
Compiling with Code-Size Constraints

MAYUR NAIK and JENS PALSBERG
Purdue University

Most compilers ignore the problems of limited code space in embedded systems. Designers of
embedded software often have no better alternative than to manually reduce the size of the source
code or even the compiled code. Besides being tedious and error prone, such optimization results
in obfuscated code that is difficult to maintain and reuse. In this paper, we present a step towards
code-size-aware compilation. We phrase register allocation and code generation as an integer lin-
ear programming problem where the upper bound on the code size can simply be expressed as
an additional constraint. The resulting compiler, when applied to six commercial microcontroller
programs, generates code nearly as compact as carefully crafted code.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—code
generation

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Banked architecture, integer linear programming, register
allocation, space optimization

1. INTRODUCTION

1.1 Background

In an embedded system, it can be challenging to fit the needed functionality
into the available code space. Economic considerations often dictate the use
of a small and cheap processor, while demands for functionality can lead to a
need for considerable code space. Thus, the designer of the software must both
implement the desired functionality and do it with a limited code-space budget.
There are at least two options for handling such a task:

—Write the software in assembly language; this gives good control over code
size but makes programming, maintenance, and reuse hard; or

—Write the software in a high-level language; this gives poor control over code
size but makes programming, maintenance, and reuse easier.

The reason why the latter option gives poor control over code size is that most
compilers ignore the problems of limited code space in embedded systems.

Authors’ address: Department of Computer Science, Purdue University, West Lafayette, IN 47907;
email: {mnaik,palsberg}@cs.purdue.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1539-9087/04/0200-0163 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004, Pages 163–181.

164 • M. Naik and J. Palsberg

Good data layout increases
Authors Architecture the opportunities for using:

[Liao et al. 1996] contemporary digital autoincrement/autodecrement
[Leupers and Marwedel 1996] signal processor addressing modes
[Rao and Pande 1999]
[Sudarsanam and Malik 2000] two memory units parallel data access modes
[Sjödin and von Platen 2001] multiple address spaces pointer addressing modes
[Park et al. 2001] two register banks RP-relative addressing
this paper multiple register banks RP-relative addressing

Fig. 1. Good data layout can significantly reduce code size.

Typically, a compiler places primary emphasis on the execution speed of the
compiled code, and much less emphasis on the size of the compiled code. In
some cases, optimizations for execution speed conflict with optimizations for
code size. For example, loop unrolling tends to make code faster and bigger.
Another example is the use of procedures that tends to make code slower and
smaller. In this paper, we focus on combining programming in high-level lan-
guages with control over code size.

Question: Can we get the best of both worlds? Can we get both the flex-
ibility of programming in a high-level language and the control over code size
that is possible when programming in assembly?

This question has been studied in the past decade by many researchers who
have shown that good data layout can lead to reduced code size, see Figure 1.
For example, in a seminal paper, Liao et al. [1996] demonstrated that on many
contemporary digital signal processors, good data layout increases opportuni-
ties for using autoincrement/autodecrement addressing modes which in turn
reduces code size significantly. In this paper, we present a code-size-aware com-
piler that generates code which is nearly as compact as carefully crafted code on
architectures in which the register file is partitioned into banks, with a register
pointer (RP) specifying the “working” bank.

Park et al. [2001] have studied register allocation for an architecture with two
symmetric banks. They perform per-basic-block register allocation in one bank
and per-procedure register allocation in the other, and they generate instruc-
tions for moving data between the banks and for moving RP. We present three
new techniques, namely, we handle interrupts, we do whole-program register
allocation, and we enable saving RP on the stack by generating instructions
such as

push RP
srp b // set RP to bank b
. . .

pop RP.

The idea of saving RP on the stack is particularly useful when an interrupt
handler is invoked.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 165

1.2 The Problem: Compiling for the Z86E30

We address the problem of code-size-aware compilation for Zilog’s Z86E30 mi-
crocontroller [Zilog 1999]. The Z8 family of microcontrollers continues to be
widely used, for example, in the pacemakers from Guidant Corporation (the
second largest producer of pacemakers in the United States). It is straightfor-
ward to adapt our technique to other banked register architectures, for instance,
the Intel 8051 microcontroller.

We focus on compiling ZIL to Z86 assembly. ZIL is a high-level language we
have designed that resembles C in some respects. ZIL supports interrupt han-
dling and provides low-level instructions for managing interrupts. The gram-
mar of ZIL together with some notes on the semantics is presented in the ap-
pendix, and an example ZIL program is discussed in Section 2.

A key problem to a compiler is the Z86E30’s lack of a data/stack memory: all
variables declared in a ZIL program must be stored in registers. Moreover, it
is a major challenge to distribute the variables among the various banks in a
manner that reduces the overall space cost. As a result, whole-program register
allocation must be performed, as opposed to per-procedure register allocation.

The Z86E30 has 256 8-bit registers organized into 16 banks of 16 registers
each. Of these, 236 are general purpose, while the rest, namely, the first four
registers in the 0th bank and the 16 registers in the 15th bank, are special
purpose. The special-purpose registers are accessible to the ZIL programmer
by way of predefined variables.

A Z86 assembly instruction can address a register using an 8-bit or 4-bit
address. In the former case, the high nibble of the 8-bit address represents
the bank number and the low nibble represents the register number within
that bank. In the latter case, RP represents the bank number and the 4-bit
address represents the register number within that bank. We shall refer to
registers addressed using 4 and 8 bits as working and non working registers,
respectively.

The space cost of certain Z86 assembly instructions depends upon whether
they address registers using 4 or 8 bits. For instance, the cost of the decrement
instruction dec v or the add instruction add v, c (c is a constant) is independent
of the value of RP. But the cost of the increment instruction inc v or the add
instruction add v1, v2 depends upon the value of RP: the cost of the former is 1 or
2 bytes depending on whether RP points to the bank in which v is stored or not,
while the cost of the latter is 2 or 3 bytes depending on whether RP points to the
bank in which v1 and v2 are stored or not. We shall designate such instructions
RP sensitive. About 30% of the instructions in our benchmark programs are
RP sensitive. Thus, good register allocation is the key to compacting the target
code generated for a ZIL program.

1.3 Our Results

We have designed and implemented a code-size-aware compiler from ZIL to
Z86 assembly language. Our benchmark suite consists of six proprietary mi-
crocontroller programs, provided by Greenhill Manufacturing that were care-
fully handwritten in Z86 assembly. We converted the assembly programs to ZIL

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

166 • M. Naik and J. Palsberg

Fig. 2. Overview.

programs using an automatic reverse engineering tool [Palsberg and Wallace
2002], and then compiled the ZIL programs back to Z86 assembly programs us-
ing our code-size-aware compiler. This enables a direct comparison of the size
of the generated code to that of the original handwritten code.

We phrase register allocation as an integer linear programming (ILP) prob-
lem whose objective is to minimize the size of the target code. Our experiments
show that our compiler, when applied to the six microcontroller programs, gen-
erates code that is nearly as compact as the original handwritten code.

Our fully automated approach is illustrated in Figure 2. For a given ZIL
program, we first perform model extraction to derive a control-flow graph. Next,
we use the AMPL tool [Fourer et al. 1993] to generate an ILP from the control-
flow graph and an ILP formulation. Every variable in the ILP ranges over {0, 1}.
The ILP is solved using the CPLEX ILP solver [ILOG 2001]. Once a solution
has been obtained, a code generator produces a target Z86 assembly program.

We have experimented with three ILP formulations:

— Inexpensive allows only one srp right at the start of the program.
—Selective restricts srp to the entry and exit points of procedures and interrupt

handlers and push (pop) RP to the entry (exit) points of interrupt handlers.
—Exhaustive allows srp to be introduced before any instruction in the model

extracted from the ZIL program and restricts push (pop) RP to the en-
try (exit) points of interrupt handlers. An ILP formulation permitting push
(pop) RP at the entry (exit) points of interrupt handlers and procedures is
presented in Naik and Palsberg [2002]. We do not discuss it here because
it is worthwhile only in the presence of procedures that are both large and
called from several call sites. None of our benchmark programs have such
procedures.

Our experiments show that Selective offers a good trade-off between ILP
solving time and code-space savings.

1.4 Related Work on ILP-Based Compilation

In the past decade, there has been widespread interest in using ILP for compiler
optimizations (such as instruction scheduling, software pipelining, data layout,
and, particularly, register allocation) for the following reasons:

—Different optimizations such as register allocation and instruction schedul-
ing can be combined and solved within the same ILP framework, thereby
avoiding the “phase-ordering problem” [Motwani et al. 1995; Kremer 1997].

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 167

—ILP guarantees optimality of the solution as opposed to heuristic methods
[Ruttenberg et al. 1996].

—Even though ILP is NP-complete, significant advances in the integer and
combinatorial optimization field (namely, branch-and-bound heuristics and
cutting-plane technology), in conjunction with improvements in computa-
tion speed, have enabled its effective application to compiler optimizations
[Kremer 1997].

Goodwin and Wilken [1996] pioneered the use of ILP for register allocation.
Their approach is applicable only to processors with uniform register architec-
tures. Kong and Wilken [1998] present an ILP framework for irregular register
architectures (architectures that place restrictions on register usage). Appel
and George [2001] partition the register allocation problem for the Pentium
into two subproblems: optimal placement of spill code followed by optimal reg-
ister coalescing; they use ILP for the former. Stoutchinin [1997] and Ruttenberg
et al. [1996] present an ILP framework for integrated register allocation and
software pipelining in the MIPS R8000 microprocessor. Liberatore et al. [1999]
perform local register allocation (LRA) using ILP. Their experiments indicate
that their approach is superior to a dynamic programming algorithm that solves
LRA exactly but takes exponential time and space, as well as to heuristics that
are fast but suboptimal.

ILP has been widely used to perform register allocation for general-purpose
programs on stock microprocessors, but we are not aware of any ILP-based
technique that has been used to perform register allocation for interrupt-driven
programs on embedded microprocessors. The only ILP-based memory allocation
techniques for embedded processors we are aware of are that of Sjödin and
Platen [2001] that models multiple address spaces of a certain processor using
ILP, and that of Avissar et al. [2001] that uses ILP to optimally allocate global
and stack data among different heterogeneous memory modules.

1.5 Our Approach

Figure 3 elucidates the simplest of our three ILP formulations, namely, In-
expensive, that allows only one srp b right at the start of the program. The
formulation consists of set declarations, 0-1 variable declarations, an objective
function, and linear constraints; the former two components are elided in the
figure but explained below.

Var denotes the set of all variables in the ZIL program; PDV0 ⊂ Var and
PDV15 ⊂ Var denote the sets of predefined variables for which special-purpose
registers have been allotted in the 0th and 15th banks, respectively; Bin2Instr
and Bin1Instr are the sets of RP-sensitive instructions in the program with
two and one variable operands, respectively; and DjnzInstr is the set of the
unary “Decrement and Jump if Non-Zero” (djnz) instructions. Recall that an
RP-sensitive instruction occupies one fewer byte if its variable operand(s) are
allotted registers in the bank to which RP points, namely, bank b. For each
(i, v1, v2) ∈ Bin2Instr, the 0-1 variable Bin2Costi is set to 0 or 1 by the ILP
solver depending upon whether v1 and v2 are allotted registers in bank b or not,
respectively. Likewise, for each (i, v) ∈ Bin1Instr, the 0-1 variable InCurrBanki

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

168 • M. Naik and J. Palsberg

(objective function) Minimize:
∑

(i,v1,v2)∈Bin2Instr
Bin2Costi −

∑

(i,v)∈Bin1Instr
InCurrBankv

(linear constraints) Subject to:
∑

v∈Var InCurrBankv ≤ 16 (1)

∀v1 ∈ PDV0. ∀v2 ∈ PDV15. InCurrBankv1 + InCurrBankv2 = 1 (2)

∀v1 ∈ PDV0. ∀v2 ∈ PDV0. InCurrBankv1 = InCurrBankv2 (3)

∀v1 ∈ PDV15. ∀v2 ∈ PDV15. InCurrBankv1 = InCurrBankv2 (4)

∀(i, v) ∈ DjnzInstr. InCurrBankv = 1 (5)

∀(i, v1, v2) ∈ Bin2Instr. Bin2Costi + InCurrBankv1 ≥ 1 (6)

∀(i, v1, v2) ∈ Bin2Instr. Bin2Costi + InCurrBankv2 ≥ 1 (7)

Fig. 3. The Inexpensive ILP formulation.

is set to 0 or 1 depending upon whether v is allotted a register in bank b or not,
respectively.

The objective function seeks to minimize the number of bytes occupied by
RP-sensitive instructions, one byte per instruction.

Constraint (1) states that at most 16 variables can be stored in bank b. Con-
straint (2) states that variables in PDV0 and PDV15 cannot be in bank b simul-
taneously. Constraint (3) states that variables in PDV0 must simultaneously be
either in bank b or in a bank other than b; constraint (4) states the same for vari-
ables in PDV15. Constraint (5) states that the operand of each djnz instruction
must be stored in bank b. This is a requirement imposed by the Z86E30 archi-
tecture. Constraint (6) states that for each (i, v1, v2) ∈ Bin2Instr, Bin2Costi is
1 if v1 is stored in a bank other than b; constraint (7) states the same for v2.

1.6 Organization of the Paper

In Section 2, we present an example that illustrates the definitions and tech-
niques used later in the paper. In Section 3, we explain model extraction. In
Section 4, we present the Exhaustive ILP formulation. In Section 5, we discuss
code generation. In Section 6, we present the Selective ILP formulation and our
experimental results. Finally, Section 7 offers our conclusions.

2. EXAMPLE

An example ZIL program, called example.zil, is shown in Figure 4. The MAIN
part of the program is an infinite loop that calls procedure T4 or T8, depending
upon whether x is equal to y or not, respectively. T4 and T8 simulate delay timers.
INTR is an interrupt handler that simply counts the number of interrupts by
incrementing the global variable intrs. We assume that interrupt handling is
enabled in both the MAIN part and in the body of each of T4 and T8, but not in
the body of the interrupt handler.

From example.zil, we build a control-flow graph. To make the later stages
more efficient, we also do an abstraction of the graph that may eliminate nodes
and edges which do not play a role in register allocation. For example.zil,
the only instruction eliminated by the abstraction is the conditional jump

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 169

int intrs PROCEDURES HANDLERS

MAIN T4() INTR()
{ { {

int x int u inc intrs

int y ld u, 04h iret
START: L2: djnz u, L2 }

cp x, y ret
jp eq, L0 }
call T4

jp L1 T8()
L0: call T8 {
L1: jp START int v

ld v, 08h
} L3: djnz v, L3

ret
}

Fig. 4. example.zil.

Fig. 5. Abstracted control-flow graph for example.zil.

instruction in MAIN. The abstracted control-flow graph is shown in Figure 5.
Instructions are labeled i x y, where x is the number of the routine to which
the instruction belongs and y is the number of the instruction within that rou-
tine. (A routine is a procedure or an interrupt handler.) Routines are numbered
in the order in which they appear in the program; instructions in a routine are
numbered in the order in which they appear in that routine. Dotted edges rep-
resent interrupt handler invocations and returns. To avoid cluttering in the il-
lustration, those edges are not illustrated for T8; they are similar to those for T4.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

170 • M. Naik and J. Palsberg

MAIN PROCEDURES HANDLERS

{
; x, y are allotted registers T4() INTR()
; 0, 1 in bank 1 { {

; u is allotted register ; intrs is allotted register
START: ; 0 in bank 2 ; 0 in bank 3

srp 2

cp R10, R11 ; 1b wasted ld r0, 04h ; 1b saved inc R30 ; 1b wasted
jp eq, L0 L2: djnz r0, L2 iret
call T4 ret }
jp L1 }

L0: call T8
L1: jp START T8()
} {

; v is allotted register
; 1 in bank 2

ld r1, 08h ; 1b saved
L3: djnz r1, L3

ret
}

Fig. 6. Target Z86 code for example.zil.

The abstracted control-flow graph is the program model, and it is represented
in the form of set definitions. We show some of these definitions here:

Var := { x, y, u, v, intrs }
Bin2Instr := { i 0 1 }
Bin1Instr := { i 1 1, i 2 1, i 3 1 }
DjnzInstr := { i 1 2, i 2 2 }.

An ILP formulation is a template for ILPs. The ILP itself is generated from the
program model and the ILP formulation. Since example.zil is small and uses
only five variables, we will assume two registers per bank to make the problem
of register allocation nontrivial.

From a solution to the ILP, we can do register allocation and code generation.
Figure 6 shows a target Z86 assembly program based on a solution to the ILP
generated from the program model of example.zil and the Inexpensive ILP for-
mulation. A working register is denoted rk, where k is the register number in
the current bank and a nonworking register is denoted Rbk, where k is the reg-
ister number in bank b. Both b and k are base-16 digits. Recall that Inexpensive
allows only one srp b right at the start of the program (b = 2 in this example).
Since the operand of every djnz instruction must be allotted a working register,
variables u and v are allotted registers in bank 2.

3. MODEL EXTRACTION

Model extraction proceeds in the following four steps.
Skip insertion. First, we add an unlabeled skip instruction at the entry

point of each routine; the one introduced at the entry point of MAIN is denoted

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 171

iroot . The extra skip instructions ensure that there are no jumps to the instruc-
tion at the entry point of a routine.

IMR estimation. Second, we conservatively estimate, for each program
point, the interrupt handlers that are enabled, that is, the value of the in-
terrupt mask register (IMR). We use a technique similar to the one described
by Brylow et al. [2001].

Control-flow graph building. Third, we construct a control-flow graph, de-
noted CFG, from the program. Let Instr be the set of all occurrences of instruc-
tions in the program. CFG is a directed graph in which the set of nodes is Instr,
and each edge (i1, i2) is such that i2 can be executed immediately after i1 in a
program run. Note that there will be edges that correspond to interrupt-hander
invocations and returns, as determined by the IMR estimates.

Abstraction. Fourth, we define Instrabs as the subset of Instr such that
each instruction in Instrabs satisfies at least one of the following two conditions:

—The instruction is a ret, iret, a skip at the entry point of a routine, or djnz.
—The instruction is RP-sensitive.

From CFG, we define an abstracted control-flow graph CFGabs in which the
set of nodes is Instrabs, and each edge (i1, i2) is such that i2 is reachable from
i1 in CFG along a path that does not contain any other node in Instrabs. Thus,
i2 can be executed after i1 but before any other instruction in Instrabs in a run
of the original program.

4. THE EXHAUSTIVE ILP FORMULATION

4.1 Set Declarations

(1) Bank = {0, . . . , 12, 15} is the set of banks in the register file of the Z86E30;
the 13th and 14th banks are reserved for the run-time stack.

(2) Edge ⊆ (Instrabs × Instrabs) is the set of edges in CFGabs.
(3) IretInstr ⊆ Instrabs is the set of iret instructions.
(4) IretEdge = {(i1, i2) | i1 ∈ IretInstr ∧ (i1, i2) ∈ Edge} and MiscEdge =

Edge − IretEdge.
(5) Var is the set of all variables in the ZIL program. We assume that variables

that are local to different routines and have the same name are renamed
to eliminate name clashes in Var.

(6) PDV0 ⊆ Var and PDV15 ⊆ Var are the sets of predefined variables for which
special-purpose registers have been allotted in the 0th and 15th bank, re-
spectively.

(7) Bin2Instr ⊆ (Instrabs × Var× Var) is the set of triples (i, v1, v2) such that i
is an RP-sensitive instruction with source and destination operands v1 and
v2.

(8) Bin1Instr ⊆ (Instrabs × Var) is the set of pairs (i, v) such that i is an RP-
sensitive instruction with source and destination operand v.

(9) DjnzInstr ⊆ (Instrabs × Var) is the set of all “Decrement and Jump if Non-
Zero” instructions.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

172 • M. Naik and J. Palsberg

4.2 0–1 Variables

(1) The variables rv,b are defined such that for each v ∈ Var and b ∈ Bank, the
ILP solver sets rv,b to 1 if it is desirable to store v in (any register in) bank b.

(2) The variables RPVali,b are defined such that for each i ∈ Instrabs and b ∈
Bank, the solver sets RPVali,b to 1 if it is desirable that the value of RP is b
whenever i is executed.

(3) The variables SetRPi are defined such that for each i ∈ Instrabs, the solver
sets SetRPi to 1 if it is desirable to introduce the instruction srp b (set RP
to bank b) immediately before i.

(4) The variables PopRPi are defined such that for each i ∈ IretInstr, the
solver sets PopRPi to 1 if it is desirable to introduce the instruction pop
RP immediately before i (and the instruction push RP immediately im-
mediately before the first instruction of the interrupt handler to which i
belongs).

(5) The variables Bin2Costi are defined such that for each (i, v1, v2) ∈
Bin2Instr, Bin2Costi is 1 if ∃b ∈ Bank. RPVali,b �= rv1,b ∨ RPVali,b �= rv2,b.

(6) The variables Bin1Costi are defined such that for each (i, v) ∈ Bin1Instr,
Bin1Costi is 1 if ∃b ∈ Bank. RPVali,b �= rv,b.

4.3 Constraints

The general form of an ILP constraint is C1V1 + · · · + CnVn ∼ C, where
C1, . . . , Cn, C are integers, V1, . . . , Vn are integer variables, and ∼ is one of <, >,
≤, ≥, and =. Our ILP formulation uses the following six variants of the above
form:

V = 0
V = 1
V = V ′

V1 + · · · + Vn = 1
V1 + · · · + Vn ≤ C

V ≤ V ′ + V ′′

where V , V ′, V ′′, V1, . . . , Vn are variables that range over {0, 1}. It is straight-
forward to show that it is NP-complete to decide solvability of a finite set of
constraints of the six forms. We will use the abbreviation

|V ′ − V ′′| ≤ V

to denote the two constraints

V ′ ≤ V + V ′′

V ′′ ≤ V + V ′.

4.3.1 Assigning Variables to Banks. Constraint (8) states that a variable
must be stored in exactly one bank:

∀v ∈ Var.
∑

b∈Bank
rv,b = 1. (8)

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 173

Fig. 7. Scenario.

Constraints (9) and (10) state that all predefined variables must be stored in
their respective banks:

∀v ∈ PDV0.rv,0 = 1 (9)
∀v ∈ PDV15.rv,15 = 1. (10)

The total number of variables must not exceed the total number of registers.
Since each bank has 16 registers, we have

∀b ∈ Bank.
∑

v∈Var
rv,b ≤ 16. (11)

4.3.2 Introducing RP-Manipulating Instructions. Constraint (12) states
that RP must be set to exactly one bank at every instruction:

∀i ∈ Instrabs.
∑

b∈Bank
RPVali,b = 1. (12)

Constraint (13) states that for each (i1, i2) ∈ MiscEdge, if ∃b ∈ Bank.RPVali1,b �=
RPVali2,b, then SetRPi2 = 1:

∀(i1, i2) ∈ MiscEdge. ∀b ∈ Bank. |RPVali1,b − RPVali2,b| ≤ SetRPi2 . (13)

Constraint (14) states that for each (i1, i2) ∈ IretEdge, if ∃b∈ Bank.RPVali1,b �=
RPVali2,b, then PopRPi1 = 1:

∀(i1, i2) ∈ IretEdge. ∀b ∈ Bank. |RPVali1,b − RPVali2,b| ≤ PopRPi1 . (14)

In this case we do not have the option of introducing srp immediately before
i2; Figure 7 illustrates a scenario in which doing so results in incorrect behavior
of the target program.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

174 • M. Naik and J. Palsberg

Finally, constraint (15) states that srp cannot be introduced immediately
before iroot :

SetRPiroot = 0. (15)

4.3.3 Measuring Code Size. Any instruction in Bin2Instr occupies 2 or 3
bytes depending upon whether both operands are stored in working registers or
not, respectively. The following constraints characterize the space cost of each
such instruction:

∀(i, v1, v2) ∈ Bin2Instr. ∀b ∈ Bank. |rv1,b − RPVali,b| ≤ Bin2Costi (16)
∀(i, v1, v2) ∈ Bin2Instr. ∀b ∈ Bank. |rv2,b − RPVali,b| ≤ Bin2Costi. (17)

Thus, for any (i, v1, v2) ∈ Bin2Instr, v1 and v2 will be in working registers,
whenever i is executed if Bin2Costi = 0.

Any instruction in Bin1Instr occupies 2–3 bytes or 1–2 bytes depending upon
whether the operand is stored in a working register or not, respectively. The
following constraint characterizes the space cost of each such instruction:

∀(i, v1, v2) ∈ Bin1Instr. ∀b ∈ Bank. |rv,b − RPVali,b| ≤ Bin1Costi. (18)

Thus, for any (i, v) ∈ Bin1Instr, v will be in a working register whenever i is
executed if Bin1Costi = 0.

The operand of any unary instruction in Z86E30’s instruction set can be
stored in a working or nonworking register, with the exception of the djnz
v, dst instruction, in which the operand v must be stored in a working register.
(Program memory addresses such as dst in djnz are not treated as operands.
Hence, djnz qualifies as a unary instruction.) This condition is enforced by the
following constraint:

∀(i, v) ∈ DjnzInstr. ∀b ∈ Bank. rv,b = RPVali,b. (19)

4.4 Objective Function

The objective of our ILP is to minimize the instruction space cost of the target
program. The space cost of each instruction in Bin2Instr or Bin1Instr depends
upon whether its operands are stored in working registers or not, and is char-
acterized by the variables Bin2Cost and Bin1Cost, respectively. Also, the space
cost of each of srp, push RP, and pop RP is 2 bytes. Thus, the objective func-
tion is

∑

(i,v1,v2)∈Bin2Instr
Bin2Costi +

∑

(i,v)∈Bin1Instr
Bin1Costi +

∑

i∈Instrabs

2 ∗ SetRPi +
∑

i∈IretInstr
4 ∗ PopRPi.

5. CODE GENERATION

Given a solution to the ILP generated from the model of a ZIL program and
the Exhaustive ILP formulation, we generate target Z86 assembly code as
follows:

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 175

Number of: serial drop rop cturk zturk gturk

Instructions in ZIL program 209 555 564 735 883 949
Instructions in model/Nodes in CFGabs 92 340 356 466 553 595
Edges in CFGabs 174 681 1186 1101 1398 1531
Instructions in Bin2Instr 8 62 68 126 131 145
Instructions in Bin1Instr 42 112 120 144 150 158
RP-sensitive instructions 50 174 188 270 281 303
Instr in DjnzInstr 0 9 9 6 7 7
Variables 27 63 64 74 77 86
Procedures 8 27 25 33 46 48
Interrupt handlers 3 2 2 1 1 1

Fig. 8. Benchmark characteristics.

(1) If v ∈ Var − (PDV0 ∪ PDV15) and rv,b = 1, then we store v in (any register in)
bank b. Constraint (8) ensures that there is a unique such b.

(2) If (i, v1, v2) ∈ Bin2Instr, then the registers allocated to both v1 and v2 are ad-
dressed using the 4-bit or 8-bit addressing mode, depending upon whether
Bin2Costi is 0 or 1, respectively.

(3) If (i, v) ∈ Bin1Instr, then v is addressed using the 4-bit or 8-bit addressing
mode, depending upon whether Bin1Costi is 0 or 1, respectively.

(4) If (i, v) ∈ DjnzInstr, then the register allocated to v is addressed using the
4-bit addressing mode.

(5) If i ∈ Instr − Instrabs and v ∈ Var is an operand of i, then the register
allocated to v is addressed using the 8-bit addressing mode.

(6) If i ∈ Instrabs, SetRPi = 1, and b is the bank such that RPVali,b = 1, then
we introduce srp b immediately before i. Constraint (12) ensures that there
is a unique such b.

(7) If i ∈ IretInstr and PopRPi = 1, then we introduce pop RP immediately
before i and push RP immediately before the first instruction of the inter-
rupt handler to which i belongs.

(8) If RPValiroot ,b = 1, then we replace iroot by srp b. Constraint (15) ensures
that there is no srp instruction before iroot .

6. EXPERIMENTAL RESULTS

We have evaluated the performance of the Inexpensive and Exhaustive ILP for-
mulations on a range of benchmark ZIL programs with respect to two criteria:
the ILP solving time and the size of the generated code. Based on these results,
we have designed the Selective ILP formulation (Section 6.3) that offers a good
trade-off between ILP solving time and size of the generated code.

6.1 Benchmark Characteristics

For our experiments, we have used six proprietary microcontroller programs
provided by Greenhill Manufacturing. Greenhill has over a decade of expe-
rience producing environmental control systems for agricultural needs. The
programs were originally written in Z86 assembly; we have converted them
to ZIL using an automatic reverse engineering tool [Palsberg and Wallace
2002]. Some characteristics of these programs are presented in Figure 8.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

176 • M. Naik and J. Palsberg

Number of: technique serial drop rop cturk zturk gturk

Seconds to solve ILP Inexpensive 0.08 4.3 8 51 56 190
Selective 0.06 110 320 3300 4800 8900
Exhaustive 0.09 4200 1700 86400 86400 86400

srp Inexpensive 1 1 1 1 1 1
Selective 2 9 7 15 12 15
Exhaustive 2 11 11 14 15 19

push/pop RP Selective 0 0 0 1 1 1
Exhaustive 0 2 2 1 1 1

bytes of Z86 code Upper bound 511 1346 1422 1804 2123 2287
Inexpensive 483 1269 1337 1685 2001 2159
Selective 477 1248 1315 1655 1958 2110
Exhaustive 477 1239 1305 1641 1950 2109
Lower bound 461 1172 1234 1536 1842 1984
Handwritten 488 1248 1298 1536 1776 1901

Fig. 9. Measurements.

Model extraction abstracts away about 37% of the instructions in a typi-
cal benchmark ZIL program. The RP-sensitive instructions in each bench-
mark are precisely those instructions in Bin2Instr and Bin1Instr. About
30% of the instructions in a typical benchmark ZIL program are RP-sensitive
instructions.

6.2 Measurements

Figure 9 presents the results of code-size-aware compilation using the Inex-
pensive, Selective, and Exhaustive ILP formulations. The ILP solving time was
measured on a 1.1 GHz Intel Pentium IV machine with 512 MB RAM, though
CPLEX was limited to use at most 128 MB. Moreover, for the Exhaustive ILP
formulation, CPLEX was limited to use at most 1 day (86,400 s). It was unable
to find an optimal solution to the Exhaustive ILPs for cturk, zturk, and gturk
within that time limit, so the corresponding results are based on the potentially
suboptimal solution that it was able to find within 1 day.

The upper (resp. lower) bounds on the bytes of Z86 code in Figure 9 de-
note the size of the Z86 code generated under the condition that no RP-
manipulating instructions (srp and push/pop RP) are introduced, and all RP-
sensitive instructions use 8-bit (resp. 4-bit) register addressing. These bounds
are unrealistic in that it is impossible to generate, for a real-world ZIL pro-
gram, Z86 code that satisfies the above condition. The bounds are provided
to remind the reader that no register allocation technique can generate Z86
code as large as the upper bound or, more importantly, as small as the lower
bound.

6.3 Assessment

It is evident from Figure 9 that ILP solving time increases prohibitively from In-
expensive to Exhaustive. The Inexpensive and Exhaustive techniques explore two
extremes: Inexpensive allows only one srp to be introduced right at the start of

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 177

Number of srp at: serial drop rop cturk zturk gturk

START 2 8 8 7 10 12
END 0 0 0 3 2 3
MISC 0 3 3 4 3 4

Fig. 10. Locations in which srp was introduced by the Exhaustive technique: START and END
denote entry and exit points, respectively, of routines, and MISC denotes arbitrary locations within
routines.

the program, while Exhaustive allows srp to be introduced before any instruc-
tion in (the model extracted from) the program. To seek middle ground, we
studied the locations at which srp was introduced by the Exhaustive technique
for each of the six benchmark programs. Figure 10 summarizes our findings:
more than 75% of the locations were the entry and exit points of routines. This
provides the motivation for our Selective technique that allows srp to be intro-
duced immediately before only those instructions at the entry and exit points of
routines. Let ProcInstr ⊆ Instrabs be the set of all such instructions. Then, the
Selective ILP formulation is identical to the Exhaustive ILP formulation with
the following additional constraint:

∀i ∈ Instrabs − ProcInstr. SetRPi = 0. (20)

It is instructive to compare the sizes of the Z86 programs generated using the
Selective technique with those of the corresponding handwritten Z86 programs
(see Figure 9). The handwritten programs are slightly more compact because
of two reasons:

—The handwritten programs use programming tricks (for example, jumps from
one routine to instructions within another routine). ZIL forbids such tricks,
even at the expense of code size, because they yield programs that are un-
readable and unamenable to maintenance and reuse.

—The handwritten programs implicitly use mutable arrays. All the elements
of an array are allotted registers in the same bank. As a result, an operation
on all the elements of an array can be performed efficiently by looping over
the registers in the corresponding bank. Since ZIL does not currently support
mutable arrays, the reverse engineering tool converts each element of each
such array into a variable and unrolls all loops, thereby bloating code size.
Future work involves supporting mutable arrays in ZIL.

Figure 11 illustrates for each of the six benchmarks, the sizes of the Z86 pro-
grams generated using the Inexpensive, Selective, and Exhaustive techniques,
the lower bound, and the size of the handwritten Z86 program, all normalized
with respect to the upper bound. Inexpensive yields 5% space savings over the
upper bound. Selective yields 2–3% space savings over Inexpensive. However,
Exhaustive yields only 0.5% space savings over Selective. Moreover, CPLEX does
not find the optimal solution to the Exhaustive ILPs for the largest three bench-
marks but it does find the optimal solution to the Selective ILPs for all the

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

178 • M. Naik and J. Palsberg

Fig. 11. Size of Z86 code normalized with respect to the upper bound.

benchmarks (see Figure 9). Selective therefore offers the best trade-off between
ILP solving time and space savings.

7. CONCLUSION

We have investigated three approaches to code-size-aware compilation based
on ILP. The Selective approach offers a good trade-off between ILP solving
time and space savings. Since ILP is NP-complete, generating optimally sized
target code for large programs can be prohibitively time consuming. We have
employed an alternative methodology: an exhaustive ILP technique can be used
once and for all to determine patterns in code generation. Next, a selective ILP
technique can be formulated to take advantage of such patterns and generate
code that is nearly as compact as carefully handwritten code in reasonable
time.

APPENDIX

The grammar for ZIL is shown in Figure 12. A ZIL program consists of a MAIN
part, procedures, and interrupt handlers. Each ZIL routine (procedure or in-
terrupt handler) has a single entry point and a single exit point. In particular,
a jump from one routine to an instruction within another routine is forbid-
den. Procedures may define formal parameters that may be passed by value or

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 179

Goal ::= (GlobalDef)* "MAIN" MainBlock "PROCEDURES" (ProcDef)*

"HANDLERS" (HandlerDef)*

GlobalDef ::= ConstDef | VarDef

ConstDef ::= "static" "final" Type Id "=" Literal

VarDef ::= Type Variable

Type ::= "int" | "string" | "proc_label" | "jump_label" | "int[]"

ProcDef ::= Label "(" (ParamList)? ")" ProcedureBlock

ParamList ::= ParamDef ("," ParamDef)*

ParamDef ::= Type ("&")? Id

HandlerDef ::= Label "(" ")" HandlerBlock

MainBlock ::= "{" (VarDef)* (Stmt)* "}"

ProcedureBlock ::= "{" (VarDef)* (Stmt)* (Label ":")? "RET" "}"

HandlerBlock ::= "{" (VarDef)* (Stmt)* (Label ":")? "IRET" "}"

Stmt ::= (Label ":")? Instruction

Instruction ::= ArithLogic1aryOPC Variable

| ArithLogic2aryOPC Variable "," Expr

| CPUControl1aryOPC Expr

| CPUControl0aryOPC

| "LD" Variable "," LDExpr

| "DJNZ" Variable "," Label

| "JP" (Condition ",")? LabelExpr

| "CALL" LabelExpr (ArgList)?

| "preserveIMR" "{" (Stmt)* (Label ":")? "}"

LDExpr ::= "@" Id | Expr | "LABEL" Label

Expr ::= "!" Expr | "(" Expr "&" Expr ")" | "(" Expr "|" Expr ")"

| Prim

Prim ::= Id | IntLiteral | ArrayReference

ArrayReference ::= Id "[" IntLiteral "]" | Id "[" Id "]"

LabelExpr ::= Label | "@" Variable

ArgList ::= "(" Id ("," Id)* ")"

Variable ::= Id

Label ::= Id

ArithLogic1aryOPC ::= "CLR" | "COM" | "DA" | "DEC" | "INC" | "POP" | "PUSH"

| "RL" | "RLC" | "RR" | "RRC" | "SRA" | "SWAP"

ArithLogic2aryOPC ::= "ADC" | "ADD" | "AND" | "CP" | "OR" | "SBC"

| "SUB" | "TCM" | "TM" | "XOR"

CPUControl0aryOPC ::= "CLRIMR" | "CLRIRQ" | "EI" | "DI" | "HALT" | "NOP"

| "RCF" | "SCF" | "STOP" | "WDH" | "WDT"

CPUControl1aryOPC ::= "ANDIMR" | "ANDIRQ" | "LDIMR" | "LDIPR" | "LDIRQ"

| "ORIMR" | "ORIRQ" | "TMIMR" | "TMIRQ"

Condition ::= "F" | "C" | "NC" | "Z" | "NZ" | "PL" | "MI" | "OV"

| "NOV" | "EQ" | "NE" | "GE" | "GT" | "LE" | "LT" | "UGE"

| "ULE" | "ULT" | "UGT" | "GLE"

Literal ::= IntLiteral | StrLiteral | ArrayLiteral

IntLiteral ::= <HEX_H> | <BIN_B> | <DEC_D>

StrLiteral ::= <STRING_CONSTANT>

ArrayLiteral ::= "{" IntLiteral ("," IntLiteral)* "}"

Id ::= <IDENTIFIER>

Fig. 12. The ZIL grammar.

by reference. Formal parameters are considered to be local to the procedure,
but may be passed to other procedures. Variables can be declared as global or
as local to any routine. Additionally, ZIL has immutable integer arrays with
Java-like syntax.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

180 • M. Naik and J. Palsberg

ACKNOWLEDGMENTS

The paper is a revised version of Naik and Palsberg [2002]. We thank Matthew
Wallace for writing a ZIL interpreter and a Z86-to-ZIL reverse-engineering
tool. We thank Dennis Brylow for help in numerous situations. We thank the
anonymous referees for useful comments. Our research was supported by a
National Science Foundation Information Technology Research award number
0112628.

REFERENCES

APPEL, A. AND GEORGE, L. 2001. Optimal spilling for CISC machines with few registers. In Pro-
ceedings of PLDI’01, ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 243–253.

AVISSAR, O., BARUA, R., AND STEWART, D. 2001. Heterogeneous memory management for embedded
systems. In Proceedings of CASES ’01, International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems.

BRYLOW, D., DAMGAARD, N., AND PALSBERG, J. 2001. Static checking of interrupt-driven software. In
Proceedings of ICSE’01, 23rd International Conference on Software Engineering, 47–56.

FOURER, R., GAY, D. M., AND KERNIGHAN, B. W. 1993. AMPL: A Modeling Language for Mathematical
Programming. The Scientific Press.

GOODWIN, D. W. AND WILKEN, K. D. 1996. Optimal and near-optimal global register allocation
using 0-1 integer programming. Software—Practice & Experience 26, 8 (Aug.), 929–965.

ILOG. ILOG CPLEX 7.1 User’s Manual. See http://www.ilog.com.
KONG, T. AND WILKEN, K. D. 1998. Precise register allocation for irregular register architectures.

In Proceedings of MICRO ’98, 31st Annual ACM/IEEE International Symposium on Microarchi-
tecture, 297–307.

KREMER, U. 1997. Optimal and near-optimal solutions for hard compilation problems. Parallel
Processing Letters 7, 4.

LEUPERS, R. AND MARWEDEL, P. 1996. Algorithms for address assignment in DSP code generation.
In Proceedings of ICCAD ’96, International Conference on Computer Aided Design, 109–112.

LIAO, S., DEVADAS, S., KEUTZER, K., TJIANG, S., AND WANG, A. 1996. Storage assignment to de-
crease code size. ACM Transactions on Programming Languages and Systems 18, 3 (May), 235–
253.

LIBERATORE, V., FARACH-COLTON, M., AND KREMER, U. 1999. Evaluation of algorithms for local reg-
ister allocation. 137–152.

MOTWANI, R., PALEM, K., SARKAR, V., AND REYEN, S. 1995. Combining register allocation and in-
struction scheduling. Tech. Rep. STAN-CS-TN-95-22, Department of Computer Science, Stanford
University.

NAIK, M. AND PALSBERG, J. 2002. Compiling with code-size constraints. In Proceedings of
LCTES’02, Languages, Compilers, and Tools for Embedded Systems joint with SCOPES’02, Soft-
ware and Compilers for Embedded Systems, 120–129.

PALSBERG, J. AND WALLACE, M. 2002. Reverse engineering of real-time assembly code. Manuscript.
PARK, J., LEE, J., AND MOON, S. 2001. Register allocation for banked register file. In Proceedings

of LCTES ’01, ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems, 39–47.

RAO, A. AND PANDE, S. 1999. Storage assignment optimizations to generate compact and efficient
code on embedded DSPs. In Proceedings of PLDI ’99, ACM SIGPLAN Conference on Programming
Language Design and Implementation, 128–138.

RUTTENBERG, J., GAO, G. R., STOUTCHININ, A., AND LICHTENSTEIN, W. 1996. Software pipelining show-
down: Optimal vs. heuristic methods in a production compiler. In Proceedings of PLDI ’96, ACM
SIGPLAN Conference on Programming Language Design and Implementation, 1–11.

SJÖDIN, J. AND VON PLATEN, C. 2001. Storage allocation for embedded processors. In Proceedings
of CASES ’01, International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, 15–23.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Compiling with Code-Size Constraints • 181

STOUTCHININ, A. 1997. An integer linear programming model of software pipelining for the MIPS
R8000 processor. In Proceedings of PaCT’97, 4th International Conference on Parallel Computing
Technologies, 121–135.

SUDARSANAM, A. AND MALIK, S. 2000. Simultaneous reference allocation in code generation for dual
data memory bank ASIPs. ACM Transactions on Design Automation of Electronic Systems 5, 2
(Jan.), 242–264.

Zilog. Z8 Microcontroller User’s Manual. See http://www.zilog.com.

Received September 2002; accepted June 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

