap or the special value null.
We say that locations o1 and o2 are connected in heap h, denoted by o1 !h o2, if there
exists an undirected path of pointer fields between o1 and o2. We use a relational (input-
output tracking) store-based large step operational semantics which manipulates pairs
of states 〈σ̄, σ′〉: σ̄ records the state of the program at the entry to the active procedure
and σ′ records the current state. For further details see [4].

4 Intraprocedural Connection Analysis
We first show how the modular elements can help in intraprocedural analysis. For sim-
plicity, we use in this section a non-relational semantics, i.e., the semantics only tracks
the current state. In §5, we adapt the analysis to abstract the relational semantics.
Partition Domains. We first define a general notion of partition domains, and then in-
stantiate it to an abstract domain suitable for connection analysis of programs without
procedures. (§5 defines the general setup.) We denote by Equiv(Υ ) ⊆ P(Υ ) the set of
equivalence relations over a set Υ , ranged over by metavariable d. We use v1

∼=d v2

to denote that 〈v1, v2〉 ∈ d, and [v]d to denote the equivalence class of v ∈ Υ induced
by d. We omit the d subscript when it is clear from context. (d1 ∪ d2)+ denotes the
transitive closure of d1 ∪ d2. By abuse of notation, we sometimes treat an equivalence
relation d as the partitioning {[v]d | v ∈ Υ} of Υ into equivalence classes it induces.
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[[x = null]]](d) = d u Sx′ [[x = new]]](d) = d u Sx′ [[x.f = y]]](d) = d t Ux′y′

[[x = y]]](d) = (d u Sx′) t Ux′y′ [[x = y.f ]]](d) = (d u Sx) t Ux′y′

where Ux′y′ = {{x′, y′}} ∪ {{z′} | z′ ∈ Υ \ {x′, y′}}, Sx′ = {{x′}} ∪ {{z′ | z′ ∈ Υ \ {x′}}}

Fig. 2. Abstract transfer functions for primitive commands in the connection analysis where d 6=
⊥. For d = ⊥, the transfer function of any primitive command a ∈ PComm is [[a]]](d) = d.

Definition 2. The partition lattice Dpart(Υ ) over a set Υ is a 6-tuple

Dpart(Υ ) = 〈Equiv(Υ ), v, ⊥part = {{a} | a ∈ Υ},>part = {Υ}, t = (− ∪−)+, u = − ∩−〉
where d1 v d2 ⇔ ∀v1, v2 ∈ Υ, v1

∼=d1 v2 ⇒ v1
∼=d2 v2 .

The connection abstract domainD(Υ ) is an extension of the partition domain Equiv(Υ )
to include a bottom element ⊥ in its carrier set, i.e., ⊥ < d for every ⊥ 6= d ∈ D(Υ ),
with the lattice operations extended in the obvious way. We refer to the equivalence
class [x]d of x ∈ Υ as the connection set of x in ⊥ 6= d ∈ D(Υ ).

The connection abstract domain D(Υ ) is parametrized by a set Υ pertaining to the
set G ∪ L of pointer variables. For example, in the intraprocedural settings we use
Υ = {x′ | x ∈ G ∪ L} . Intuitively, x′ and y′ belong to different partitions in an abstract
state d ∈ D(Υ ) that arises as at a program point pt during the analysis if the pointer vari-
ables x and y never point to connected heap objects when the execution of the program
reaches pt . For instance, if there is a program state occurring at pt in which x.f and y

point to the same heap object, then it must be that x′ and y′ belong to the same connec-
tion set in d. In the following, we omit Υ when it is clear from context. More formally,
the abstraction map α is defined as follows: α(∅) = ⊥ and α(S) = {[x]dS | x ∈ G∪L}
for any other set of states, where dS is the reflective transitive closure of the relation⋃
σ∈S{(x, y) | {x, y} ⊆ G ∪ L, σ = 〈sg, sl, h〉, and (sg ∪ sl)x!h (sg ∪ sl)y}.

Abstract Semantics. The abstract semantics of primitive commands is defined in Fig. 2
using meet and join operations with constant elements to conform with the requirement
of Def. 3. (Note that, as expected, the functions are strict, i.e., they map ⊥ to ⊥.)

Assigning null or a fresh object to a variable x separates x′ from its connection set.
Therefore, the analysis takes the meet of the current abstract state with Sx′ — the parti-
tion with two connection sets {x′} and the rest of the variables. The concrete semantics
of x.f = y redirects the f-field of the object pointed to by x to the object pointed to by
y. The abstract semantics treats this statement quite conservatively, performing “weak
updates”: It merges the connection sets of x′ and y′ by computing the least upper bound
of the current abstract state with Ux′y′ — a partition with {x′, y′} as a connection set
and singleton connection sets for the other variables. The effect of the statement x = y

is to separate the variable x′ from its connection set and to add x′ to the connection set
of y′. This is realized by performing a meet of the current abstract state with Sx′ , and
then joining the result with Ux′y′ . Following [14], the effect of the assignment x = y.f
is handled in a very conservative manner, treating y and y.f in the same connection set
since the abstraction does not distinguish between the objects pointed to by y and y.f.
Thus, the same abstract semantics is used for x = y.f and x = y.

The transformers defined in Fig. 2 are in fact the best transformers [9]: For every
abstract state d, there exists a concrete state σ which has an object oX for every partition
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X in d which is pointed to by all the variables in X and has a pointer field pointing to
itself. It easy to verify that it holds that α(σ) = d and α([[a]](σ)) = [[a]]](α(σ)), where
[[a]] is the concrete operational semantics of command a. The abstract semantics of
composite commands is standard, and omitted [4].

Conditionally Compositional Intraprocedural Analysis. In the following we show that
under certain restrictions it is possible to utilize the modularity property to compute
summaries of intraprocedural commands.

Definition 3. A function f : D → D is conditionally adaptable if f(⊥) = ⊥ and for
every d 6= ⊥, f(d) = (du dp)t dg for some dp, dg ∈ D and the element dp is modular.
We refer to dp as f ’s meet element and to dg as f ’s join element.

Lemma 1. All the abstract transfer functions of the primitive commands in the in-
traprocedural connection analysis (shown in Fig. 2) are conditionally adaptable.

We denote the meet and join elements of the abstract transformer [[a]]] of a primitive
command a by P [[a]]] and G[[a]]], respectively. For a command C, we denote by P [[C]]]

the set of the meet elements of the primitive commands occurring in C.

Lemma 2. LetC be a command composed of primitive commands whose transfer func-
tions are conditionally adaptable and which does not contain procedure calls. For every
d1, d2 ∈ D such that d1 6= ⊥, if d2 v

d
P [[C]]] then

[[C]]](d1 t d2) = [[C]]](d1) t d2.

Intraprocedural Summaries. Lem. 2 can justify the use of compositional summaries in
intraprocedural analyses in certain conditions: Take a commandC and an abstract value
d2 such that the conditions of the lemma hold. An analysis that needs to compute the
abstract value [[C]]](d1 t d2) can do so by computing d = [[C]]](d1), possibly caching
(d1, d) in a summary for C, and then adapting the result by joining d with d2.

Lem. 1 and 2 allow only for conditional intraprocedural summaries to be used in
the connection analysis; a summary for a command C can be used only when d2 v dp
for all dp ∈ P [[C]]]. In contrast, and perhaps counter-intuitively, the interprocedural
analysis has non-conditional summaries, which do not have a proviso like d2 v P [[C]]].
It achieves this by requiring certain properties of the abstract domain used to record
procedures summaries, which we now describe.

5 Interprocedural Connection Analysis
In this section we define top-down and bottom-up interprocedural connection analyses,
and prove that their results coincide. The main message of this section is that we can
summarize the effects of procedures in a bottom-up manner, and use the modularity
property to prove that the results of the bottom-up and top-down analyses coincide. This
coincidence, together with the soundness of the top-down analysis (Lem. 3), ensures the
soundness of the bottom-up analysis.3

3 We analyze recursive procedures in a standard way using a fixpoint computation. As a result,
a recursive procedure might be analyzed more than once. However, and unlike in top-down
analyses, the procedure is analyzed only using a single input, namely ιentry, defined in §5.2.
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main(){
[dl0 = {{u′, u}, {v′, v}, {w′, w}, {x′, x}, {y′, y}, {z′, z}}]

l0: x = new(); y = new(); z = new();
l3: w = new(); u = new(); v = new();

[dl6 = {{u′}, {u}, {v′}, {v}, {w′}, {w}, {x′}, {x}, {y′}, {y}, {z′}, {z}}]

l6: z.f = w; u.f = v;
[dl8 = {{u′, v′}, {u}, {v}, {w′, z′}, {w}, {x′}, {x}, {y′}, {y}, {z},]

l8: p();
[dl9 = {{u′}, {v′, z′}, {u}, {v}, {w′, x′, y′}, {w}, {x}, {y}, {z}}]

l9: }

p(){
[dl10 = {{u′, u, v′, v}, {w′, w, z′, z}, {x′, x}, {y′, y}}]

l10: v = null; x.f = z; y.f = w;
[dl13 = {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}}]

l13: q()
[dl14 = {{u′, u, v}, {v′, z′}, {w′, w, x′, x, y′, y, z}}]

l14: }

q(){
[dl15 = {{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z′, z}}]

l15: z = null;
[dl16 = {{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z}, {z′}}]

l16: v.f = z;
[dl17 = {{u′, u}, {v′, v, z′}, {w′, w, x′, x, y′, y, z}}]

l17: }

Fig. 3. Example program annotated with abstract states. Abstract state dli is computed by the
interprocedural top-down analysis at program point li. All the variables are globals.

5.1 Abstract Domain

The abstract domainD of the interprocedural connection analyses is obtained by lifting
the one used for the intraprocedural analysis to the interprocedural setting. Technically,
it is an instantiation of the connection abstract domain D(Υ ) with Υ = G∪G′ ∪ Ġ∪ L′,
where G′ = {g′ | g ∈ G}, G = {ḡ | g ∈ G}, Ġ = {ġ | g ∈ G}, and L′ = {x′ | x ∈ L}.

The set Υ contains four kinds of elements. Intuitively, the analysis computes at every
program point a relation between the objects pointed to by global variables at the entry
to the procedure, represented by G, and the ones pointed to by global variables and local
variables at the current state, represented by G′ and L′, respectively. As before, abstract
states represent partitioning over variables. For technical reasons, described later, Υ also
includes the set Ġ. The latter is used to compute the effect of procedure calls.

5.2 Interprocedural Top-Down Connection Analysis

The abstract semantics of procedure calls in the top-down analysis is defined in Fig. 4,
which we explain below. Intraprocedural commands are handled as described in §4.

When a procedure is entered, local variables of the procedure and all the global
variables g at the entry to the procedure are initialized to null. This is realized by
applying the meet operation to d with RG′ , effectively, refining the partitioning of d by
placing every non-current variable in its own connection set. (We use d|S = duRS as a
shorthand, and say that d is projected on S.) The result, d|G′ , represents the connection
relation in d between the objects pointed-to by global variables at the call-site. Then,
d|G′ is joined with (the particular constant abstract state) ιentry.

The ιentry element abstracts the identity relation between input and output states.
It is defined as a partition containing {g, g′} connection sets for all global variables g.
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[[p()]]](d) = [[return]]](([[Cbodyp]]
] ◦ [[entry]]])(d), d) , where

[[entry]]](d) = d|G′ t ιentry
[[return]]](dexit, dcall) = (fcall(dcall) t fexit(dexit|G∪G′))|G∪G′∪L

d|S = d uRS ιentry =
⊔
g∈G Ug′ḡ RX = {{x | x ∈ X}} ∪ {{x} | x ∈ Υ \X}

fcall(d) = {{〈n2d(α),n2d(β)〉 | 〈α, β〉 ∈ P} | P ∈ d}, where n2d(α) = ġ if α = g′ and α otherwise
fexit(d) = {{〈o2d(α), o2d(β)〉 | 〈α, β〉 ∈ P} | P ∈ d}, where o2d(α) = ġ if α = g and α otherwise

Fig. 4. The abstract semantics of procedure calls in the top-down analysis. The constant elements
Ug′g are defined in Fig. 2. Note that the renaming functions fcall(-) and fcall(-) are isomorphisms.

Intuitively, the aforementioned join operation records the current value of variable g
into g. Recall that at the entry to a procedure, the “old” value of every global variable is
the same as its current value.

[[return]]] computes the return value at the caller after the callee returns. It takes
two arguments: dcall, which represents the partition of variables into connections sets
at the call-site, and dexit, which represents the partition at the exit-site of the callee,
projected on G ∪ G′. This projection emulates the nullification of local variables when
exiting a procedure. [[return]]] emulates the composition of the input-output relation of
the call-site with that of the exit-site using a natural join. The latter is implemented using
variables of the form ġ: fcall(dcall) renames global variables from g′ to ġ and fexit(dexit)
renames global variables from g to ġ. The renamed relations are then joined. Intuitively,
the old values g of the callee at the exit-site are matched with the current values g′ of
the caller at the call-site. Finally, the temporary variables are projected away.

Example 3. In Fig. 3, dl13 = {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}} is the ab-
stract state at l13, q()’s call-site in p(), and dl14 is the abstract state at q()’s exit-site.
[[q()]]](dl13) = [[return]]](([[Cbodyq]]

] ◦ [[entry]]])(dl13), dl13)
= [[return]]]([[Cbodyq]]

]({{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z′, z}}), dl13)
= [[return]]]({{u′, u}, {v′, v, z′}, {w′, w, x′, x, y′, y, z}}, {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}})
= (fexit({{u′, u}, {v′, v, z′}, {w′, w, x′, x, y′, y, z}}|G∪G′) t

fcall({{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}}))|G∪G′∪L

= ({{u′, u̇}, {v′, v̇, z′}, {w′, ẇ, x′, ẋ, y′, ẏ, ż}} t {u̇, u, v}, {v̇}, {ẇ, w, ẋ, x, ẏ, y, ż, z}})|G∪G′∪L

= {{u′, u̇, u, v}, {v′, v̇, z′}, {w′, ẇ, w, x′, ẋ, x, y′, ẏ, y, ż, z}}|G∪G′∪L

= {{u′, u, v}, {v′, z′}, {w′, w, x′, x, y′, y, z}} = dl14

Lemma 3 (Soundness of the Top-Down Analysis). The abstract semantics of the top-
down interprocedural connection analysis is an over-approximation of the standard
concrete semantics for heap manipulating programs [4].

The crux of the proof is the observation that the abstract transfer of the return state-
ments is sound because the “old” values of the global variables of a procedure are never
modified and are the same as their “current” values when it was invoked.

5.3 Bottom Up Compositional Connection Analysis
The abstract semantics [[−]]]BU(−) of procedure calls in the bottom-up analysis is de-
fined in Eq. 1. Again, intraprocedural commands are handled as described in §4.

[[p()]]]BU(d) = [[return]]]([[Cbodyp]]
](ιentry), d) (1)
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[[p()]]]BU(d) and [[p()]]](d), defined in Fig. 4, differ in the way in which the value
of the first argument to [[return]]](·, d) is computed: [[p()]]]BU(d) uses the abstract state
resulting at the exit of p’s body when it is analyzed with state ιentry. Hence, it uses the
same value at every call. In contrast, [[p()]]](d) computes that argument by analyzing
the call to p() with the particular call state d. Note that as a corollary of the theorem we
get that the bottom-up interprocedural connection analysis is sound.

Theorem 1 (Coincidence). ∀C ∈ Commands.∀d ∈ D. [[C]]]BU(d) = [[C]]](d) .

In the rest of the section, we sketch the main arguments in the proof of The. 1, in
lieu of more formal mathematical arguments, which are shown in the proof of [4, The.
22]. We focus on the case where C is a procedure invocation, i.e., C = p().
Notation. We denote by DX the sublattice representing the closed interval [⊥, RX ] for
a set ∅ 6= X ⊆ Υ , which consists of all the elements between ⊥ and RX . For example,
DG includes only partitions where all the variables not in G are in singleton sets. We
define the sets Sx̂ and Ux̂ŷ , where x̂ is either x′, x, or ẋ in the same way as Sx′ and
Ux′y′ are defined in Fig. 2. For example, Uxy′ = {{x, y′}} ∪ {{α} | α ∈ Υ \ {x, y′}}.
5.3.1 Uniform Representation of Entry Abstract States The abstract states at the
entry to procedures in the top-down analysis are uniform: for every global variable g,
we have a connection set containing only g and g′. This is a result of the definition of
function entry, which projects abstract call states on G′ and then joins the result with
the ιentry element. The projection results in an abstract state where all connection sets
containing more than a single element are comprised only of primed variables. Then,
after joining d|G′ with ιentry, each old variable g resides in the same partition as its
corresponding current primed variable g′. For example, see dl10 in Fig. 3.

We point out that the uniformity of the entry states is due to the property of ιentry
that its connection sets are comprised of pairs of variables of the form {x′, x}. One
important implication of this uniformity is that every entry abstract state d to any pro-
cedure has a dual representation. In one representation, d is the join of ιentry with some
elements Ux′y′ ∈ DG′ . In the other representation, d is expressed as the join of ιentry
with some elements Uxy ∈ DG. In the following, we use the function o that replaces
relationships among current variables by those among old ones: o(Ux′y′) = Uxy; and
o(d) is the least upper bounds of ιentry and elements Uxy for all x, y such that x′ and y′

are in the same connection set of d.

Example 4. dl10 is the abstract element at the entry point of procedure p of Fig. 3.
ιentry t (Uu′v′ t Uw′z′) = o(ιentry t (Uu′v′ t Uw′z′)) = ιentry t o(Uu′v′ t Uw′z′)

= ιentry t (Uuv t Uwz) = {{u′, u, v′, v}, {w′, w, z′, z}, {x′, x}, {y′, y}} = dl10 .

Delayed Evaluation of the Effect of Calling Contexts Elements of the form Uxy , com-
ing from DG, are smaller than or equal to the meet elements Sx′ of intraprocedural
statements. This is because for any x, y ∈ G it holds that
Sx′ = {{x′}} ∪ {{z|z ∈ Υ \ {x′}}} w {{x, y}} ∪ {{z}|z ∈ Υ \ {x, y}} = Uxy .

In Lem. 1 of §4 we proved that the semantics of the connection analysis is conditionally
adaptable. Thus, computing the composed effect of any sequence τ of intraprocedural
transformers on an entry state of the form d0 tUx1y1 . . .tUxnyn results in an element
of the form d′0 tUx1y1 . . .tUxnyn , where d′0 results from applying the transformers in
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τ on d0. Using the observations made in §5.3.1, this means that for any abstract element
d resulting at a call-site there exists an element d2 ∈ DG which is a join of elements of
the form Uxy ∈ DG, such that d = d1 t d2, and d1 = [[τ ]]](ιentry).

d = d1 t Ux1y1 . . . t Uxnyn . (2)
Example 5. The abstract state at entry point of p is dl10 = ιentry t (Uuv t Uwz) . (See
Exa. 4.) The sequence of commands at l10 is C := v = null; x.f = z; y.f = w . Thus,
dl13 = [[C]]](dl10). Note that dl13 can also be computed using the effect of C to ιentry:

[[C]]](ιentry) t (Uwz t Uuv) = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} t (Uuv t Uwz)
= {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}} = dl13

[[C]]](ιentry) = [[v = null; x.f = z; y.f = w]]]({{u′, u}, {v′, v}, {w′, w}, {x′, x}, {y′, y}, {z′, z}})
= {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}}

5.3.2 Counterpart Representation for Calling Contexts The previous reasoning
ensures that any abstract value at the call-site to a procedure p() is of the form d1 t d2,
where d2 ∈ DG and, thus, is a join of elements of form Uxy . Furthermore, the state
resulting at the entry of p() when the calling context is d1 tUxy can be obtained either
directly from d1 or after merging two of d1’s connection sets. Note that the need to
merge occurs only if there are variables w′ and z′ such that w′ and x are in one of the
connection sets and z′ and y are in another. This means that the effect of Uxy on the
entry state can be expressed via primed variables: d1 t Uxy = d1 t Uw′z′ . Thus, if the
abstract state at the call-site is d1 t d2, then there is an element d′2 ∈ DG′ such that

(d1 t d2)|G′ = d1|G′ t d′2 (3)
We refer to the element d′2 ∈ DG′ , which can be used to represent the effect of d2 ∈ DG

at the call-site as d2’s counterpart, and denote it by d̂2.
Example 6. Let d1 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 = Uwz . Join-
ing d1 with Uwz causes connection sets [w] and [z] to be merged, and, consequently, [y′] and [x′]

are merged, since [y′] = [w] and [x′] = [z] . Therefore, for d̂2 = Ux′z′ it holds that (d1td2)|G′ =
{{u′, u}, {v′}, {v}, {w′, w, y′, y, x′, x, z′, z}}|G′ = {{u′}, {v′}, {w′, y′, x′, z′}}. Similarly,
d1|G′ t d̂2 = {{u′}, {v′}, {w′, y′}, {x′, z′}} t Ux′z′ = {{u′}, {v′}, {w′, y′, x′, z′}}.
Representing Entry States with Counterparts The above facts imply that we can repre-
sent an abstract state d at the call-site as d = d1 t d2, where d2 = d3 t d4 for some
d3, d4 ∈ DG such that: (i) d3 is a join of the elements of the form Uxy such that x
and y reside in d1 in different partitions, which also contain current (primed) variables,
and thus possibly affect the entry state, and (ii) d4 is a join of all the other elements
Uxy ∈ DG, which are needed to represent d in this form, but either x̄ or ȳ resides in
the same partition in d1 or one of them is in a partition containing only old variables.
Recall that there is an element d′3 = d̂3 that joins elements of the form Ux′y′ such that
d1 t d3 = d1 t d′3, and therefore

d = d1 t d3 t d4 = d1 t d′3 t d4 . (4)
Thus, after applying the entry’s semantics, we get that abstract states at the entry point
of procedure are always of the form

[[entry]]](d) = (d1 t d′3 t d4)|G′ t ιentry = (d1 t d′3)|G′ t ιentry = (d1|G′ t d′3) t ιentry
where d′3 represents the effect of d3 t d4 on partitions containing current variables g′ in
d1. The second equality holds because the modularity ofRG′ : d′3 joins elements of form
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Ux′y′ and Ux′y′ v RG′ . This implies that every state d0 at an entry point to a procedure
is of the following form:

d0 = ιentry t

d1|G′︷ ︸︸ ︷
(Ux′y′ . . . t Ux′

ly
′
l
)t

d′3︷ ︸︸ ︷
(Ux′

l+1y
′
l+1

. . . t Ux′
ny

′
n
)

= ιentry t o(Ux′
1y

′
1
. . . t Ux′

ny
′
n
) = ιentry t Ux1y1 t . . . t Uxnyn (5)

The second equality is obtained using the dual representation of entry state (see §5.3.1)
and the third one is justified because o(-) is an isomorphism.

Example 7. The abstract state at the call-site of procedure q() is dl13 = d1 t d2 where d1 =
{{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 = Uuv t Uwz. (See the first equality
in Exa. 5.) In Exa. 6 we showed that Uwz affects the relations in d1 between current variables
and that Ûwz = Ux′y′ . In contrast, joining the result with Uuv has no effect on relations between
current variables, because the connection set [v] does not contain any current variable. Indeed,
d1 tUwz tUuv = d1 tUx′y′ tUuv . Following the reasoning above, consider the abstract state
at the entry to procedure q()

dl15 = {{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z′, z}}
= ιentry t {{u′}, {u}, {v′}, {v}, {w′, y′}, {w}, {x′, z′}, {x}, {y}, {z}} t Uwz

= ιentry t d1|G′ t Ux′y′

Adapting the Result for Different Contexts We now show that the interprocedural con-
nection analysis can be done compositionally. Intuitively, we show that the effect of
the caller’s calling context can be carried over procedure invocations. Alternatively, the
effect of the callee on the caller’s context can be adapted unconditionally for different
caller’s calling contexts. The proof goes by induction on the structure of the program.
We sketch the proof for the case where C = p().

In Eq. 4 we showed that every abstract value that arises at the call-site is of the form
d1 t d3 t d4, where d3, d4 ∈ DG. Thus, we need to show for any d1 6= ⊥ that

[[p()]]](d1 t d3 t d4) = [[p()]]](d1) t d3 t d4 . (6)
According to the top-down abstract semantics the effect of invoking p() is

[[p()]]](d) = [[return]]](dexit, d) = [[return]]]
((

([[Cbodyp]]
] ◦ [[entry]]])(d)

)
, d
)
.

Because d is of the form d1 t d3 t d4, we can write dexit as below, where first equalities
are mere substitutions based on observations we made before and the last one comes
from the induction assumption.

dexit = [[Cbodyp]]
]([[entry]]](d1 t d3 t d4)) = [[Cbodyp]]

](((d1 t d3 t d4)|G′) t ιentry)
= [[Cbodyp]]

](((d1 t d3)|G′) t ιentry) = [[Cbodyp]]
](d1|G′ t d′3 t ιentry)

= [[Cbodyp]]
](d1|G′ t o(d′3) t ιentry) = [[Cbodyp]]

](d1|G′ t ιentry) t o(d′3) (7)

When applying the return semantics, we first compute the natural join and then
remove the temporary variables. Therefore, we get

[[p()]]](d) = (fcall(d1 t d3 t d4) t fexit([[Cbodyp]]
](d1|G′ t ιentry) t o(d′3)))|G∪G′∪L .

Eq. 8 shows the result of computing the inner parentheses. The first equality is by
the definition of d′3 and the last equality is by the isomorphism of fcall(-) and fexit(-).

fcall(d1 t d3 t d4) t fexit([[Cbodyp]]
](d1|G′ t ιentry) t o(d′3))

= fcall(d1 t d′3 t d4) t fexit([[Cbodyp]]
](d1|G′ t ιentry) t o(d′3))

= fcall(d
′
3) t fcall(d1 t d4) t fexit(o(d′3)) t fexit([[Cbodyp]]

](d1|G′ t ιentry)) (8)
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Note, among the join arguments, fexit(o(d′3)) and fcall(d′3). Let’s look at the first
element. o(d′3) replaces all the occurrences of Ux′y′ in d′3 with Uxy . fexit replaces all
the occurrences of Uxy in o(d′3) with Uẋẏ . Thus, the first element is Uẋ1ẏ1 t . . .tUẋnẏn

which is the result of replacing in d′3 all the occurrences of Ux′y′ with Uẋẏ . Let’s look
now at the second element. fcall replaces all occurrences of Ux′y′ in d′3 with Uẋẏ . Thus,
also the second element is Uẋ1ẏ1 t . . .tUẋnẏn , i.e, fcall(d′3) = fexit(o(d

′
3)), and we get

(8) = fcall(d
′
3) t fcall(d1 t d4) t fexit([[Cbodyp]]

](d1|G′ t ιentry))
= fcall(d3 t d1 t d4) t fexit([[Cbodyp]]

](d1|G′ t ιentry))
= fcall(d1) t fexit([[Cbodyp]]

](d1|G′ t ιentry) t (d3 t d4) = [[p()]]](d1) t d3 t d4

The first equality is by the idempotence oft. The second equality is by the isomorphism
of fcall and Eq. 4. To justify the third equality, recall (Eq. 2) that d3 and d4 are both of
form Ux1y1 t . . . t Uxnyn and that fcall(d) only replaces g′ occurrences in d; and thus
fcall(Ux1y1 t . . . t Uxnyn) = Ux1y1 t . . . t Uxnyn .

Example 8. By Exa. 5, dl13 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} t (Uuv t Uwz).
Let d1 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 = Uuv t Uwz . Thus,
dl13 = d1 t d2 and d2 ∈ DG. Let’s compute (i) [[q()]]](d1) and (ii) [[q()]]](d1) t d2.

[[q()]]](d1) = [[return]]](([[Cbodyq]]
] ◦ [[entry]]])(d1), d1)

= [[return]]](([[Cbodyq]]
] ◦ [[entry]]])({{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}}), d1)

= [[return]]]([[Cbodyq]]
]({{u′, u}, {v′, v}, {w′, w, y′, y}, {x′, x, z′, z}}), d1)

= [[return]]]({{u′, u}, {v′, v, z′}, {w′, w, y′, y}, {x′, x, z}}, {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}})
= (fexit({{u′, u}, {v′, v, z′}, {w′, w, y′, y}, {x′, x, z}}|G∪G′) t

fcall({{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}}))|G∪G′∪L

= ({{u′, u̇}, {v′, v̇, z′}, {w′, ẇ, y′, ẏ}, {x′, ẋ, ż}} t {{u̇, u}, {v̇}, {v}, {ẇ, w, ẏ, y}, {ẋ, x, ż, z}})G∪G′∪L

= ({{u′, u̇, u}, {v′, v̇, z′}, {v}, {w′, ẇ, w, y′, ẏ, y}, {x′, ẋ, x, ż, z}})|G∪G′∪L

= {{u′, u}, {v′, z′}, {v}, {w′, w, y′, y}, {x′, x, z}}
[[q()]]](d1) t d2 = {{u′, u}, {v′, z′}, {v}}, {w′, w, y′, y}, {x′, x, z}} t (Uuv t Uwz)

= {{u′, u, v}, {z′, v′}, {w′, w, x′, x, y′, y, z}}dl14 = [[q()]]](dl13) = [[q()]]](d1 t d2)
Precision Coincidence We combine the observations we made to informally show the
coincidence result between the top-down and the bottom-up semantics (The. 1). By
Eq. 4, every state d at a call-site can be represented as d = d1 td3 td4, where d3, d4 ∈
DG. Furthermore, there exists d′3 = d̂3 ∈ DG′ such that d1 t d3 t d4 = d1 t d′3 t d4.
We also showed that for every command C and every d = d1 t d3 t d4, such that
d3, d4 ∈ DG, it holds that [[C]]](d1 t d3 t d4) = [[C]]](d1) t d3 t d4 . Finally,

[[p()]]](d) = [[return]]]([[Cbodyp ]]]([[entry]]](d)), d)

= [[return]]]([[Cbodyp ]]](d1|G′ t ιentry t d′3), d)

= [[return]]]([[Cbodyp ]]](ιentry t o(d1|G′) t o(d′3)), d)

= [[return]]]([[Cbodyp ]]](ιentry) t o(d1|G′) t o(d′3), d1 t d3 t d4)

= [[return]]]([[Cbodyp ]]](ιentry), d1 t d3 t d4) = [[p()]]]BU(d) .

The second equality is by Eq. 7. The third equality holds because d′3, d1|G′ ∈ DG′

and by Eq. 5. The forth equality holds since o(d′3), o(d1|G′) ∈ DG and by Eq. 8. The
fifth equality holds because we can remove o(d′3) as fexit(o(d′3)) is redundant in the
natural join. Using a similar reasoning, we can remove fexit(o(d1|G′)), since fexit is an
isomorphism and fexit(o(d1|G′)) = fcall(d1|G′) v fcall(d1).
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Example 9. Let’s compute the result of applying p() to dl8 using the bottom-up semantics,
starting by computing [[Cbodyp ]]

](ιentry) and then [[p()]]]BU(dl8).

[[Cbodyp ]]
](ιentry) = {{u′, u}, {v}, {v′, z′}, {w′, w, y′, y}, {x′, x, z}}

[[p()]]]BU(dl8) = [[return]]]([[Cbodyp ]]
](ιentry), dl8)

= (fexit({{u′, u}, {v′, z′}, {v}, {w′, w, y′, y}, {x′, x, z}})
tfcall({{u′, v′}, {u}, {v}, {w}, {x′}, {x}, {y′}, {y}, {w′, z′}, {z}}|G∪G′))|G∪G′∪L

= ({{u′, u̇}, {v′, z′}, {v̇}, {w′, ẇ, y′, ẏ}, {x′, ẋ, ż}}
t{{u̇, v̇}, {u}, {v}, {w}, {ẋ}, {x}, {ẏ}, {y}, {ẇ, ż}, {z}})|G∪G′∪L

= ({{u′, u̇, v̇}, {v′, z′}, {u}, {v}, {w′, ẇ, x′, ẋ, y′, ẏ, ż}, {w}, {x}, {y}, {z}})|G∪G′∪L

= {{u′}, {v′, z′}, {u}, {v}, {w′, x′, y′}, {w}, {x}, {y}, {z}} = dl9 = [[p()]]](dl8)

6 Implementation and Experimental Evaluation
We implemented three versions of the connection analysis: the original top-down ver-
sion [14], our modified top-down version, and our modular bottom-up version that coin-
cides in precision with the modified top-down version. We next describe these versions.

The abstract transformer of the destructive update statements x.f = y in [14] does
not satisfy the requirements described in §4; its effect depends on the abstract state.
Specifically, the connection sets of x and y are not merged if x or y points to null in all
the executions leading to this statement. We therefore conservatively modified the anal-
ysis to satisfy our requirements, by changing the abstract transformer to always merge
x’s and y’s connection sets. Our bottom-up modular analysis that coincides with this
modified top-down analysis operates in two phases. The first phase computes a sum-
mary for every procedure by analyzing it with an input state ιentry. The summary over-
approximates relations between all possible inputs of this procedure and each program
point in the body of the procedure. The second phase is a chaotic iteration algorithm
which propagates values from callers to callees using the precomputed summaries, and
is similar to the second phase of the interprocedural functional algorithm of [28, Fig. 7].

We implemented the aforementioned versions of connection analysis using
Chord [26] and applied them to the five Java benchmark programs listed in Tab. 1.
(For space reasons, however, we do not discuss the modified top-down version of con-
nection analysis.) They include two programs (grande2 and grande3) from the Java
Grande benchmark suite and two (antlr and bloat) from the DaCapo benchmark suite.
We excluded programs from these suites that use multi-threading, since our analyses as-
sume sequential programs. Our larger three benchmark programs are commonly used in
evaluating pointer analyses. All our experiments were performed using Oracle HotSpot
JRE 1.6.0 on a Linux machine with Intel Xeon 2.13 GHz processors and 128 Gb RAM.

We omit the modified top-down version of connection analysis from further evalu-
ation, as its performance is similar to the original top-down version and its precision is
(provably, and experimentally confirmed) identical to our bottom-up version.

Precision. Following [14], we measure precision by the size of the connection sets of
pointer variables at program points of interest. Each pair of variable and program point
can be viewed as a separate query to the connection analysis. To obtain such queries,
we chose the parallelism client proposed in the original work of [14], which demands
the connection set of each dereferenced pointer variable in the program. In Java, this
corresponds to variables of reference type that are dereferenced to access instance fields
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description # of classes # of methods # of bytecodes
app only total app only total app only total

grande2 Java Grande kernels 17 61 112 237 8,146 13,724
grande3 Java Grande large-scale applications 42 241 231 1,162 27,812 75,139
antlr Parser and translator generator 116 358 1,167 2,400 128,684 186,377
weka Machine-learning library for data-mining tasks 62 530 575 3,391 40,767 223,291
bloat Java bytecode optimization and analysis tool 277 611 2,651 4,699 194,725 311,727

Table 1. Benchmark characteristics for reachable code. (Reachable methods computed by a static
0-CFA call-graph analysis.) The “total” columns report numbers for all reachable code, whereas
the “app only” columns report numbers for only application code (excluding JDK library code).

# of queries Bottom-Up analysis Top-Down analysis
summary computation summary instantiation

time memory time memory # of abstract states time memory # of abstract states
queries total queries total

grande2 616 0.6 sec 78 Mb 0.9 sec 61 Mb 616 1,318 1 sec 37 Mb 616 3,959
grande3 4,236 43 sec 224 Mb 1:21 min 137 Mb 4,373 8,258 1:11 min 506 Mb 4,354 27,232
antlr 5,838 16 sec 339 Mb 30 sec 149 Mb 6,207 21,437 1:23 min 1.1 Gb 8,388 79,710
weka 2,205 46 sec 503 Mb 2:48 min 228 Mb 2,523 25,147 > 6 hrs 26 Gb 5,694 688,957
bloat 10,237 3:03 min 573 Mb 30 min 704 Mb 36,779 131,665 > 6 hrs 24 Gb 139,551 962,376

Table 2. A comparison of the scalability of the original top-down and our compositional bottom-
up version. The measurements in the “query” sub-columns include only query points. The “total”
sub-columns account for all points. All three metrics show that the top-down analysis scales much
more poorly than the bottom-up analysis.

or array elements. More specifically, our queries constitute the base variable in each
occurrence of a getfield, putfield, aload, or astore bytecode instruction in the program.
The number of such queries for our five benchmarks are shown in the “# of queries”
column of Tab. 2. To avoid counting the same set of queries across benchmarks, we only
consider queries in application code, ignoring those in JDK library code. This number
of queries ranges from around 0.6K to over 10K for our benchmarks.

Fig. 5 provides a detailed comparison of precision, based on the above metric, of the
original top-down and bottom-up versions of connection analysis when applied to the
antlr benchmark. Each graph in columns (a) and (b) plots, for each distinct connection
set size (on the X axis), the fraction of queries (on the Y axis) for which each analysis
computed connection sets of equal or smaller size. The graph shows that the precision
of our modular bottom-up analysis closely tracks that of the original top-down analy-
sis: the points for the bottom-up and top-down analyses, denoted N and ◦, respectively,
overlap almost perfectly in each of the six graphs. The ratio of the connection set size
computed by the top-down analysis to that computed by the bottom-up analysis on av-
erage across all queries is 0.952 for antlr (and 0.977 for grande2 and 0.977 for grande3).
We do not, however, measure the impact of this precision loss of 2-5% on a real client.
Note that for the largest two benchmarks, the top-down analysis timed-out.

Scalability. Tab. 2 compares the scalability of the top-down and bottom-up analyses
in terms of three different metrics: running time, memory consumption, and the total
number of computed abstract states. As noted earlier, the bottom-up analysis runs in
two phases: a summary computation phase followed by a summary instantiation phase.
The above data for these phases is reported in separate columns of the table. On our
largest benchmark (bloat), the bottom-up analysis takes around 50 minutes and 873
Mb memory, whereas the top-down analysis times out after six hours, not only on this
benchmark but also on the second largest one (weka).

The “# of abstract states” columns provide the sum of the sizes of the computed
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(a) Precision of field accesses. (b) Precision of array accesses. (c) Scalability.

Fig. 5. Comparison of the precision and scalability of the original top-down and our modular
bottom-up versions of connection analysis for the antlr benchmark.

abstractions in terms of the number of abstract states, including only incoming states
at program points of queries (in the “queries” sub-column), and incoming states at all
program points, including the JDK library (in the “total” sub-column). Column (c) of
Fig. 5 provides more detailed measurements of the latter numbers. The graph shows,
for each distinct number of incoming states computed at each program point (on the X
axis), the fraction of program points (on the Y axis) with equal or smaller number of
incoming states. The graphs clearly show the blow-up in the number of states computed
by the top-down analysis over the bottom-up analysis.

7 Related Work, Discussion and Conclusions
The main technical observation in our work is that using right-modular abstract domains
can help develop modular analyses. This observation is, in a way, similar to the frame
rule in separation logic, in the sense that the join (resp. ∗) distributes over the transfer
functions, and to the notion of condensation in logic programs [21].

The first compositional analysis framework was introduced in [6], and served as
the basis for the concept of abductive analysis [15]. In [16], it has been shown that
the semantic construction in [6] necessitates abstract domains which include functional
objects and to a generalization of the reduced cardinal power domain [7] to arbitrary
spaces of functions over a lattice. The latter was used to provide compositional seman-
tics of logic programs [16]. These works paved the way to establishing the connection
between modularity of analyses and condensation [17, 18].

Condensation is an algebraic property of abstract unification that ensures that it is
possible to approximate the behavior of a query and then unify it with a given con-
text and the obtained results are as precise as the ones obtained by analyzing the query
after instantiating it in that specific context. Abstract domain which have this prop-
erty are called condensing. Intuitively, in condensing domains it is possible to derive
context-independent interprocedural (bottom-up) analyses with the same precision as
the corresponding context-dependent (top-down) analysis. Examples for such domains
are Boolean functions [24], Herbrand abstractions [17], equality based domain [25], or
combinations of thereof [31]. (See [17] for further discussion.)

A lattice theoretic characterization of condensing abstract domains was suggested
in [18] and later generalized in [17]. Intuitively, letC be an abstract domain, S : C → C
the abstract semantics used in the analysis, and ⊗ an associate commutative binary
operator ⊗, e.g., unification. S is said to be condensing for ⊗ if S(a ⊗ b) = a ⊗ S(b)
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for any a and b in C [17, Def. 4.1]. In fact, a weaker characterization of condensation is
given in [18] which, by using the notion of weak completeness [18, Def. 3.8] requires
the equality to hold only for ordered pairs, i.e., when either a v b or b v a [18, The.
4.7]. However, when the order of the lattice is induced by the binary operator, as it is
in our case where ⊗ = t, the equality has to hold for any pair of elements. Thus, our
requirements are less restrictive than theirs, as shown by the following example: Let
d1 = d2 = {{x̄, x′}, {ȳ, y′}}, then [[x = null]]](d1 t d2) = {{x̄}, {x′}, {ȳ, y′}} but
[[x = null]]](d1) t d2 = (d1 u Sx′) t d2) = {{x̄, x′}, {ȳ, y′}}.

The above example points to, what is arguably, the most subtle part of our work.
Note that d2 6v Sx′ . Hence, although [[x = null]]] is conditionally adaptable (see
Def. 3 and Lem. 1), we cannot take advantage of the modularity of Sx′ . Surprisingly,
we can benefit from the modularity of Sx′ when we adapt the result of the analysis of
a procedure p (with ιentry as input) to an arbitrary calling context. This is possible be-
cause the counterpart representation of calling contexts. Specifically, we can represent
any calling context as a join between ιentry and elements of the form Uxy . Recall that
Uxy = {{x̄, ȳ}{x′}{y′}. Thus, it holds that Uxy v Sx′ . In fact, for every x, y and z, it
holds that Uxy v Sz′ (see §5.3.1).4

Conclusions. This paper shows that the notion of modularity from lattice theory can
help for developing a precise bottom-up program analysis. In lieu of discussing the
general framework [4], we illustrated the point by developing a compositional bottom-
up connection analysis that has the same precision as the top-down counterpart, while
enjoying the performance benefit of typically bottom-up analyses. Our analysis heavily
uses modular elements in the abstract semantics of primitive commands, and their mod-
ularity property plays the key role in our proof that the precision of the compositional
analysis coincides with that of the top-down counterpart. We also derived a new compo-
sitional analysis for a variant of the copy-constant propagation problem [13]. (See [4].)
Our connection analysis can be used as a basis for a simple form of compositional taint
analysis [22], essentially, by adding taint information to every partition. We hope that
the connection we found between modularity in lattices and program analyses can help
design precise and efficient compositional bottom-up analyses.
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