A Type System Equivalent to a Model Checker

Mayur Naik, Stanford University
Jens Palsberg, UCLA

Type Systems and Model Checking

e Prevalent approaches to program verification

e Essentially abstract interpretations
— Types as Abstract Interpretations (Cousot [POPL 97])

— Temporal Abstract Interpretation (Cousot & Cousot [POPL 00])

e Significant differences:

Type Systems Model Checking

syntactic semantic
modular whole-program

Implications of Differences

Type systems are good at explaining why a program was accepted

— annotate program with types (keywords: syntactic, modular)

Large body of research on explaining why a program was rejected
by a type system

Model checking is good at explaining why a program was rejected

— provides a counterexample (keywords: semantic, whole-program)

Large body of research on explaining why a program was accepted
by a model checker

Motivation

Exploring the relationship between type systems and model checking

Developing a methodology for studying their relative expressiveness

Sharing results between them
— types as models (Chaki, Rehof, Rajamani [POPL 02])

— models as types (this paper)

Devising synergistic program analyses involving interplay between a
type system and a model checker

Our Result

e A type system equivalent to a model checker for verifying temporal
safety properties of imperative WHILE programs

e Model checker is conventional and may be instantiated with any finite-
state abstraction scheme (e.g., predicate abstraction)
e Type system is also parametric but unconventional:

— encodes state-transition relation of the model checker in a syntactic
and modular style

— uses function types and intersection/union types for flow-, context-,
and path-sensitivity

— uses T and _L types for checking dead code

Relationship between Type Systems and Model Checking

e Model Checker: { (0, wj) | wj € ds(wy) }

where w ranges over a finite set of abstract contexts Q and ds: Q — 29
Is abstract transfer function of s

e Type System: S Aieal® — Vg @j)
where A and Vi € A: B;j finite

e Most straightforward form of model checking corresponds to most com-
plex form of typing

e Conventional type systems use restricted cases of this form of typing:
|A| = 1 (no intersection types) or Vi € A: |Bj| = 1 (no union types)

Relationship between Type Systems and Model Checking

Type Checking: Is (s,w) well-typed?

Type Soundness: If (s,w) is well-typed and w= p, then (s,p) does not go
wrong in the concrete semantics.

Model Checking: Does (s,w) go wrong (in the abstract semantics)?

Model Checking Soundness: If (s, w) does not go wrong and w = p, then
(s,p) does not go wrong in the concrete semantics.

Equivalence Theorem: (s w) is well-typed if and only if (s, w) does not go
wrong (in the abstract semantics).

WHILE Language: Abstract Syntax

(program) s = p
assume(e)

assert(e)

S1, S

if (%) then S1 else S
while (%) do §

p IS an uninterpreted primitive statement
e is an uninterpreted boolean expression
« denotes non-deterministic choice

Preserving Path Sensititivity

if (%) then
assume(€); S1
else
assume(€); S

if (€) then S| else S

while (%) do
assume(e); S
assume(€)

while (€) do §

Parameters of Model Checker

Model checker is parameterized by:
1. Finite set of abstract contexts Q

2. For each primitive statement p: Abstract transfer function 0p € Q — 2%
(describing effect of p on abstract contexts)

e Jp s total

3. For each boolean expression e: Predicate 0 C Q (denoting set of ab-
stract contexts in which eis true)

10

Abstract Semantics of Model Checker

(abstract state) a ::

w | error | (S,w)

o) — @ ifledp(k)
(assume(€),) — wx Ifkede
(assume(e),wy) — error ifké¢ de
(assert(e),wy) — wx Ifkede
(S1, W) — & (S1, W) — error (s1,w) — (],)
(81:82, W) — (S, W) (8182, W) —error (s1;5, W) — (55, Y)
(if (%) then S else SH,W) — (S1,W)
(if (%) then S else S, W) — (S, W)
(while (x) do §,w) < (9 while (x) do S, W)
(while (%) do §,) — W

11

Model Checking

State (s, w) is stuck if fa: (s,w) — a

State (s, w) goes wrong if 3(s’,«f): ({s,w) —* (s, and (g,) is stuck)

Model Checking: Given program s and abstract context o:
Does (s,w) go wrong?

12

Type System

Syntax of Types:

T = Ajiea(® — Vjep wj)

ACQ and Vie A:B; CQ (recall that Q is finite)
T £ N0
1 & Vo

Type Judgment: s : T

13

Type Rules: Simple Statements

D :
D Ajea(@ —) A Ajeg(wy — L) [ACdand BC Q) &

 Niea(w — o) A C 3]

assume(€)

assert(e)

Niea(w — Vijesp(i) wj) AC Q]

14

Type Rules: Compound Statements

S - /\ieAl((*)i—>\/jeBi‘*)j>
S /\ieA2<(*)i_>\/jeB{(*)J')

S1:%2 - NieA(® = Ve | jesi})

[AC Ap and UieaBi € A

S1 ¢ Aiea (Wi — Ve 0j)
2 - AieAz(UJi_)vjeB{wD

if () then §) else S © Ajea(®W — \/jeBiUBi’ wj)

[AC A; and A C Ay

g : Niep (0 — VjeB wj)
while (x)do S : Ajea(wy — \/keux.({i}u{BjHEx})wk)

ACA and UjcaBi C A

15

Type Checking

s Aiea(® — Vjep wj)
(s, wy) is well-typed

ke A

Type Checking: Given program s and abstract context .

Is (s, w) well-typed?

16

Equivalence Result

Equivalence Theorem: (s w) is well-typed if and only if (s, w) does not go
wrong

From Type Checking to Model Checking:

Type soundness (progress + type preservation) with respect to the abstract
semantics of the model checker

From Model Checking to Type Checking:

Building a type derivation from the model constructed by the model checker

17

Example 1

s 2 {locky();locky()} where lock() = {assert(v=U);v:=L}

Suppose Q = {v=U,v=L}

e (s,v=U) goes wrong in the model checker’s abstract semantics

e (s,v=VU) is not well-typed in the type system

18

Example 2

s 2 locky(); assume(false); locky()

Suppose Q = {v=U,v=L}

e (s,v=U) does not go wrong in the model checker’s abstract semantics

e (s,v=VU) is well-typed in the type system:

lock1() : v=U —-v=L assume(false : v=L— L
locks(); assume(false : v=U— L
s:v=U—1

locky() @ T

19

Example 3

s = {while (%) do {assume(i #2);i:=i+1}}; assume(i = 2)

Suppose Q ={i=0,i=1,i=2}

e (s,i=0) does not go wrong in the model checker’s abstract semantics

e (s,i=0) is well-typed in the type system:

assume(i#2) : i=0—-i=0Ai=l—-i=1Ai=2—1
I'=i+1 ! i=0—i=1Ai=1—i=2
assume(i;éZ); =141 : assume(i:Z) :
=0 —>i=1 ANi=1l—-i=2 ANi=2— 1 i=0— 1 A
while (%) do { assume(i #2); i:=i+1} : i=1— LA
i=0— (i=0Vi=1Vi=2) =2 —1=2
S:i=0—i=2

20

Related Work: Type Systems for Temporal Safety
Properties

e CQual (Foster, Terauchi, Aiken [PLDI 02])

e Refinement Types (Mandelbaum, Walker, Harper [ICFP 03])

e Resource Usage Analysis (Igarashi & Kobayashi [POPL 02])

e Vault (DeLine & Faehndrich [PLDI 01])

e Xanadu (Xi [LICS 00])

In ourtype system: s : i=0—-i=2 Ai=1—=1=2 AN i=2—i=2

In CQual: s : vc,c. (ref(l),[l —int(c)]) — (ref(l),[l —int(c)]) /
{(c=0==2),
(c=1=c =2

),
(c=2=cd=2)}

21

Related Work: Equivalence Results

e Type systems and control-flow analysis for functional languages

— Amadio-Cardelli type system = 0-CFA-based safety analysis
(Palsberg & O’Keefe [POPL 95])

— Amadio-Cardelli type system = a form of constrained types
(Palsberg & Smith [TOPLAS 96])

— 0-CFAs = type systems with recursive types and subtyping
(Heintze [SAS 95])

— finitary polyvariant CFA = type system with finitary polymorphism
(Amtoft & Turbak [ESOP 00], Palsberg & Pavlopoulou [POPL 00])

e Data-flow analysis and model checking for imperative languages
(Steffan [TACS 91], Schmidt & Steffan [SAS 98], Schmidt [POPL 98])

22

Conclusions and Future Work

e Equivalence result highlights essence of relationship between type
systems and model checking
e Limitations:
— Lacks support for higher-order functions, objects, and concurrency
— Type system not suitable for human reasoning
Explore these issues in the context of specific verification problems, e.qg.,

infer Abadi-Flanagan-style types from models of concurrent Java programs
in the context of verifying race-freedom (Agarwal & Stoller [VMCAI 04]).

23

