
Mantis: Efficient Predictions of Execution Time,
Energy Usage, Memory Usage and Network

Usage on Smart Mobile Devices
Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang, Student Member, IEEE,

Byung-gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and Yunheung Paek,Member, IEEE

Abstract—We present Mantis, a framework for predicting the computational resource consumption (CRC) of Android applications on

given inputs accurately, and efficiently. A key insight underlying Mantis is that program codes often contain features that correlate with

performance and these features can be automatically computed efficiently. Mantis synergistically combines techniques from program

analysis and machine learning. It constructs concise CRC models by choosing from many program execution features only a handful

that are most correlated with the program’s CRC metric yet can be evaluated efficiently from the program’s input. We apply program

slicing to reduce evaluation time of a feature and automatically generate executable code snippets for efficiently evaluating features.

Our evaluation shows that Mantis predicts four CRC metrics of seven Android apps with estimation error in the range of 0-11.1 percent

by executing predictor code spending at most 1.3 percent of their execution time on Galaxy Nexus.

Index Terms—Prediction, program analysis, machine learning, slicing, smartphone, computational resource consumption

Ç

1 INTRODUCTION

PREDICTING the consumption of computational resources,
such as computation time, memory capacity, energy

consumption and network characteristics, of programs on
smart mobile devices has many applications such as, notify-
ing the estimated completion time to users, achieving better
scheduling and resource management, testing applications,
detecting anomalies, or offloading computation [1], [2], [3].
The importance of these applications—and of program per-
formance prediction—will only grow as smartphone sys-
tems become increasingly complex and flexible.

Many techniques have been proposed for predicting the
computational resource consumption (CRC) of programs.
A key aspect of such techniques is what features, which
characterize the program’s input and environment, are
used to model the program’s CRC. Features that are trivial
and efficient to obtain, such as input parameters, input size
or cpu speed, can be enough to build an accurate predictor
for some applications [4]. However, in many cases, addi-
tional features need to be extracted from within an applica-
tion to accurately predict its performance. Most existing

CRC prediction techniques are domain-specific [5], [6], [7]
or requiring expert knowledge [8], [9].

In this paper, we present Mantis, a new framework to
predict online the CRC of bytecode programs on given
inputs accurately, and efficiently. Since it uses neither
domain nor expert knowledge to obtain relevant features,
our framework casts a wide net and extracts a broad set of
features from the given program itself to select relevant fea-
tures using machine learning as done in our prior work
[10]. During an offline stage, we execute an instrumented
version of the program on a set of training inputs to com-
pute values for those features; we use the training data set
to construct a prediction model for online evaluation as
new inputs arrive.

It is tempting to exploit features that are evaluated at late
stages of program execution, as such features may be
strongly correlated with CRC. A drawback of na€ıvely using
such features for predicting program CRC, however, is that
it takes as long to evaluate them as to execute almost the
entire program. Our efficiency goal requires our framework
to not only find features that are strongly correlated with
CRC, but to also evaluate those features significantly faster
than running the program to completion.

To exploit such late-evaluated features, we use a pro-
gram analysis technique called program slicing [11], [12].
Given a feature, slicing computes the set of all statements in
the program that may affect the value of the feature. Precise
slicing could prune large portions of the program that are
irrelevant to the evaluation of features. Our slices are stand-
alone executable programs; thus, executing them on pro-
gram inputs provides both the evaluation time and the
value of the corresponding feature.

We have implemented Mantis for Android applications
and applied it to six CPU-intensive applications (encryp-
tor, path routing, spam filter, chess engine, ringtone

� Y. Kwon, H. Yi, D. Kwon, S. Yang, B.-G. Chun, and Y. Paek are with the
Department of Electrical and Computer Engineering, Seoul National
University, Kwanak-gu Kwanak-ro 1, Seoul.
E-mail: {yikwon, hyyi, dhkwon, sjyang, bgchun, ypaek}@sor.snu.ac.kr.

� S. Lee is with the Department of Computer Science, University of Texas at
Austin, TX 78712 USA. E-mail: sangmin@cs.utexas.edu.

� L. Huang and P. Maniatis are with the Research Department, Intel Labs,
2150 Shattuck, Suite 1300, Berkeley, CA 94704 USA.
E-mail: {ling.huang,petros.maniatis}@intel.com.

� M. Naik is with the the School of Computer Science, Georgia Institute of
Technology, Atlanta, GA 30332 USA. E-mail: naik@cc.gatech.edu.

Manuscript received 7 June 2014; revised 22 Sept. 2014; accepted 18 Nov.
2014. Date of publication 17 Dec. 2014; date of current version 31 Aug. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2014.2374153

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015 2059

1536-1233� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

maker, and face detection), an I/O-intensive application
(JTar) and a network-intensive application (SorTube) on
four smartphone hardware platforms (Galaxy Nexus, Gal-
axy S2, Galaxy S3, Nexus 5). We demonstrate experimen-
tally that, with Galaxy Nexus, Mantis can predict the
execution time, the energy consumption, the accumulated
memory allocation, the memory requirement and network
usage of these programs with estimation error mostly
under 5 percent, with a few exceptions peaking at 11.1
percent, by executing slices that spend at most 1.3 percent
of the total execution time of these programs. The results
for Galaxy S2 and Galaxy S3 are similar. We also briefly
show the impact Mantis could have on mobile execution
offloading.

We summarize the key contributions of our work:

� We propose a novel framework that automatically
generates CRC predictors using program-execution
features with program slicing and machine learning.

� We have implemented our framework for Android-
smartphone applications and show empirically that
it can predict the execution time of various applica-
tions accurately and efficiently.

� We show that Mantis can predict other CRC metrics,
energy consumption, accumulated memory alloca-
tion and memory requirement, with only implemen-
tation of its own CRC metric profiler.

� We show an example of Mantis predictors enhancing
the performance of smartphones.

The rest of the paper is organized as follows. We present
the architecture of our framework in Section 2. Sections 3
and 4 describe our feature instrumentation and CRC-model
generation, respectively. Section 5 describes predictor code
generation using program slicing. In Section 6 we present
our system implementation and in Section 7 we present
evaluation results. Finally, we discuss related work in
Section 8 and conclude in Section 9.

2 ARCHITECTURE

In Mantis, we take a new approach to automatically gener-
ate system CRC predictors. Unlike traditional approaches,
we extract information from the execution of the program,
which is likely to contain key features for CRC prediction.
This approach poses the following two key challenges:

� What are good program features for CRC predic-
tion? Among many features, which ones are relevant
to CRC metrics? How do we model CRC with rele-
vant features?

� How do we compute features cheaply? How do
we automatically generate code to compute feature
values for prediction?

Mantis addresses the above challenges by synergistically
combining techniques from program analysis and machine
learning.

Mantis has an offline stage and an online stage. The off-
line stage, depicted in Fig. 1, consists of four components: a
feature instrumentor, a profiler, a CRC-model generator,
and a predictor code generator.

The feature instrumentor (Section 3), takes as input the
program whose CRC is to be predicted, and a set of feature
instrumentation schemes. A scheme specifies a broad class of
program features that are potentially correlated with the
program’s CRC metrics. Examples of schemes include a fea-
ture for counting the number of times each conditional in
the program evaluates to true, a feature for the average
of all values taken by each integer-typed variable in the
program, etc. The feature instrumentor instruments the
program to collect the values of features (f1; . . . ; fM) as per
the schemes.

Next, the profiler takes the instrumented program and a
set of user-supplied program inputs (I1; . . . ; IN). It runs the
instrumented program on each of these inputs and produ-
ces, for each input Ii, a vector of feature values
ðvi1; . . . ; viMÞ. It also runs the program on the given inputs
and measures the CRC metric (e.g., execution time (ti),
memory size (mi) or energy consumption (ei)) of the pro-
gram on that input.

The CRC-model generator (Section 4) performs sparse
nonlinear regression on the feature values and CRC metrics
obtained by the profiler, and produces a function (�) that
approximates the program’s CRC metrics using a subset of
features (fi1; . . . ; fiK). In practice, only a tiny fraction of all
M available features is chosen (K � M) since most features
exhibit little variability on different program inputs, are not
correlated or only weakly correlated with CRC metrics, or
are equivalent in value to the chosen features and therefore
redundant.

As a final step, the predictor code generator (Section 5)
produces for each of the chosen features a code snippet
from the instrumented program. Since our requirement is to
efficiently predict the program’s CRC on given inputs, we
need a way to efficiently evaluate each of the chosen fea-
tures (fi1; . . . ; fiK) from program inputs.

We apply program slicing to extract a small code snippet
that computes the value of each chosen feature. A precise
slicer would prune large portions of the original program
that are irrelevant to evaluating a given feature and thereby

Fig. 1. The Mantis offline stage.

2060 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

provide an efficient way to evaluate the feature. In practice,
however, our framework must be able to tolerate impreci-
sion. Besides, independent of the slicer’s precision, certain
features will be inherently expensive to evaluate: e.g., fea-
tures whose value is computed upon program termination,
rather than derived from the program’s input. We define a
feature as expensive to evaluate if the execution time of its
slice exceeds a threshold (TH) expressed as a fraction of pro-
gram execution time. If any of the chosen features
(fi1; . . . ; fiK) is expensive, then via the feedback loop in Fig. 1
(at the bottom), our framework re-runs the model generator,
this time without providing it with the rejected features. The
process is repeated until the model generator produces a set
of features, all of which are deemed inexpensive by the
slicer. In summary, the output of the offline stage of our
framework is a predictor, which consists of a function (�)
over the final chosen features that approximates the pro-
gram’s CRC, along with a feature evaluator for the chosen
features.

The online stage is straightforward: it takes a program
input from which the program’s CRC must be predicted
and runs the predictor module, which executes the feature
evaluator on that input to compute feature values, and uses
those values to compute � as the estimated CRC of the pro-
gram on that input.

3 FEATURE INSTRUMENTATION

We now present details on the four instrumentation
schemes we consider: branch counts, loop counts, method-call
counts, and variable values. Our overall framework, however,
generalizes to all schemes that can be implemented by the
insertion of simple tracking-statements into binaries or
source.

Branch Counts. This scheme generates, for each condi-
tional occurring in the program, two features: one counting
the number of times the branch evaluates to true in an exe-
cution, and the other counting the number of times it evalu-
ates to false.

Loop Counts. This scheme generates, for each loop occur-
ring in the program, a feature counting the number of times
it iterates in an execution. Clearly, each such feature is
potentially correlated with execution time.

Method Call Counts. This scheme generates a feature
counting the number of calls to each procedure. In case of
recursive calls of methods, this feature is likely to correlate
with execution time.

Variable Values. This scheme generates, for each state-
ment that writes to a variable of primitive type in the pro-
gram, two features tracking the sum and average of all
values written to the variable in an execution. One can also
instrument versions of variable values in program execution
to capture which variables are static and what value
changes each variable has. However, this creates too many
feature values and we resort to the simpler scheme.

We instrument variable values for a few reasons. First,
often the variable values obtained from input parameters
and configurations are changing infrequently, and these
values tend to affect program execution by changing con-
trol flow. Second, since we cannot instrument all functions
(e.g., system call handlers), the values of parameters to

such functions may be correlated with their execution-
time contribution. Similarly, variable value features can be
equivalent to other types of features but significantly
cheaper to compute.

4 CRC MODELING

Our feature instrumentation schemes generate a large num-
ber of features (albeit linear in the size of the program for
the schemes we consider). Most of these features, however,
are not expected to be useful for the CRC prediction. In
practice we expect a small number of these features to suf-
fice in explaining the program’s execution time well, and
thereby seek a compact CRC model, that is, a function of
(nonlinear combinations of) just a few features that accu-
rately approximates execution time. Unfortunately, we do
not know a priori this handful of features and their nonlin-
ear combinations that predict execution time well.

For a given program, our feature instrumentation profiler
outputs a data set with N samples as tuples of fti; vigNi¼1,
where ti 2 R denotes the ith observation of execution time,
and vi denotes the ith observation of the vector of M
features.

Least square regression is widely used for finding the
best-fitting �ðv;bÞ to a given set of responses ti by minimiz-
ing the sum of the squares of the residuals [13]. However,
least square regression tends to overfit the data and create
complex models with poor interpretability. This does not
serve our purpose since we have a lot of features but desire
only a small subset of them to contribute to the model.

Another challenge we faced was that linear regression
with feature selection would not capture all interesting
behaviors by practical programs. Many such programs
have non-linear, e.g., polynomial, logarithmic, or polylogar-
ithmic complexity. So we were interested in non-linear
models, which can be inefficient for the large number of fea-
tures we had to contend with.

Regression with best subset selection finds for each
K 2 f1; 2; . . . ;Mg the subset of sizeK that gives the smallest
residual sum of squares (RSS). However, it is a discrete opti-
mization problem and is known to be NP-hard [13]. In
recent years a number of approximate algorithms have been
proposed as efficient alternatives for simultaneous feature
selection and model fitting. Widely used among them are
least absolute shrinkage and selection operator (LASSO)
[14] and FoBa [15], an adaptive forward-backward greedy
algorithm. The former, LASSO, is based on model regulari-
zation, penalizing low-selectivity, high-complexity models.
It is a convex optimization problem, so efficiently solvable
[16], [17]. The latter, FoBa, is an iterative greedy pursuit
algorithm: during each iteration, only a small number of
features are actually involved in model fitting, adding or
removing the chosen features at each iteration to reduce the
RSS. As shown FoBa has nice theoretical properties and effi-
cient inference algorithms [15].

For our system, we chose the SPORE-FoBa algorithm,
which we proposed [10], to build a predictive model from
collected features. In our work, we showed that SPORE-FoBa
outperforms LASSO and FoBa. The FoBa component of the
algorithm helps cut down the number of interesting features
first, and the SPORE component builds a fixed-degree (d)

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2061

polynomial of all selected features, on which it then applies
sparse, polynomial regression to build the model. For exam-
ple, using a degree-2 polynomial with feature vector

v ¼ ½x1x2�, we expand out ð1þ x1 þ x2Þ2 to get terms

1; x1; x2; x
2
1; x1x2; x

2
2, and use them as basis functions to con-

struct the following function for regression:

fðvÞ ¼ b0 þ b1x1 þ b2x2 þ b3x
2
1 þ b4x1x2 þ b5x

2
2:

The resulting model can capture polynomial or sub-polyno-
mial program complexities well thanks to Taylor expansion,
which characterizes the vast majority of practical programs.

For a program whose execution time may dynamically
change over time as the workload changes, our CRC model
should evolve accordingly. The model can evolve in two
ways: 1) the set of (non-linear) feature terms used in the
model change; 2) with a fixed set of feature terms, their
coefficients b0

js change. For a relatively stable program, we
expect the former changes much less frequently than the
latter. Using methods based on Stochastic Gradient
Descent [18], it is feasible to update the set of feature terms
and their coefficients b0

js online upon every execution time

being collected.

5 PREDICTOR CODE GENERATION

The function output by the CRC model generator is
intended to efficiently predict the program’s CRC on given
program inputs. This requires a way to efficiently evaluate
the features that appear in the function on those inputs.
Many existing techniques rely on users to provide feature
evaluators. A key contribution of our approach is the use of
static program slicing [11], [12] to automatically extract from
the (instrumented) program efficient feature evaluators in
the form of executable slices—stand-alone executable pro-
grams whose sole goal is to evaluate the features. This sec-
tion explains the rationale underlying our feature slicing
(Section 5.1), describes the challenges of slicing and our
approach to addressing them (Section 5.2), and provides the
design of our slicer (Section 5.3).

5.1 Rationale

Given a program and a slicing criterion (p, v), where v is a
program variable in scope at program point p, a slice is an
executable sub-program of the given program that yields
the same value of v at p as the given program, on all inputs.
The goal of static slicing is to yield as small a sub-program
as possible. It involves computing data and control depen-
dencies for the slicing criterion, and excluding parts of the
program upon which the slicing criterion is neither data-
nor control-dependent.

In the absence of user intervention or slicing, a na€ıve
approach to evaluate features would be to simply execute
the (instrumented) program until all features of interest
have been evaluated. This approach, however, can be
grossly inefficient. Besides, our framework relies on feature
evaluators to obtain the cost of each feature, so that it can
iteratively reject costly features from the CRC model. Thus,
the na€ıve approach to evaluate features could grossly over-
estimate the cost of cheap features. We illustrate these
problems with the na€ıve approach using two examples.

Example: This example illustrates a case in which the com-
putation relevant to evaluating a feature is interleaved with
computation that is expensive but irrelevant to evaluating
the feature. The following program opens an input text file,
reads each line in the file, and performs an expensive com-
putation on it (denoted by the call to the processmethod):

Reader r = new Reader(new File(name));
String s;
while ((s = r.readLine()) != null) {
f_loop++; // feature inst.
process(s); // expensive computation
}

Assuming the number of lines in the input file is strongly
correlated with the program’s execution time, the only
highly predictive feature available to our framework is
f_loop, which tracks the number of iterations of the loop.
The na€ıve approach to evaluate this feature will perform the
expensive computation denoted by the process method in
each iteration, even if the number of times the loop iterates
is independent of it. Slicing this program with slicing crite-
rion (p_exit, f_loop), on the other hand, can yield a slice
that excludes the calls to process(s). The example illus-
trates a case where the feature is fundamentally cheap to
evaluate but slicing is required because the program is writ-
ten in a manner that intertwines its evaluation with unre-
lated expensive computation.

5.2 Slicer Challenges

There are several key challenges to effective static slicing.
Next we discuss these challenges and the approaches we
take to address them. Three of these are posed by program
artifacts—procedures, the heap, and concurrency—and the
fourth is posed by our requirement that the slices be
executable.

Inter-procedural Analysis. The slicer must compute data
and control dependencies efficiently and precisely. In par-
ticular, it must propagate these dependencies context-
sensitively, that is, only along inter-procedurally realizable
program paths—doing otherwise could result in inferring
false dependencies and, ultimately, grossly imprecise slices.
Our slicer uses existing precise and efficient inter-
procedural algorithms from the literature [19], [20].

Alias Analysis. False data dependencies (and thereby
false control dependencies as well) can also arise due to ali-
asing, i.e., two or more expressions pointing to the same
memory location. Alias analysis is expensive. The use of
an imprecise alias analysis by the slicer can lead to false
dependencies. Static slicing needs may-alias information—
analysis identifying expressions that may be aliases in at
least some executions—to conservatively compute all data
dependencies. In particular, it must generate a data depen-
dency from an instance field write u.f (or an array ele-
ment write u[i]) to a read v.f (or v[i]) in the program
if u and v may-alias. Additionally, static slicing can also
use must-alias information if available (expressions that
are always aliases in all executions), to kill dependencies
that no longer hold as a result of instance field and array
element writes in the program. Our slicer uses a flow- and
context-insensitive may-alias analysis with object allocation
site heap abstraction [21].

2062 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

Concurrency Analysis. Multi-threaded programs pose an
additional challenge to static slicing due to the possibility
of inter-thread data dependencies: reads of instance
fields, array elements, and static fields (i.e., global varia-
bles) are not just data-dependent on writes in the same
thread, but also on writes in other threads. Precise static
slicing requires a precise static race detector to compute
such data dependencies. Our may-alias analysis, how-
ever, suffices for our purpose (a race detector would per-
form additional analyses like thread-escape analysis,
may-happen-in-parallel analysis, etc.)

Executable Slices. We require slices to be executable. In
contrast, most of the literature on program slicing focuses
on its application to program debugging, with the goal of
highlighting a small set of statements to help the program-
mer debug a particular problem (e.g., Sirdharan et al. [22]).
As a result, their slices do not need to be executable. Ensur-
ing that the generated slices are executable requires exten-
sive engineering so that the run-time does not complain
about malformed slices, e.g., the first statement of each con-
structor must be a call to the super constructor even though
the body of that super constructor is sliced away, method
signatures must not be altered, etc.

5.3 Slicer Design

Our slicer combines several existing algorithms to produce
executable slices. The slicer operates on a three-address-like
intermediate representation of the bytecode of the given
program.

Computing System Dependence Graph (SDG). For each
method reachable from the program’s root method
(e.g., main) by our call-graph analysis, we build a program
dependence graph (PDG) [20], whose nodes are statements
in the body of the method and whose edges represent intra-
procedural data/control dependencies between them. For
uniform treatment of memory locations in subsequent steps
of the slicer, this step also performs a mod-ref analysis1 and
creates additional nodes in each PDG denoting implicit
arguments for heap locations and globals possibly read in
the method, and return results for those possibly modified
in the method.

The PDGs constructed for all methods are stitched into a
system dependence graph [20], which represents inter-
procedural data/control dependencies. This involves creat-
ing extra edges (so-called linkage-entry and linkage-exit
edges) linking actual to formal arguments and formal to
actual return results, respectively.

In building PDGs, we handle Java native methods, which
are built with JNI calls, specially. We implement simple
stubs to represent these native methods for the static analy-
sis. We examine the code of the native method and write a
stub that has the same dependencies between the argu-
ments of the method, the return value of the method, and
the class variables used inside the method as does the native
method itself. We currently perform this step manually.
Once a stub for a method is written, the stub can be reused
for further analyses.

Augmenting System Dependence Graph. This step uses the
algorithm by Reps, Horwitz, Sagiv, and Rosay [19] to aug-
ment the SDG with summary edges, which are edges sum-
marizing the data/control dependencies of each method in
terms of its formal arguments and return results.

Two-Pass Reachability. The above two steps are more com-
putationally expensive but are performed once and for all
for a given program, independent of the slicing criterion.
This step takes as input a slicing criterion and the aug-
mented SDG, and produces as output the set of all state-
ments on which the slicing criterion may depend. It uses the
two-pass backward reachability algorithm proposed by
Horwitz, Reps, and Binkley [20] on the augmented SDG.

Translation. As a final step, we translate the slicer code
based on intermediate representation to bytecode.

Extra Steps for Executable Slices. A set of program state-
ments identified by the described algorithm may not meet
Java language requirements. This problem needs to be
resolved to create executable slices.

First, we need to handle accesses to static fields and heap
locations (instance fields and array elements). Therefore,
when building an SDG, we identify all such accesses in a
method and create formal-in vertices for those read and
formal-out for those written along with corresponding
actual-in and actual-out vertices. Second, there may be
uninitialized parameters if they are not included in a slice.
We opt to keep method signatures, hence we initialize them
with default values. Third, there are methods not reachable
from a main method but rather called from the VM directly
(e.g., class initializers). These methods will not be included
in a slice by the algorithm but still may affect the slicing cri-
terion. Therefore, we do not slice out such code. Fourth,
when a new object creation is in a slice, the corresponding
constructor invocation may not. To address this, we create a
control dependency between object creations and corre-
sponding constructor invocations to ensure that they are
also in the slice. Fifth, a constructor of a class except the
Object class must include a call to a constructor of its parent
class. Hence we include such calls when they are missing in
a slice. Sixth, the first parameter of an instance method call
is a reference to the associated object. Therefore if such a
call site is in a slice, the first parameter has to be in the slice
too and we ensure this.

6 IMPLEMENTATIONS

We have built a prototype of Mantis implementing the
instrumentor, profiler, model generator and predictor code
generator (Fig. 2). The prototype is built to work with
Android application binaries. We implemented the feature
instrumentor using Javassist [23], which is a Java bytecode
rewriting library. The profiler is made of scripts automati-
cally running the program for CRC metric data and the
instrumented program for feature data on the test inputs.
After the corresponding CRC profiler has gathered the pro-
file data, it is used by the model generator, which is writ-
ten in Octave [24] scripts. Finally, we implemented our
predictor code generator in Java and Datalog by extending
JChord [25], a static and dynamic Java program-analysis
tool. JChord uses the Joeq Java compiler framework to
convert the bytecode of the input Java program into a

1. This finds all expressions that a method may modify-reference
directly, or via some method it transitively calls.

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2063

three-address-like intermediate code called quadcode,
which is more suitable for analysis. The predictor code
generator produces the quadcode slice, which is the small-
est subprogram that could obtain the selected features.
Each quad instruction is translated to a corresponding set
of Jasmin [26] assembly code, and then the Jasmin compiler
generates the final Java bytecode.

We have applied the prototype to Android applications.
Before Android applications are translated to Dalvik Exe-
cutables (DEX), their Java source code is first compiled into
Java bytecode. Mantis works with this bytecode and trans-
lates it to DEX to run on the device. Mantis could work with
DEX directly, as soon as a translator from DEX to Joeq
becomes available.

To show Mantis can work with various CRC metrics, we
chose five CRC metrics to implement, execution time,
energy consumption, accumulated memory allocation,
memory requirement and network usage. Execution time is
the amount of time needed for an application to run and
energy consumption shows how much energy will be con-
sumed when a program is executed. Accumulated memory
allocation is the total sum of memory allocation during an
application’s runtime and memory requirement represents
the absolute minimum amount of free memory needed to
run an application. Finally, network usage shows how
much data will be transferred through networks. As each
CRC metric needs to be measured differently, we have
implemented profilers for each metric.

7 EVALUATION

7.1 Evaluation Environment

We mainly use for our experiments, Galaxy Nexus running
Android 4.1.2 with dual-core 1.2 GHz CPU and 1GB RAM.
We run our experiments with a server to run the instrumen-
tor, model generator, and predictor code generator, as well
as a smartphone to run the codes for profiling and gener-
ated predictor codes for slicing evaluation. The server runs
Ubuntu 11.10 64-bit with a 3.1 GHz quad-core CPU, and
8 GB of RAM. All experiments were done using Java SE 64-
bit 1.6.0_30.

The selected applications—encryptor, path routing,
spam filter, chess engine, ringtone maker, face detection, tar
archive and SorTube—cover a broad range of CPU, I/O and
network intensive functionalities found in most Android-
applications. Their execution times are sensitive to inputs,

challenging to model. Below we describe the applications
and the input set we used for experiments in detail.

We evaluate Mantis on randomly generated inputs for
each application. These inputs achieve 95-100 percent basic-
block coverage, except exception handling. We generate
1,000 random test inputs with their random range specified
for each application. The predictor for each application is
trained on 100 random inputs that fall within 60 percent of
the specified random range. For each platform, we run
Mantis to generate predictors and measure their error and
running time. The threshold is set to 5 percent, which means
a generated predictor is accepted only if the predictor run-
ning time is less than 5 percent of the original program’s
completion time.

� Encryptor. This encrypts a file using a matrix as a key.
Inputs are the file and the matrix key. We use 1,000
files, each with its own matrix key. File size ranges
from 10 to 8,000 KB, and keys are 200� 200 square
matrices.

� Path Routing. This computes the shortest path from
one point to another on a map (as in navigation and
game applications). We use 1,000 maps, each with
100-200 locations, and random paths among them.
We queried a route for a single random pair of loca-
tions for each map.

� Spam Filter. This application filters spam messages
based on a collective database. At initialization, it
collects the phone numbers of spam senders from
online databases and sorts them. Then it removes
white-listed numbers (from the user’s phonebook)
and builds a database. Subsequently, messages from
senders in the database are blocked. We test Mantis
with the initialization step; filtering has constant
duration. We use 1,000 databases, each with 2,500 to
20,000 phone numbers.

� Chess Engine. This is the AI part of a chess applica-
tion. Similar to many game applications, it receives
the configuration of chess pieces as input and deter-
mines the best move using a Minimax algorithm. We
set the game-tree depth to three. We use 1,000 ran-
domly generated chess-piece configurations, each
with up to 32 chess pieces.

� Ringtone Maker. This generates customized ringtones.
Its input is a wav-format file and a time interval
within the file. The application extracts that interval
from the audio file and generates a new mp3 ring-
tone. We use 1,000 wav files, ranging from 1 to 10
minutes, and intervals starting at random positions
and of lengths between 10 and 30 seconds.

� Face Detection. This detects faces in an image by
using the OpenCV library. It outputs a copy of the
image, outlining faces with a red box. We use 1,000
images, of sizes between 100� 100 and 900� 3; 000
pixels.

� Tar Archive. This application compresses text files to
tar archive files by using JTar. JTar is a simple Java
Tar library using IO streams. We use randomly gen-
erated text files, ranging from a few KBs to dozens of
KBs, and randomly choose 1,000 sets of files for
compression.

Fig. 2. Mantis prototype toolchain.

2064 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

� SorTube. This is a cross-platform media streaming
application with video customization for heteroge-
neous devices. Its server-side application pulls video
data from a media server and adjusts the video for-
mat, bit rate, resolution and pixel format to match
the specification of the device streaming the video.
We use 1,000 videos which have different durations
and sizes.

7.2 Experiment Results

7.2.1 Accurate and Efficient Prediction for Execution

Time

We first evaluate the accuracy and efficiency of Mantis exe-
cution time prediction. “Execution Time” column in Table 1
reports the prediction error and running time of Mantis-
generated execution time predictors. The “prediction error”
column measures the accuracy of our prediction. Let AðiÞ
and EðiÞ denote the actual and predicted execution times,
respectively, computed on input i. Then, this column
denotes the prediction error of our approach as the average
value of jAðiÞ � EðiÞj=AðiÞ over all inputs i. The “TAve”
measures how long the predictor runs compared to the orig-
inal program. Let P ðiÞ denote the time to execute the
predictor. This column denotes the average value of
P ðiÞ=AðiÞ over all inputs i. The “TMax” shows the actual run-
ning time of the predictor. We show the longest prediction
time among the 1,000 inputs.

Mantis achieves accuracy with prediction error within
5 percent in most cases, while each predictor runs around
1 percent of the original application’s execution time, which
is well under the 5 percent limit we assigned to Mantis.

Mantis generated interpretable and intuitive prediction
models by only choosing one or two among the many

detected features unlike non-parametric methods. Table 2
shows the total number of features initially detected, the num-
ber of features actually chosen to build the prediction model,
the selected features and the generated polynomial prediction
model of execution time. In the model, cn represents a con-
stant real coefficient generated by the model generator and fn
represents the selected feature. The selected features are
important factors in execution time, and they often interact in
a non-linear way, which Mantis captures accurately. For
example, for Encryptor, Mantis uses non-linear feature terms

(f21f2, f
2
1) to predict the execution time accurately.

Nowwe explain why chess engine has a higher error rate.
Its execution time is related to the number of leaf nodes in
the game tree. However, this feature can only be obtained
late in the application execution and is dependent on almost
all code that comes before it. Therefore, Mantis rejects this
feature because it is too expensive. Note that we set the limit
of predictor execution time to be 5 percent of the original
application time. As the expensive feature is not usable,
Mantis chooses alternative features: the number of nodes in
the first level of the game tree and the number of chess pieces
left; these features can capture the behavior of the number of
leaf nodes in the game tree. Although they can only give a
rough estimate of the number of leaf nodes in the game tree,
the prediction error is still around only 12 percent.

7.2.2 Accurate and Efficient Prediction for Energy

Consumption

“Energy Consumption” column in Table 1 shows the pre-
diction error and running time of Mantis-generated energy
consumption predictors. As the table shows, the generated
predictors obtained error rates under 5 percent with the
exception of the predictor for chess engine and all of them

TABLE 1
Prediction Error and Prediction Time for CRC Predictions

Execution Time Energy Consumption Memory Allocation Memory Requirement

Application Error TAve TMax Error TAve TMax Error TAve TMax Error TAve TMax

Encryptor 4.5% 0.18% 0.26 s 3.9% 0.18% 0.26 s 0.0% 0.18% 0.26 s 0.2% 0.00% 0 s
Path Routing 5.4% 1.34% 0.29 s 4.8% 1.34% 0.29 s 4.9% 1.34% 0.29 s 0.5% 1.34% 0.29 s
Spam Filter 3.1% 0.51% 0.35 s 2.8% 0.51% 0.35 s 0.2% 0.51% 0.35 s 2.8% 0.51% 0.35 s
Chess Engine 11.1% 1.03% 0.46 s 10.5% 1.03% 0.46 s 8.1% 1.03% 0.46 s 4.6% 0.73% 0.34 s
Ringtone Maker 4.9% 0.20% 0.24 s 4.3% 0.20% 0.24 s 0.0% 0.00% 0 s 0.1% 0.00% 0 s
Face Detection 3.8% 0.62% 0.27 s 3.6% 0.62% 0.27 s 0.1% 0.62% 0.27 s 0.6% 0.62% 0.27 s
Tar Archive 3.4% 1.24% 0.41 s 4.1% 1.24% 0.41 s 1.5% 0.15% 0.64 s 0.2% 0.00% 0 s

TABLE 2
The Total Number of Features Initially Detected, the Number of Chosen Features, Selected Features and Generated Prediction

Models for Execution Time Prediction

No. of features

Application Total Chosen Selected features Generated model

Encryptor 28 2 Matrix-key size (f1), Loop count of encryption (f2) c0f1
2f2 þ c1f1

2 þ c2f2 þ c3
Path Routing 68 1 Build map loop count (f1) c0f1

2 þ c1f1 þ c2
Spam Filter 55 1 Inner loop count of sorting (f1) c0f1 þ c1
Chess Engine 1,084 2 # of 1-depth nodes (f1), # of pieces (f2) c0f1

3 þ c1f1f2 þ c2f2
2 þ c3

Ringtone Maker 74 1 Cut interval length (f1) c0f1 þ c1
Face Detection 107 2 Width of image (f1), Height of image (f2) c0f1f2 þ c1f2

2 þ c2
Tar Archive 122 1 Total sum of the size of the text files c0 þ c1f1

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2065

need only around 1 percent of the application’s actual run-
ning time. The reason for the higher, yet quite acceptable,
error rate on chess engine is the same with the case of the
execution time predictor. The number of detected features
are the same as Table 2 and the chosen features are the
same as well. The generated models, however, are slightly
different from the table. This is because there is usually a
strong correlation between execution time and energy con-
sumption, so the features that would affect execution time
are likely to affect the energy consumption of an applica-
tion as well, and the applications we tested all showed this
correlation. And as the chosen features are the same, the
prediction time, the time to acquire the feature values, is
the same as well.

7.2.3 Accurate and Efficient Prediction for Memory

Usage

“Memory Allocation” column in Table 1 shows the behav-
iors of the accumulated memory allocation predictors. As
we can see, the overall error rate is lower, mostly under
4 percent and chess engine at 8.1 percent, than that of the
execution time or energy consumption predictors. This is
because the execution time and energy consumption of an
application can slightly differ even on the same input and
under the same environment, resulting in giving slightly
different execution time or energy consumption data when
profiled. On the contrary, memory allocation always gives
the same profiled value on the same input, thus, Mantis is
able to generate a more accurate prediction model.

The prediction time for the accumulated memory alloca-
tion predictors are the same as or less than that of the former
two predictors, the ones for execution time and energy con-
sumption, depending on the chosen features. When the cho-
sen features are the same as the other predictors, the
prediction time is the same. However the predictor for ring-
tone maker chose fewer features than before, and in the case
of Tar Archive a different feature was chosen, both resulting
in different prediction times compared to those of the pre-
dictors for the former two CRC metrics. Tar Archive’s pre-
dictor for memory usage chose a different feature from
what its predictor for execution time and energy consump-
tion choose. The newly chosen feature was the number of
text files to compress and as it is a cheaper feature than the
total sum of text files, which was used in the other predic-
tors, the prediction time is less than that of the other predic-
tors. The reason why only the number of text files is
relevant to memory allocation is because Tar Archive makes
an object for each file and there is a fixed sized buffer for
each object, which means the memory used for each file is
always constant. In the case of ringtone maker the predic-
tion time is 0. The reason for this is that the generated pre-
diction model for accumulated memory allocation only has
a constant term, so running a sliced version of the program
to obtain feature values is unneeded. This is due to the fact
that ringtone maker uses a fixed sized buffer to handle its
source file and output file regardless of its input, which in
turn means it always uses a fixed amount of memory. As
shown in ‘memory requirement” column in Table 1, the pre-
dictors generated for memory requirement prediction show
similar tendencies to those of the other predictors. Most of

the predictors for memory requirement achieved low error
rates with the exception of chess engine, yet even in that
case the error rate is under 5 percent. This is due to the
same reasons as stated before, which is that the usage of
memory does not fluctuate as much as the execution time or
energy consumption of an application, which in turn leads
to a more accurate predictor generated by Mantis. So even
when it is hard to predict the tendency of chess engine the
prediction error for memory requirement is lower than that
for execution time or energy consumption. The overhead to
run the memory requirement predictors are around 1 per-
cent. Though in the cases of encryptor, ringtone maker, and
tar archive the prediction times are 0. The reason for this is
that there are no chosen features for these applications’
memory requirement predictors, which in turn means the
minimum required memory for these applications stay the
same regardless of the input.

7.2.4 Accurate and Efficient Prediction for Network

Usage

We have tested Mantis to predict the network usage metric
of SorTube. Mantis turned out to be similarly effective on
predicting network usage as it is on other metrics, with 2.5
percent prediction error while requiring 0.10 percent of the
original application’s running time.

7.2.5 The Effect of the Number of Training Samples

We show the effect of the number of training samples on
prediction errors in Fig. 3. In most cases, the curve of their
prediction error plateaus before 50 input samples for train-
ing. Furthermore, even in the cases where the error rate
improves beyond using 50 input samples, the curve pla-
teaus around 100 input samples for training. Since there is
little to gain after the curve plateaus, we only use 100 input
samples for training Mantis. Even for bigger input datasets
of 10,000 samples, we only need about 100 input samples
for training to obtain similar prediction accuracy.

Fig. 3. Prediction errors varying the number of input samples. The y-axis
is truncated to 20 for clarity.

2066 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

7.2.6 Benefit of Non-Linear Terms on Prediction

Accuracy

Table 3 shows the prediction error rates of the models built
by Mantis and Mantis-linear for execution time. Mantis-lin-
ear uses only linear terms (fi’s) for model generation. For
encryptor, path routing, chess engine, and face detection,
non-linear terms improve prediction accuracy significantly
since Mantis-linear does not capture the interaction between
features. The other cases show the two having the same
accuracy because Mantis generated linear models for the
predictors of those applications.

7.2.7 Benefit of Slicing on Prediction Time

Next we discuss how slicing improves the prediction time.
In Table 4, we compare the prediction times of Mantis-gen-
erated predictors for execution time with those of predictors
built with partial execution (PE). Partial execution runs the
instrumented program only until the point where we obtain
the chosen feature values.

Mantis reduces the prediction time significantly in most
cases, as PE predictors need to run a large piece of code,
which includes code that is unrelated to the chosen features
until their values are obtained.

The ones that show around 100 percent for PE prediction
are the worst cases for PE since the last updates of the cho-
sen feature values occur near the end of their execution. In
contrast, in the cases that show lower prediction time than
Mantis, the PE predictor can obtain the chosen feature val-
ues cheaply even without slicing. This is because the values
for the chosen features can be obtained at the very begin-
ning in the application’s execution. In fact, the Mantis-gen-
erated predictors of these applications take longer than PE
because the generated code is less optimized than the code
generated directly by the compiler.

7.2.8 Benefit of Slicing on Prediction Accuracy

To show the effect of slicing on prediction accuracy under a
prediction time limit, we compare our results with those
obtained using bounded execution (BE). Bounded execution
gathers features by running an instrumented application for
only a short period of time, which is the same as the time a
Mantis-generated predictor would run. It then uses these
gathered features with the Mantis model generator to build
a prediction model.

As shown in Table 5, the prediction error rates of the
models built by BE are much higher than those of the mod-
els built by Mantis in most cases. This is because BE cannot
exploit as many features as Mantis. As a result, in several
cases, no usable feature can be obtained by BE; thus, BE cre-
ates a prediction model with only a constant term for the
applications.

7.2.9 Prediction on Different Hardware Platforms

Next we evaluate whether Mantis generates accurate and
efficient predictors on three different hardware platforms.
Table 6 shows the results of Mantis execution time predictor
with two additional smartphones: Galaxy S2 and Galaxy S3,
respectively. Galaxy S2 has a dual-core 1.2 GHz CPU and 1
GB RAM, running Android 4.0.3. Galaxy S3 has a quad-core
1.4 GHz CPU and 1 GB RAM, running Android 4.0.4. As
shown in the table, Mantis achieves low prediction errors
and short prediction times with Galaxy S2 and Galaxy S3 as
well. Here, Mantis builds models similar to the ones gener-
ated for Galaxy Nexus. The chosen features for each device
are the same as or equivalent (e.g., there can be multiple
instrumented variables with the same value) to the chosen
features for Galaxy Nexus, while the model coefficients are
changed to match the speed of each device. We also verify
the prediction error and time for the other CRC metrics

TABLE 3
Prediction Error of Mantis and Mantis-Linear

for Execution Time Prediction

Application Mantis(%) Linear(%)

Encryptor 4.5 6.6
Path Routing 5.4 10.6
Spam Filter 3.1 3.1
Chess Engine 11.1 16.2
Ringtone Maker 4.9 4.9
Face Detection 3.8 52.7
Tar Archive 3.4 3.4

Mantis-linear uses only linear terms (fi’s) for model generation.

TABLE 4
Prediction Time of Mantis and PE for Execution Time Prediction

Application Mantis (%) PE (%)

Encryptor 0.18 100.08
Path Routing 1.34 17.76
Spam Filter 0.51 99.39
Chess Engine 1.03 69.63
Ringtone Maker 0.20 0.04
Face Detection 0.62 0.17
Tar Archive 1.24 0.53

TABLE 5
Prediction Error of Mantis and BE for Execution Time Prediction

Application Mantis (%) BE (%)

Encryptor 4.5 57.1
Path Routing 5.4 69.3
Spam Filter 3.1 39.7
Chess Engine 11.1 28.1
Ringtone Maker 4.9 4.9
Face Detection 3.8 3.8
Tar Archive 3.4 3.4

TABLE 6
Prediction Error and Time of Execution Time Running

with Galaxy S2 and Galaxy S3

Galaxy S2 Galaxy S3

Application Prediction Prediction Prediction Prediction
error (%) time (%) error (%) time (%)

Encryptor 4.6 0.35 3.4 0.08
Path Routing 4.1 3.07 4.2 1.28
Spam Filter 5.4 1.52 2.2 0.52
Chess Engine 9.7 1.42 13.2 1.38
Ringtone Maker 3.7 0.51 4.8 0.20
Face Detection 5.1 1.28 5.0 0.69

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2067

with the additional smartphones are almost same as the
result of execution time prediction. The result shows that
Mantis generates predictors robustly with different hard-
ware platforms.

7.2.10 Prediction Errors for Multi-Threaded

Applications

We show the effect of multi-threads on prediction error in
Table 7. To compare the prediction accuracy of different
amount of concurrent threads in an application, we modi-
fied chess engine to run as a multi-threaded application. We
run it on Nexus 5 which has a quad-core 2.3 GHz CPU and
2 GB RAM. As shown in the table, Mantis’ prediction accu-
racy falls a little as the number of threads are increased. An
interesting point here is that the application does not seem
to benefit much from multi-threading above two threads, as
the speed-up is about the same. This seems to be a result of
the Android OS kernel limiting the usage of CPU cores to
sustain the device’s power.

7.2.11 Offline Stage Processing Time

Table 8 presents Mantis offline stage processing (profiling,
model generation, slicing, and testing) time for all input
training data. The total time is the sum of times of all steps.
The iterations column shows how many times Mantis ran
the model generation and slicing part due to rejected fea-
tures. For the applications excluding chess engine, the total
time is less than a few hours, the profiling part dominates,
and the number of iterations in the feedback loop is small.
Chess engine’s offline processing time takes up to around
13 hours because of many rejected features.

7.3 Applying Mantis in Frameworks

Input based CRC prediction on smart mobile devices has
many possible applications. Users no longer need to clue-
lessly wait for a program to finish, systems could schedule
applications more efficiently and unusual behaviors of an
application might even be predicted beforehand as well.

While there are many applications where Mantis could be
beneficial, in this section we show how the Mantis predictor
could enhance mobile execution offloading.

Mobile execution offloading [27] is the act of transfer-
ring the execution of a program at runtime from a smart
mobile device to a resource-rich server in order to counter
the limitations of smart mobile devices, such as limited bat-
tery power or limited computational resources. However,
there are costs, namely time and energy costs, to transfer
an execution from a device to a server. Our previous work
[28] focuses on reducing such costs, yet it can still be detri-
mental to offload in some cases. This is why a program
should only be transferred when the benefit of offloading
the program outweighs the cost of doing so. Thus making
performance prediction important in mobile execution off-
loading. The gains and costs of offloading must be pre-
dicted in order to make a good decision of whether or not
to offload. At the same time, these gains and costs of off-
loading could change when the input of a program
changes, making it important for making predictions that
could reflect such changes as well.

Existing works [1], [2] somewhat address this by using
profiled data from past executions to predict the outcome
of the current execution in order to make a decision on
offloading. This technique works well in some cases,
where the current program input or device conditions are
similar to previous executions, it often fails to give a
usable prediction in general cases. Meanwhile, [29]
exploits cloud with evidence-based learning methods to
provide sophisticated decision process. To solve the prob-
lem, we use the Mantis predictor in mobile execution off-
loading. To simplify the offloading problem to focus on
the impact of prediction results, the modified framework
makes offloading decisions based on the following equa-
tion, whose goal is only to minimize the execution time of
chess engine. We simplify the whole offloading problem
to the most basic form in order to focus on the impact of
decision making

Minimize ð1� lÞ � T l þ l� ðTr þ CÞ� �
(1)

l will be 0 if the program should be run locally, and 1 if it

should run remotely on a given input. T l is the predicted
execution time on the smartphone, Tr that on the server and
C is the predicted cost of offloading. Because the states to be
transferred between a mobile device and a server is con-
stant, the value of C does not affected by input-change. We
tested our own chess engine predictor generated with Man-
tis as well as a simplified predictor similar to those in prior
works [1], [2] to acquire the predictions for the equation.

Table 9 shows the profiling and offloading results. The
table shows five random cases from our test set of 1,000
inputs. The “mobile” and “server” columns are results from
offline profiling and represents the execution time of chess
engine being run only on the mobile device and only on the
server, respectively. The “PE” and “BE” columns show the
offloading framework using a PE and BE predictors, respec-
tively. Finally, the “Mantis” column shows the offloading
framework using a Mantis predictor while including the
predictor’s prediction time. As we can see, even with the
prediction overhead, our Mantis predictor greatly enhanced

TABLE 7
Prediction Errors for a Multi-Threaded Chess Engine

Application with Nexus 5

of Threads Error(%) Speed-up

Single 3.8 1X
Dual 6.0 1.37X
Quad 7.9 1.36X

TABLE 8
Mantis Offline Stage Processing Time for Execution Time

Prediction (in Seconds)

Application P. M. S. T. Total Iters

Encryptor 2,373 18 117 391 2.9k 3
Path Routing 363 28 114 14 0.5k 3
Spam Filter 135 10 66 3 0.2k 2
Chess Engine 6,624 10k 6,016 23k 46k 83
Ringtone Maker 2,074 19 4,565 2 6.7k 1
Face Detection 1,437 13 6,412 179 8k 4
Tar Archive 2,718 80 125 913 3.8k 8

2068 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

the execution offloading framework. The average perfor-
mance increase Mantis brought to the total input set was
35.7 percent over Mobile only execution and 14.8 percent
better over server only execution.

8 RELATED WORK

Much research has been devoted to modeling system behav-
ior as a means of prediction for databases [5], [6], cluster
computing [30], [31], networking [32], [33], [34], program
optimization [35], [36], mapping parallelism [37] etc.

Prediction of basic program characteristics, execution
time, or even resource consumption, has been used
broadly to improve scheduling, provisioning, and optimi-
zation. Example domains include prediction of library
and benchmark performance [38], [39], database query
execution-time and resource prediction [5], [6], perfor-
mance prediction for streaming applications based on
control flow characterization [40], violations of service-
level agreements (SLAs) for cloud and web services [30],
[31], and load balancing for network monitoring infra-
structures [7]. Such work demonstrates significant bene-
fits from prediction, but focuses on problem domains that
have identifiable features (e.g., operator counts in data-
base queries, or network packet header values) based on
expert knowledge, use domain-specific feature extraction
that may not apply to general-purpose programs, or
require high correlation between simple features (e.g.,
input size) and execution time.

Delving further into extraction of non-trivial features,
research has explored extracting predictors from execution
traces [41] to model program complexity [8], to improve
hardware simulation specificity [42], [43], and to find bugs
cooperatively [44]. There has also been research on multi-
component systems (e.g., content-distribution networks)
where the whole system may not be observable in one place.
For example, extracting component dependencies (web
objects in a distributed web service) can be useful for what-if
analysis to predict how changing network configuration will
impact user-perceived or global performance [32], [33], [34].

A large body of work has targeted worst-case behavior
prediction, either focusing on identifying the inputs that
cause it, or on estimating a tight upper bound [45], [46], [47],
[48], [49] in embedded and/or real-time systems. Such
efforts are helped by the fact that, by construction, the sys-
tems are more amenable to such analysis, for instance
thanks to finite bounds on loop sizes. Other work focuses on
modeling algorithmic complexity [8], simulation to derive
worst-case running time [50], and symbolic execution and

abstract evaluation to derive either worst-case inputs for a
program [51], or asymptotic bounds on worst-case complex-
ity [52], [53]. In contrast, our goal is to automatically gener-
ate an online, accurate predictor of the performance of
particular invocations of a general-purpose program.

Among many algorithms to predict CRC metrics [54],
[55], [56] Mantis’s machine learning algorithm for predic-
tion is based on our earlier work [10] which is to select just a
few useful features from hundreds or thousands of features
detected in an application. In our prior work, we computed
program features manually. In this work, we introduce pro-
gram slicing to compute features cheaply and generate pre-
dictors automatically, apply our system to Android
smartphone applications on multiple hardware platforms,
and evaluate the benefits of slicing thoroughly.

9 CONCLUSION

In this paper, we presented Mantis, a framework that auto-
matically generates program CRC predictors that can esti-
mate CRC accurately and efficiently. Mantis combines
program slicing and sparse regression in a novel way. The
key insight is that we can extract information from program
executions, even when it occurs late in execution, cheaply
by using program slicing and generate efficient feature eval-
uators in the form of executable slices. Our evaluation
shows that our prototype implementation of Mantis gener-
ates good predictors that estimate five CRC metrics with
high accuracy and short prediction time. Mantis can auto-
matically generate predictors that estimate five CRC metrics
accurately and efficiently for smart mobile applications.
Furthermore, the evaluation shows Mantis could enhance
mobile execution offloading.

The greatest weakness of Mantis is that it requires a large
amount of off-line processing time. Generating a minimum
input set that represents an application’s dynamic behavior
for profiling and using static analysis to acknowledge
expensive features without actually running them for test-
ing would potentially shorten the off-line processing time
while giving a more precise predictor as well. Building a
separate predictor for every device/server an application
may potentially use is burdensome as well. Some techni-
ques [57] to predict an application’s performance by scaling
the prediction from a reference device according to the new
target device’s specification would help in this matter.

ACKNOWLEDGMENTS

This work was supported by the Engineering Research Cen-
ter of Excellence Program of KoreaMinistry of Science, ICT&
Future Planning (MSIP) / National Research Foundation of
Korea (NRF)(Grant NRF-2008-0062609), the IT R&Dprogram
of MSIP/KEIT [K10047212, Development of homomorphic
encryption supporting arithmetics on ciphertexts of size less
than 1kB and its applications], IDEC, the Business for Coop-
erative R&D between Industry, Academy, and Research
Institute (Grant C0218072) funded by Korea Small and
Medium Business Administration in 2014, and the National
Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIP) (No. 2014R1A2A1A10051792).
Yunheung Paek is the corresponding author.

TABLE 9
The Performance of Mobile Execution Offloading with Decision

Making Based on the Prediction Techniques (ms)

Input Mobile Server PE BE Mantis

1 1834 3151 3103 1844 1852
2 7355 3883 8959 7398 3922
3 1943 3031 3315 1969 1962
4 8926 3992 10210 4024 4031
5 3314 3189 5617 3356 3347
total 23372 17246 31204 18591 15014

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2069

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst., Appl., Serv.,
2010, pp. 49–62.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution betweenmobile device and cloud,”
in Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[3] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
(2012). Comet: Code offload by migrating execution transparently
in Proc. 10th USENIX Conf. Operating Syst. Des. Implementation,
pp. 93–106 [Online]. Available: http://dl.acm.org/citation.cfm?
id=2387880.2387890

[4] W. Smith, “Prediction services for distributed computing,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007, pp. 1–10.

[5] C. Gupta, A. Mehta, and U. Dayal, “PQR: Predicting query execu-
tion times for autonomous workload management,” in Proc. Int.
Conf. Auton. Comput., 2008, pp. 13–22.

[6] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson, “Predicting multiple metrics for queries: Better
decisions enabled by machine learning,” in Proc. IEEE Int. Conf.
Data Eng., 2009, pp. 592–603.

[7] P. Barlet-Ros, G. Iannaccone, J. Sanjuas-Cuxart, D. Amores-Lopez,
and J. Sole-Pareta, “Load shedding in network monitoring
applications,” in Proc. USENIXAnnu. Tech. Conf., 2007, pp. 5:1–5:14.

[8] S. Goldsmith, A. Aiken, and D. Wilkerson, “Measuring empiri-
cal computational complexity,” in Proc. 6th Joint Meeting Eur.
Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng.,
2007, pp. 395–404.

[9] E. Brewer, “High-level optimization via automated statistical
modeling,” in Proc. 5th ACM SIGPLAN Symp. Principles Practice
Parallel Program., 1995, pp. 80–91.

[10] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,
“Predicting execution Time of computer programs using sparse
polynomial regression,” in Proc. Conf. Neural Inf. Process. Syst.,
2010, pp. 883–891.

[11] M. Weiser, “Program slicing,” in Proc. 5th Int. Conf. Softw. Eng.,
1981, pp. 439–449.

[12] F. Tip, “A survey of program slicing techniques,” J. Program.
Lang., vol. 3, no. 3, pp. 121–189, 1995.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York, NY, USA: Springer, 2009.

[14] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Roy. Statist. Soc B., vol. 73, pp. 273–282, 1996.

[15] T. Zhang, “Adaptive forward-backward greedy algorithm for
sparse learning with linear models,” in Proc. Conf. Neural Inf.
Process. Syst., 2008, pp. 1921–1928.

[16] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2002.

[17] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An
interior-point method for large-scale l1-regularized least squares,”
IEEE J. Select. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec.
2007.

[18] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. Int. Conf. Comput. Statist., 2010, pp. 177–187.

[19] T. W. Reps, S. Horwitz, S. Sagiv, and G. Rosay, “Speeding up
slicing,” in Proc. 2nd ACM SIGSOFT Symp. Found. Softw. Eng.,
1994, pp. 11–20.

[20] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 1988, pp. 35–46.

[21] O. Lhot�ak, “Program analysis using binary decision diagrams,”
Ph. D. dissertation, School Comput. Sci., McGill Univ., Montreal,
QC, Canada, 2006.

[22] M. Sridharan, S. Fink, and R. Bodik, “Thin slicing,” in Proc.
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2007,
pp. 112–122.

[23] Javassist (2012). [Online]. Available: www.csg.is.titech.ac.jp/
~chiba/javassist, product page

[24] Octave (2013). [Online]. Available: www.gnu.org/software/
octave, product page

[25] JChord (2012). [Online]. Available: code.google.com/p/jchord,
product page

[26] Jasmin (2004). [Online]. Available: jasmin.sourceforge.net, prod-
uct page

[27] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “ A survey of compu-
tation offloading for mobile systems,” Mobile Netw. Appl., vol. 18,
no. 1, pp. 129–140, 2013.

[28] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek,
“Techniques to minimize state transfer costs for dynamic execu-
tion offloading in mobile cloud computing,” IEEE Trans. Mobile
Comput., vol. 13, no. 11, pp. 2648–2660, Nov. 2014.

[29] H. Flores and S. Srirama. (2013). Adaptive code offloading for
mobile cloud applications: Exploiting fuzzy sets and evidence-
based learning in Proc. 4th ACM Workshop Mobile Cloud Comput.
Serv., pp. 9–16. [Online]. Available: http://doi.acm.org/10.1145/
2482981.2482984

[30] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A.
Patterson, “Statistical machine learning makes automatic control
practical for internet datacenters,” in Proc. Conf. Hot Topics Cloud
Comput., 2009, p. 12.

[31] P. Shivam, S. Babu, and J. S. Chase, “Learning application models
for utility resource planning,” in Proc. IEEE 3rd Int. Conf. Auton.
Comput., 2006, pp. 255–264.

[32] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang,
“WebProphet: Automating performance prediction for web serv-
ices,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation,
2010, p. 10.

[33] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions
with wise,” in Proc. ACM SIGCOMM Conf. Data Commun., 2008,
pp. 99–110.

[34] S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D.
Schlichting, “Link gradients: Predicting the impact of network
latency on multitier applications,” in Proc. IEEE Conf. Comput.
Commun., 2009, pp. 2258–2266.

[35] K. Tian, Y. Jiang, E. Zhang, and X. Shen, “An input-centric para-
digm for program dynamic optimizations,” in Proc. ACM Int.
Conf. Object Oriented Program. Syst. Lang. Appl., 2010, pp. 125–139.

[36] Y. Jiang, E. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y.
Gao, “Exploiting statistical correlations for proactive prediction of
program behaviors,” in Proc. 8th Annu. IEEE/ACM Int. Symp. Code
Generation Optimization, 2010, pp. 248–256.

[37] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores:
A machine learning based approach,” SIGPLAN Not., vol. 44,
no. 4, pp. 75–84, Feb. 2009. [Online]. Available: http://doi.acm.
org/10.1145/1594835.1504189

[38] K. Vaswani, M. Thazhuthaveetil, Y. Srikant, and P. Joseph,
“Microarchitecture sensitive empirical models for compiler opti-
mizations,” in Proc. Int. Symp. Code Generation Optimization, 2007,
pp. 131–143.

[39] B. Lee and D. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in
Proc. 12th Int. Conf. Archit. Support Program. Lang. Operating Syst.,
2006, pp. 185–194.

[40] F. Aleen, M. Sharif, and S. Pande, “Input-driven dynamic execu-
tion behavior prediction of streaming applications,” in Proc. 15th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2010,
pp. 315–324.

[41] Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y.
Gao. (2010). Exploiting statistical correlations for proactive predic-
tion of program behaviors in Proc. 8th Annu. IEEE/ACM Int. Symp.
Code Generation Optim., pp. 248–256. [Online]. Available: http://
doi.acm.org/10.1145/1772954.1772989

[42] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in
applications,” in Proc. Int. Conf. Parallel Archit. Compilation Techn.,
2001, pp. 3–14.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,” in
Proc. 10th Int. Conf. Archit. Support Program. Lang. Operating Syst.,
2002, pp. 45–57.

[44] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2005, pp. 15–26.

[45] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper,
“Automatic derivation of loop bounds and infeasible paths for
wcet analysis using abstract execution,” in Proc. IEEE 27th Int.
Real-Time Systems Symp., 2006, pp. 57–66.

[46] Y.-T. S. Li and S. Malik, Performance Analysis of Real-Time Embedded
Software. Norwell, MA, USA: Kluwer, 1999.

2070 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

[47] R. Wilhelm, “Determining bounds on execution times,” in Hand-
book on Embedded Systems, Boca Raton, FL, USA: CRC Press, 2005.

[48] S. Seshia and A. Rakhlin, “Game-theoretic timing analysis,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2008, pp. 575–582.

[49] S. Seshia and A. Rakhli, “Quantitative analysis of systems using
game-theoretic learning,” ACM Trans. Embedded Comput. Syst.,
vol. 11, pp. 55:1–55:27, 2010.

[50] R. Rugina and K. E. Schauser, “Predicting the running times of
parallel programs by simulation,” in Proc. 1st Merged Int. Parallel
Process. Symp./Symp. Parallel Distrib. Process., 1998, pp. 654–660.

[51] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated test genera-
tion for worst-case complexity,” in Proc. IEEE 31st Int. Conf. Softw.
Eng., 2009, pp. 463–473.

[52] B. Gulavani and S. Gulwani, “A numerical abstract domain based
on expression abstraction and max operator with application in
timing analysis,” in Proc. 20th Int. Conf. Comput. Aided Verification,
2008, pp. 370–384.

[53] S. Gulwani, K. Mehra, and T. Chilimbi, “SPEED: Precise and effi-
cient static estimation of program computational complexity,” in
Proc. 36th Annu. ACM SIGPLAN-SIGACT Symp. Principles Program.
Lang., 2009, pp. 127–139.

[54] A. Matsunaga and J. A. B. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,” in
Proc. 10th IEEE/ACM Int. Conf. Cluster, Cloud Grid Comput., 2010,
pp. 495–504.

[55] H. Leather, E. Bonilla, and M. O’Boyle, “Automatic feature gener-
ation for machine learning based optimizing compilation,” in
Proc. 7th Annu. IEEE/ACM Int. Symp. Code Generation Optimization,
Mar. 2009, pp. 81–91.

[56] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit., Dec. 2009,
pp. 45–55.

[57] J. Kim, J. Kim, J. Kim, S. Yang, Y. Cho, Y. Kwon, Y. Paek, and D.
Chae, “CMcloud: Cloud platform for cost-effective offloading of
mobile applications,” in Proc. 14th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., 2014, pp. 434–444.

Yongin Kwon received the BSc degree in electri-
cal and electronic engineering from the KAIST,
Korea, in 2008. He received the MSc degree and
is currently working toward the PhD degree in
electrical and computer engineering from the
Seoul National University, Korea. His research
interests include mobile cloud computing and
embedded system.

Sangmin Lee is working toward the PhD degree
in the Computer Science Department, University
of Texas at Austin. His research spans a broad
range of systems including privacy-preserving
app platforms, distributed systems, cloud com-
puting, and virtualization.

Hayoon Yi received the BSc degree in electrical
and computing engineering from the Seoul
National University, Korea, in 2012. He is cur-
rently working toward the PhD degree in electrical
and computing engineering from the Seoul
National University, Korea. His research interests
include mobile cloud computing and compiler.

Donghyun Kwon received the BSc degree in
electrical and computing engineering from the
Seoul National University, Korea, in 2012. He is
currently working toward the PhD degree in elec-
trical and computing engineering from the Seoul
National University, Korea. His research interests
include mobile cloud computing and compiler.

Seungjun Yang received the BSc degree in
electrical engineering from Seoul National Uni-
versity, Korea, in 2008. He is currently working
toward the PhD degree in electrical and computer
engineering from Seoul National University,
Korea. His research interests include mobile
cloud computing, compiler, and system engineer-
ing. He is a student member of the IEEE.

Byung-gon Chun received the BSc and MSc
degrees in electronic engineering from Seoul
National University, in 1994 and 1996, respec-
tively. He received the another MSc degree in
computer science from Stanford University in
2002 and the PhD degree from the University of
California, Berkeley, in 2007. He is currently a
professor in the Department of Electrical and
Computing Engineering, Seoul National Univer-
sity, Korea.

Ling Huang received the BS and MS degrees
from the Beijing University of Aeronautics and
Astroautics (BUAA) in China. He received the
PhD degree in computer science from the Univer-
sity of California at Berkeley. During the PhD
study, he was affiliated with RadLab. He is cur-
rently a research scientist at Intel Labs.

Petros Maniatis received the BSc degree with
honors from the Department of Informatics, Uni-
versity of Athens in Greece and the MSc and
PhD degrees from the Computer Science Depart-
ment, Stanford University. He is a senior
research scientist at Intel Labs. His research
interests lie primarily in the confluence of distrib-
uted systems, security, and fault tolerance.

KWON ET AL.: MANTIS: EFFICIENT PREDICTIONS OF EXECUTION TIME, ENERGY USAGE, MEMORY USAGE AND NETWORK USAGE ON... 2071

Mayur Naik received the BE degree from BITS
Pilani, India (1995-1999), the MS degree from
Purdue University (2001-2003), and the PhD
degree from Stanford University (2003-2007), all
in computer science. He is currently an assistant
professor of computer science at Georgia Tech.
He did research in the areas of programming lan-
guages and software engineering. Previously, he
was a researcher at Intel Research in Berkeley
(2008-2011).

Yunheung Paek received the BSc and MSc
degrees in computer engineering from Seoul
National University, Korea, in 1988 and 1990,
respectively. He received the PhD degree in com-
puter science from the University of Illinois at
Urbana-Champaign in 1997. He is currently a pro-
fessor in the Department of Electrical and Com-
puting Engineering, Seoul National University,
Korea. His research interests includemobile cloud
computing, embedded security systems and re-
targetable compiler. He is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2072 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

