
A Type System Equivalent to a Model Checker

Mayur Naik, Stanford University

Jens Palsberg, UCLA

1

Type Systems and Model Checking

• Prevalent approaches to program verification

• Essentially abstract interpretations

– Types as Abstract Interpretations (Cousot [POPL 97])

– Temporal Abstract Interpretation (Cousot & Cousot [POPL 00])

• Significant differences:

Type Systems Model Checking
syntactic semantic
modular whole-program

2

Implications of Differences

• Type systems are good at explaining why a program was accepted

– annotate program with types (keywords: syntactic, modular)

• Large body of research on explaining why a program was rejected
by a type system

• Model checking is good at explaining why a program was rejected

– provides a counterexample (keywords: semantic, whole-program)

• Large body of research on explaining why a program was accepted
by a model checker

3

Motivation

• Exploring the relationship between type systems and model checking

• Developing a methodology for studying their relative expressiveness

• Sharing results between them

– types as models (Chaki, Rehof, Rajamani [POPL 02])

– models as types (this paper)

• Devising synergistic program analyses involving interplay between a
type system and a model checker

4

Our Result

• A type system equivalent to a model checker for verifying temporal
safety properties of imperative WHILE programs

• Model checker is conventional and may be instantiated with any finite-
state abstraction scheme (e.g., predicate abstraction)

• Type system is also parametric but unconventional:

– encodes state-transition relation of the model checker in a syntactic
and modular style

– uses function types and intersection/union types for flow-, context-,
and path-sensitivity

– uses > and ⊥ types for checking dead code

5

Relationship between Type Systems and Model Checking

• Model Checker: { 〈ωi,ω j〉 | ω j ∈ δs(ωi) }

where ω ranges over a finite set of abstract contexts Ω and δs : Ω ⇀ 2Ω

is abstract transfer function of s

• Type System: s :
V

i∈A(ωi →
W

j∈Bi
ω j)

where A and ∀i ∈ A : Bi finite

• Most straightforward form of model checking corresponds to most com-
plex form of typing

• Conventional type systems use restricted cases of this form of typing:
|A|= 1 (no intersection types) or ∀i ∈ A : |Bi|= 1 (no union types)

6

Relationship between Type Systems and Model Checking

Type Checking: Is 〈s,ω〉 well-typed?

Type Soundness: If 〈s,ω〉 is well-typed and ω ∼= ρ, then 〈s,ρ〉 does not go
wrong in the concrete semantics.

Model Checking: Does 〈s,ω〉 go wrong (in the abstract semantics)?

Model Checking Soundness: If 〈s,ω〉 does not go wrong and ω ∼= ρ, then
〈s,ρ〉 does not go wrong in the concrete semantics.

Equivalence Theorem: 〈s,ω〉 is well-typed if and only if 〈s,ω〉 does not go
wrong (in the abstract semantics).

7

WHILE Language: Abstract Syntax

(program) s ::= p
| assume(e)
| assert(e)
| s1; s2
| if (∗) then s1 else s2
| while (∗) do s′

p is an uninterpreted primitive statement

e is an uninterpreted boolean expression

∗ denotes non-deterministic choice

8

Preserving Path Sensititivity

if (e) then s1 else s2 ≡

if (∗) then
assume(e); s1

else

assume(ē); s2

while (e) do s′ ≡
while (∗) do

assume(e); s′

assume(ē)

9

Parameters of Model Checker

Model checker is parameterized by:

1. Finite set of abstract contexts Ω

2. For each primitive statement p: Abstract transfer function δp∈Ω→ 2Ω

(describing effect of p on abstract contexts)

• δp is total

• ∀i ∈ Ω : δp(i) 6= /0

3. For each boolean expression e: Predicate δe⊆ Ω (denoting set of ab-
stract contexts in which e is true)

10

Abstract Semantics of Model Checker

(abstract state) a ::= ω | error | 〈s,ω〉

〈p,ωk〉 ↪→ ωl if l ∈ δp(k)

〈assume(e),ωk〉 ↪→ ωk if k∈ δe

〈assume(e),ωk〉 ↪→ error if k /∈ δe

〈assert(e),ωk〉 ↪→ ωk if k∈ δe

〈s1,ω〉 ↪→ ω′

〈s1;s2,ω〉 ↪→ 〈s2,ω′〉
〈s1,ω〉 ↪→ error
〈s1;s2,ω〉 ↪→ error

〈s1,ω〉 ↪→ 〈s′1,ω
′〉

〈s1;s2,ω〉 ↪→ 〈s′1;s2,ω′〉

〈if (∗) then s1 else s2,ω〉 ↪→ 〈s1,ω〉

〈if (∗) then s1 else s2,ω〉 ↪→ 〈s2,ω〉

〈while (∗) do s′,ω〉 ↪→ 〈s′; while (∗) do s′,ω〉

〈while (∗) do s′,ω〉 ↪→ ω

11

Model Checking

State 〈s,ω〉 is stuck if @a : 〈s,ω〉 ↪→ a

State 〈s,ω〉 goes wrong if ∃〈s′,ω′〉 : (〈s,ω〉 ↪→∗ 〈s′,ω′〉 and 〈s′,ω′〉 is stuck)

Model Checking: Given program s and abstract context ω:
Does 〈s,ω〉 go wrong?

12

Type System

Syntax of Types:

τ ::=
V

i∈A(ωi →
W

j∈Bi
ω j)

A⊆ Ω and ∀i ∈ A : Bi ⊆ Ω (recall that Ω is finite)

> ,
V

/0
⊥ ,

W
/0

Type Judgment: s : τ

13

Type Rules: Simple Statements

p :
V

i∈A(ωi →
W

j∈δp(i) ω j) [A⊆ Ω]

assume(e) :
V

i∈A(ωi → ωi) ∧
V

i∈B(ωi →⊥) [A⊆ δe and B⊆ Ω\δe]

assert(e) :
V

i∈A(ωi → ωi) [A⊆ δe]

14

Type Rules: Compound Statements

s1 :
V

i∈A1
(ωi →

W
j∈Bi

ω j)
s2 :

V
i∈A2

(ωi →
W

j∈B′i
ω j)

s1;s2 :
V

i∈A(ωi →
W

k∈
S
{B′j | j∈Bi }ωk)

[A⊆ A1 and
S

i∈ABi ⊆ A2]

s1 :
V

i∈A1
(ωi →

W
j∈Bi

ω j)
s2 :

V
i∈A2

(ωi →
W

j∈B′i
ω j)

if (∗) then s1 else s2 :
V

i∈A(ωi →
W

j∈Bi∪B′i
ω j)

[A⊆ A1 and A⊆ A2]

s′ :
V

i∈A′(ωi →
W

j∈Bi
ω j)

while (∗) do s′ :
V

i∈A(ωi →
W

k∈µX.({i}∪{B j | j∈X}) ωk)
[
A⊆ A′ and

S
i∈ABi ⊆ A

]

15

Type Checking

s :
V

i∈A(ωi →
W

j∈Bi
ω j)

〈s,ωk〉 is well-typed
[k∈ A]

Type Checking: Given program s and abstract context ω:
Is 〈s,ω〉 well-typed?

16

Equivalence Result

Equivalence Theorem: 〈s,ω〉 is well-typed if and only if 〈s,ω〉 does not go
wrong

From Type Checking to Model Checking:

Type soundness (progress + type preservation) with respect to the abstract
semantics of the model checker

From Model Checking to Type Checking:

Building a type derivation from the model constructed by the model checker

17

Example 1

s , { lock1(); lock2()} where lock() , {assert(v = U); v := L}

Suppose Ω = {v=U,v=L}

• 〈s,v=U〉 goes wrong in the model checker’s abstract semantics

• 〈s,v=U〉 is not well-typed in the type system

18

Example 2

s , lock1(); assume(f alse); lock2()

Suppose Ω = {v=U,v=L}

• 〈s,v=U〉 does not go wrong in the model checker’s abstract semantics

• 〈s,v=U〉 is well-typed in the type system:

lock1() : v=U→ v=L assume(f alse) : v=L→⊥
lock1(); assume(f alse) : v=U→⊥

lock2() : >

s : v=U→⊥

19

Example 3

s , {while (∗) do {assume(i 6= 2); i := i +1}}; assume(i = 2)

Suppose Ω = {i=0, i=1, i=2}

• 〈s, i=0〉 does not go wrong in the model checker’s abstract semantics

• 〈s, i=0〉 is well-typed in the type system:

assume(i 6= 2) : i=0→ i=0 ∧ i=1→ i=1 ∧ i=2→⊥
i := i +1 : i=0→ i=1 ∧ i=1→ i=2

assume(i 6= 2); i := i +1 :
i=0→ i=1 ∧ i=1→ i=2 ∧ i=2→⊥

while (∗) do { assume(i 6= 2); i := i +1 } :
i=0→ (i=0 ∨ i=1 ∨ i=2)

assume(i = 2) :
i=0→⊥ ∧
i=1→⊥ ∧
i=2→ i=2

s : i=0→ i=2

20

Related Work: Type Systems for Temporal Safety
Properties

• CQual (Foster, Terauchi, Aiken [PLDI 02])

• Refinement Types (Mandelbaum, Walker, Harper [ICFP 03])

• Resource Usage Analysis (Igarashi & Kobayashi [POPL 02])

• Vault (DeLine & Faehndrich [PLDI 01])

• Xanadu (Xi [LICS 00])

In our type system: s : i=0→ i=2 ∧ i=1→ i=2 ∧ i=2→ i=2

In CQual: s : ∀c,c′. (re f(l), [l 7→ int(c)])→ (re f(l), [l 7→ int(c′)]) /
{(c=0⇒ c′=2),
(c=1⇒ c′=2),
(c=2⇒ c′=2)}

21

Related Work: Equivalence Results

• Type systems and control-flow analysis for functional languages

– Amadio-Cardelli type system ≡ 0-CFA-based safety analysis
(Palsberg & O’Keefe [POPL 95])

– Amadio-Cardelli type system ≡ a form of constrained types
(Palsberg & Smith [TOPLAS 96])

– 0-CFAs ≡ type systems with recursive types and subtyping
(Heintze [SAS 95])

– finitary polyvariant CFA ≡ type system with finitary polymorphism
(Amtoft & Turbak [ESOP 00], Palsberg & Pavlopoulou [POPL 00])

• Data-flow analysis and model checking for imperative languages
(Steffan [TACS 91], Schmidt & Steffan [SAS 98], Schmidt [POPL 98])

22

Conclusions and Future Work

• Equivalence result highlights essence of relationship between type
systems and model checking

• Limitations:

– Lacks support for higher-order functions, objects, and concurrency

– Type system not suitable for human reasoning

Explore these issues in the context of specific verification problems, e.g.,
infer Abadi-Flanagan-style types from models of concurrent Java programs
in the context of verifying race-freedom (Agarwal & Stoller [VMCAI 04]).

23

