Abstractions from Tests

Mayur Naik (Georgia Institute of Technology)
Hongseok Yang (University of Oxford)
Ghila Castelnuovo (Tel-Aviv University)
Mooly Sagiv (Tel-Aviv University)

Wednesday, 1 February 2012

Motivation

® (Great success stories in automatic program
verification based on static analysis techniques

(SDV, Astree, etc).

® Yet balancing precision and performance of a
static analysis is still an art.

® VWe want to do this balancing automatically.

Wednesday, 1 February 2012

Typical static analysis

program P

static analysis

/\

proved don’t
know

Our approach

program P

parameter |parameterised
—> . .
static analysis

/\

proved don’t
know

Wednesday, 1 February 2012

Our approach

program P

quelry q \

dynamic | info | parameter |parameter (parameterised
— >

analysis inference static analysis
disproved proved don’t

know

Wednesday, 1 February 2012

Hypothesis

® |[f a query is simple, we can find why the query holds
simply by looking at a few execution traces.

Wednesday, 1 February 2012

Parameter inference based on
separability and minimality

instrumented parameter
, > » parameter N
states s,S inference
(N\ (N\
GOOD | BAD
S,S, rlo rl rll
§ J g J

Parameter inference based on
separability and minimality

instrumented parameter
, o . » parameter N
states s,s inference
[) ()
GOOD | BAD Can
, separate!
. J \. J

Parameter inference based on
separability and minimality

instrumented parameter
, o . » parameter N
states s,s inference
‘GOOD | BAD i ‘
iy Can
' ' separate!? n
No n

Parameter inference based on
separability and minimality

instrumented parameter
: > » parameter N
states s,S inference
‘GOOD | BAD i)
Can
- separate!? n
No n

Parameter inference based on
separability and minimality

instrumented

states s,s’

e

GOOD | BAD

’

S,S

.

~\

parameter

inference

J

e Computes a separability condition.

Can
separate!

» parameter N

Parameter inference based on
separability and minimality

instrumented parameter
, o . » parameter N
states s,s inference
[) ()
GOOD | BAD Can YES NO
, separate!
. J \. J

* Computes a separability condition.

* Among separable ni’s, choose a minimal N according
to an order (which approximately reflects precision).

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hQO;
X1 = new hl; x1.fl = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) { hO |« x0
X0 = new hOQ:;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();
pc: x2.1d = 1; //local(x2)?
x3.start();
}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
X1l = new hl, x1.f1l = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

hQ |« x0
f11
hl|e X1

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (A = 0; 1 < n; i++) {
X0 = new hO;
X1 = new hl; x1.fl = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

hQ |« x0
f11
hlle X1

£2]

h2|e X2

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) { hO < x0
X0 = new hO; flT
X1 = new hl; x1.fl = x0;
X2 = new h2; x2.f2 = x1; hlj< x1
x3 = new h3; x3.f3 = x2; | 2]
xO.stgrt()i hole 2
pc: x2.1d = 1; //local(x2)?
x3.start(): f3]
} h3|< X3

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads!?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads!?

—
@
=)

N\
wd

Il

O; 1 < n; 1++) {
X0 = new hO:
X1 = new hl; x1.f1 = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
X0. start()

pc: x2.1d = 1; //local(x2)?
X3. start()

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?!

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;

x0.start():

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Thread-escape query

® Does a local variable point to an object that
cannot be reached from other threads?!

for (1 =0; 1 < n; 1++) { ? hO hO ; x0
X1 = new hl, x1.f1 x0; 'f1T =
X2 = new h2; x2.f2 = x1; ; hl j hlje—x1
x3 = new h3; x3.f3 = x2; | {r2]]f2]

X0 start() Elh2l [h2|le——x2
pc: x2.1d = 1; //local(x2)? 1F ;f
n 1 3 3 T
x3.start(), | rij §73]
}‘ By now, people should People might wonder why Difficulty. Shape analysis. ‘ h 3 E X 3
—— understand what — one should care about — Difficult to scale. Also, 3
thread-escape query thread-escape queries. note that the allocation-
means, and how this Answers for thewm help site abstraction doesn’t
program works. race detectors or other work for this example.
verifiers for concurrent
programs.

Wednesday, 1 February 2012

Thread-escape analysis

® Summarise all heap objects with only two
abstract nodes E and L.

® ¥ (E) consists of all the thread-escaping
objects and possibly more.

® ¥ (L) contains only thread-local objects.

Wednesday, 1 February 2012

1. Parameterisation done
for transfer functions.
2. Very cheap domain,
but ask for a clever

° °
specialised fransfer
AlrdameteriSaAtioOnN .
site.
3. Using E is cheaper.

Param = AllocSite — {L,E}

® For each allocation site, it decides whether L
or E is used to summarise allocated objects.

® Changes the transfer function of “x=new hi".

® Objects summarised by L can move to E, but
not vice versa.

Wednesday, 1 February 2012

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) {
X0 = new hO;
x1 = new hl; x1.fl = x0;
X2 = hew h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) {
X0 = new hO/E;
X1 = new hl/E; x1.f1l = x0;
X2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { x0
X0 = new hO/E; /
x1 = new h1/E; x1.fl = x0; E
X2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { x0
X0 = new hO/E; /
x1 = new h1/E: x1.fl = x0: E —x1
X2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (i = 0; i < n; i++) {
X0 = new hO/E;
x1 = new hl/E; x1.fl = xO0;
x2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;

x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

x0
=/

«—X1

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { x0
X0 = new hO/E; /
x1 = new h1/E; x1.fl = x0; E —x1
X2 = new h2/L; x2.f2 = x1; -FZT
x3 = new h3/L; x3.f3 = x2;
x0.start(): £3 C L [x2
pc: x2.1d = 1; //local(x2)? \ 3
x3.start(); X
¥

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { %0
X0 = new hO/E; /
x1 = new h1/E;: x1.fl = x0; E ' x1
X2 = new h2/L; x2.f2 = x1; -FzT
X3 = new h3/L; x3.f3 = x2;
x0.start(): £3 C L [x2

pc: x2.1d = 1; //local(x2)? \ 3
x3.start(); X

}

When can we answer

Th read-escape anal‘ thethreadesape

| points to L.

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { %0
X0 = new hO/E; /
x1 = new hl/E; x1.fl = x0; E —x1
X2 = new h2/L; x2.f2 = x1; -FzT
X3 = new h3/L; x3.f3 = x2;
x0 . start() £3 C L [x2

pc: x2.1d = 1; //local(x2)? \ :
x3.start() X

}

Wednesday, 1 February 2012

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { x0
X0 = new hO/E; /
x1 = new h1/E; x1.fl = x0; E —x1
X2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;

X0.start(); X2
pc: x2.1d = 1; //local(x2)? 3
x3.start(); X

}

Thread-escape analysis

® Parameter N = [{hO,hI}~E, {h2,h3}-L]

for (1 =0; 1 < n; 1++) { %0
X0 = new hO/E; /
x1 = new h1/E;: x1.fl = x0; E ' x1
X2 = new h2/L; x2.f2 = x1; -FzT
X3 = new h3/L; x3.f3 = x2;

X0.start(Q); £3 C L x2
pc: x2.1d = 1; //local(x2)? \ 3
x3.start(); X

}

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

eeeeeeeeeeeeeeeeeeeeeee

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

[{hO,h I }~E, {h2,h3}~L] | | [{hO}~E, {h1,h2,h3}-L]

/XO /XO

El—x1 E x1

1 ol /
£3 C L = x2 £2 C L & x2
X3 " \x3

eeeeeeeeeeeeeeeeeeeeeee

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

for (1 =0; 1 < n; 1++) {
X0 = new hO;
X1 = new hl; x1.fl1l = x0;
X2 = new h2; x2.f2 = x1;
X3 = new h3; x3.f3 = x2;
X0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

for (1 =0; 1 < n; 1++) {
X0 = new hO/L;
x1 = new hl/L; x1.f1l = x0;
X2 = nhew h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
X0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

Wednesday, 1 February 2012

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

for (1 =0; 1 < n; 1++) {
X0 = new hQ/L:;
X1 = new hl/l; x1.f1 = x0;
x2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
X0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

f1
2
3

L

x0
X1

/

X2
X 3

Wednesday, 1 February 2012

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

for (1 =0; 1 < n; 1++) {
X0 = new hO/L;
x1 = new hl/L; x1.f1l = x0
x2 = new h2/L; x2.f2 = x1
X3 = new h3/L; x3.f3 = x2
x0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

,//XO

—X1

\

X2
X 3

Wednesday, 1 February 2012

Difficulties in choosing
a good parameter

® Using more L makes the analysis more expensive.

® More L doesn’t always mean more precision.

,//XO

—X1

for (1 =0; 1 < n; 1++) {
X0 = new hO/L;
x1 = new hl/L; x1.f1l = x0;
X2 = new h2/L; x2.f2 = x1;
X3 = new h3/L; x3.f3 = x2;
X0.start();

pc: x2.1d = 1; //local(x2)?
x3.start();

}

\

X2
X 3

Wednesday, 1 February 2012

Separability question

local(x2) -local(x2)

® Does analysis(n) have an abstract element d
separating {s, s’} from —local(x2)?

® Ve use a generic answer to this question
during our parameter inference.

Wednesday, 1 February 2012

Separability from ~local(x2)

[h3] i [h3le—x3

Separability fmm ~local(x2)

n(h2) =L A
n(h3) =L

® This state satisfies local(x2).

® Separated from —local(x2) by analysis(n) iff
(N o allocSite o backReach)(x2) = {L}.

Parameter inference

|. Testing gives states . [hO hO

where local(x2) holds. ArN IR

Wednesday, 1 February 2012

Parameter inference

|. Testing gives states (o] | hO|<i—x0
where local(x2) holds.]
 |hl|: |hlje——x1
2. Compute the alloc. sites 27 o]
H of objects that can 2l b [h2le—xo
reach x2. £3] £31

H = {h2, h3}

Wednesday, 1 February 2012

Parameter inference

|. Testing gives states [ho] | h0[«+—x0
where local(x2) holds. fi]
 [hl]| hl|e———x1
2. Compute the alloc. sites 27 o]
H of objects that can ho 12— x>
reach x2. YR
3. n(h) = L,if his in H; - (h3] [hSje—x3

N(h) = E, otherwise.

H = {h2, h3}
n = [{h0,h 1}~E, {h2,h3}-L]

Parameter inference

|. Testing gives states - [ho] | h0[«+—x0
where local(x2) holds. fi] i
 [hl]| hl|e———x1
2. Compute the alloc. sites 27 o]
H of objects that can : [ho 12— x>
reach x2. iseparablht)’j ;3] 0 3]
3. n(h) = L,if hisin H; (h3] 0 [h3fe—x3

N(h) = E, otherwise.

H = {h2, h3)
= [{h0,h 1 }E, {h2,h3}L]

Parameter inference

|. Testing gives states - [ho] | h0[«+—x0
where local(x2) holds. fi] i
 [hl]| hl|e———x1
2. Compute the alloc. sites 27 o]
H of objects that can : [ho 12— x>
reach x2. iseparabllltyj £3] £3]
3. n(h) = Lif hisin H; (h3] 0 [h3fe—x3

N(h) = E, otherwise.

H = {h2, h3}
Y minimality] N = [{hO,h|}~E, {h2,h3}~L]

Does it work?

Setting of experiments

® 6 concurrent Java programs from Dacapo:
® |[6]1K - 491K bytecode (including analysed |DK).

® Up to 5K allocation sites per program.

® 47K queries, but only | 7K(37%) reached during
testing.

® Considered only these reachable queries.

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites

| 7K queries
v
dynamic | info
analysis
v
disproved

parameter
inference

parameter

—>

parameterised
static analysis

Y\

proved don’t

know

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites

| 7K queries

v
dynamic | info
analysis

v

28% disproved

parameter
inference

parameter |parameterised

—> . .
static analysis

Y N\

52% 20%

proved| |don’t
know

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites
| 7K queries

v

per prog:
6s - 8m

analysis

dynamic | info

<»

v

28% disproved

parameter
inference

per program:
38s - 86m

parameter |parameterised

—> . .
static analysis

Y N\

52% 20%

proved| |don’t
know

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites
| 7K queries

v

per prog:
6s - 8m

analysis

dynamic | info

<»

v

28% disproved

parameter | parameter [parameterised

per program:
38s - 86m

inference

—>

L-mapped sites:
avg 4.8, max 195

static analysis

Y N\

52% 20%
proved| |don’t

know

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites
| 7K queries

All sites parameterised
mapped to L ~| static analysis
v N\

proved don’t

know

Wednesday, 1 February 2012

6 Java prog. (161K-491K) up to 5K sites
| 7K queries

Out of memory
for all programs

All sites parameterised
mapped to L ~| static analysis
v N\

proved don’t

know

Wednesday, 1 February 2012

