
Prototyping Decomposed Cloud Software: A Case
Study on 3D Skeletal Game Engine

Minchen Li1,2, Wei Cai1, Ke Wang3, Hong Ji3 and Victor C.M. Leung1
1The University of British Columbia, Canada

2 Zhejiang University, China
3 Beijing University of Posts and Telecommunications, China

minchenl@cs.ubc.ca, weicai@ece.ubc.ca, {wangke, jihong}@bupt.edu.cn, vleung@ece.ubc.ca

Abstract—Recent studies have investigated a novel software
paradigm that enables program decomposition and dynamic
partitioning for cloud gaming system. Among the challenges for
the proposed software architecture, to design and implement the
decomposed software, which follows the platform’s specification,
is most critical in practice. In this work, we investigate a
fundamental application in gaming scenario, the 3D skeletal
game engine, which is often used to animate avatars. A graphics
demo program is developed to demonstrate the feasibility of
proposed system, while experiments have been conducted to
show the efficiency of cognitive resource allocation. We also
made contributions to seeking the appropriate design pattern in
developing programs on our platform. In addition, we provide
future visions on alternative implementations of some specific
parts, which dedicates on improving the platform’s compatibility.

I. INTRODUCTION

Conventional cloud gaming systems that streams gaming

video from cloud to players’ terminals are suffering from

the contradiction between high quality of service (QoS)

and insufficient network bandwidth. To solve this problem,

a decomposed cloud gaming platform [1] achieves flexible

resource allocation by decomposing the game program into

inter-dependent components that can be distributed to either

cloud or terminal for execution. Accordingly, the paradigm of

cognitive computing [2] has motivated us to build a context-

aware platform that adapts cloud-terminal workload to the

runtime environment to optimize the use of cloud, network

and terminal resources while meeting the QoS objectives.
Intrinsically, the idea behind is to optimize the system by

offloading graphic rendering modules from cloud to terminals,

thus, to eliminate the video transmission overhead. In fact, a

similar investigation has recently been proposed in [3], which

ease the communication burden by decoupling the creation

of rendering instructions from its execution and transmitting

only small-sized rendering instructions over the Internet. In

this work, we aim to develop a component-based 3D Skeletal

Game Engine using JavaScript on our platform to evaluate

the cognitive dynamic allocation performance. The program

is a Skeletal Animation Editor. Its small scale memory needs

will be good for our browser based program and our Node.js

developed platform, and its high interaction would make our

test and demonstration both interesting and convincing.
The remaining sections of the paper are organized as

follows. We review related work in Section II and present

the proposed program design in Section III. Then, in Section

IV, we discuss the challenges of implementing such a multi-

component program and provide the first-hand solutions for

them. Implementation screenshots are illustrated in Section V.

We further conduct experiments on cognitive cloud gaming

platform to demonstrate the efficiency of cognitive engine in

Section VI. Section VII concludes the paper and provide future

visions on improving the design of the platform.

II. RELATED WORKS

A. 3D Skeletal Animation

A skeletal animation consists of a skin mesh and an as-

sociated bone structure (skeleton). Moving a bone will move

the associated vertices of the mesh, which exactly as what

happens in reality.[4] The most popular technique to deform

the skin according to the skeleton is the well-known Linear

Blend Skinning method (LBS)[5][6]. It uses a 4× 4 matrix to

represent the transformation. Each bone in the skeleton has a

skinning weight on each vertex of the mesh. LBS derives the

transformation of a vertex by blending the transformation of

the bones linearly according to the skinning weights. It can

efficiently generate visually acceptable animation. Here we

implement the basic Rigid Skinning method[6], which means

each vertex will only be driven by one bone. And we use

cuboids to construct the skin mesh.

B. Program Decomposition

There are basically two methods to decompose a game

program, Fine-Grained Decomposition and Coarse-Grained

Decomposition. Fine-grained decomposition segments the w-

hole game program into a huge quantity of tiny components.

Therefore, it leads to more opportunities in seeking optimal

component allocation solution. But it’s limited in state mi-

gration problem. A coarse-grained decomposition partitions

the game program into a number of functional-independent

and stateless components. The native states of the components

are always invisible to each other, which eliminates the state

transfer problem in fine-grained decomposition. However, the

coarse-grained decomposition results in fewer components,

which might affect the effectiveness of cognitive resource

allocation. In addition, it is relatively difficult for game devel-

opers to write such program, since the components are strong

coupling to each other. [7]

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.64

192



III. PROGRAM DESIGN

A. Function Description

The editor has two modes - Display Mode and Edit Mode.

In display mode, user can watch the animations and change

the view with mouse drag or finger touch. In Edit Mode, user

can edit the animation by adjusting the posture of the character

model in the middle key frame. Other non-key frames will be

automatically generated via frame interpolation.

B. Architecture Design

The consistency, stability, availability and portability of our

program are very important because it is a web app. So

we designed it based on the MVC(Model-View-Controller)

architectural pattern, which also made the decomposition easy

and clear (Fig. 1).

Fig. 1: MVC with Component View

The central component of MVC, the model, captures the

application’s behavior in terms of its problem domain and

directly manages the application’s data, logic and rules, in-

dependent of the user interface.[8] A view can be any output

representation of information, such as the GUI Panel and 3D

Scene here. The controller accepts input and converts it to

commands for the model or view. In addition to dividing the

application into three kinds of components, the MVC design

defines the interactions between them: [9]

1) A controller sends commands to the model to update the

model’s state. It also sends commands to its associated

view to change the view’s presentation of the model.

2) A model notifies its associated views and controllers

when there has been a change in its state. This notifi-

cation allows the views to produce updated output, and

the controllers to change the available set of commands.

3) A view requests information from the model that it uses

to generate an output animation frame to the user.

C. Flow Control

There are 3 kinds of control flows in our Control Flow

Diagram (CFD). The yellow arrows represent the initialization

control flow, which is followed only in the initialization

state. The blue arrow pairs represent the conditional call and

back control flow, they are only followed when a user input

appears. Once the handling process finishes, the control will

immediately turn back to where it was. The green arrows

sketched the main loop, which is followed continuously. It will

Fig. 2: Control Flow Diagram

pass through 3 components in Edit Mode and 6 components

in Display Mode respectively. The animController and localIO

component are fixed, so we only got 2 and 4 free components

in each mode.

D. Component Design

By using Three.js1 as the basic render engine and im-

plementing the skeletal animation algorithms ourselves, we

divided our program into 7 components as shown in Fig. 1.

The localIO (Fig. 3) component is fixed on the client for

Three.js and some browser related variables. It mainly does

the rendering works and help synchronizing the I/O states.

Fig. 3: The IPO diagram of localIO

The animController(Fig. 4) component is fixed on the server

because the FPS recording process inside must be executed on

the server. It controls the animation timer and the content of

the animation.

Fig. 4: The IPO diagram of animController

The rest of the components are all free. They all take

their input data to do one specific computation respectively,

and then output the results. Since their IPO(Input-Processing-

Output) diagram are quite simple, we will not show them here.

1http://threejs.org/

193



IV. CHALLENGES AND SOLUTIONS

A. Use of Global Variable

Our platform currently provides two mechanisms for global

variable among multiple components. However, neither of

them seem to be perfect.

One is to save global variables into a JavaScript object

named ”global” whose lifetime spans the whole runtime of the

executing program. While this can only make variables global

on either client or server, not both. So two components running

on different sides could not share any variables, and compo-

nents will lose their variables due to client-server migration.

Another is to pack global variables into a JavaScript Object

Notation (JSON) object named ”context” to be transmitted

to the next executing function during each function jump.

But JavaScript variables with member functions could not be

represented in JSON form. Then most of the components using

3rd party objects must be fixed on either side to apply the

former approach, making no contribution to our partitioning

optimization. What’s more, during each function jump, the

program must transmit the object ”context” containing all the

global variables including those do not need to be synchro-

nized.

Our solution is to use only one 3rd party library (Three.js)

for basic rendering tasks, saving all the related objects into

”global”, and implementing other algorithms ourselves to

reach as many free components as possible. This scheme

just satisfied the local rendering technique [10]. To make

our platform more compatible with 3rd party libraries, we

can make the ”global” object consistent between client and

server by adding a synchronizer. While this may influence

the cost evaluation of optimization, thus ruining the current

theory and the cognition of our platform. Besides, to compress

and decompress ”context” object for every transmission could

minimize the time cost of function jumps.

B. Synchronization of I/O State

In our program, one single I/O event may be handled by

multiple components, so the events received by localIO should

be saved into its ”context” object to be transmmited to the

sequent components. However, due to the asynchronization

between the I/O event and the program’s main control flow,

there might be a WAR(Write after Read) data hazard [11]. If

the I/O event appears during the execution of other compo-

nents, the I/O state information received by localIO would be

overwritten by the ”context” object of the former component

after the function jump, thus ignoring the I/O request without

handling.

To avoid WAR data hazard, we save the I/O event’s infor-

mation into ”global” when it appears. Then after the control

transferred to localIO with the new ”context” object, we

copy the I/O state information from ”global” object into this

”context” object, then these I/O state information could be

transmitted forward to the following components to trigger the

processing functions, which also synchronizes the I/O handling

process and the execution of the program. Note that we only

update the I/O state for those which just triggered. We don’t

want to overwrite other I/O states, which might have been reset

in the processing components to avoid reprocessing. Since I/O

operation is a necessity in browser based games, it would be

better if our platform could provide I/O handling APIs for

the programmers. So that they can be free from I/O state

synchronization and can focus on their games.

C. Implementation of Main Loop

In 3D animations, there will be a main execution loop to

continuously get user input and process it to generate the new

image frame back to user. In our program, this main execution

loop is implemented by periodically transfering control among

multiple components, as shown in our CFD in Fig. 2. But

due to the runtime environment of browser, the all client side

allocation will crash the browser if there’s no delay in the

loop.

Our solution is to fix animController on the server. Then we

would never encounter the situation when all components are

on the same side because localIO have already been fixed on

the client. We didn’t use the setTimeOut() function as the usual

cases because it will influence our QoE measurement. The

browser won’t get blocked within this approach because there

are always some delays during the client-server transitions,

providing the browser with enough time to finish its built-in

tasks.

V. IMPLEMENTATION SCREENSHOTS

We here focus on cross-platform. A laptop client with

Chrome running on Windows 8.1 can reach more than 50

FPS displaying the default dog animation. Fig. 5 shows mobile

client situation. The cellphone has quadruple 1GHz core and

1GB memory, reaching 10+ FPS in dog animation and 20+

FPS in human animation. The iPad has some trouble with its

OS version, it only reaches less than 10 FPS.

(a) Xiaomi (b) iPad

Fig. 5: Chrome in Mobile Devices

VI. EXPERIMENTS AND RESULTS

Our platform seeks the best QoE by dynamically allo-

cating program components according to real-time device

and network configurations. To evaluate its performance, we

194



Fig. 6: Experiment Results

conducted the experiment under Display Mode to compare

the FPS between 2 specific situations during 24 minutes. In

the first situation, we let our platform automatically allocate

the components, and we divide the time into 3 8-min stages,

setting their bandwidth to 1000KB/S, 500KB/S and 100KB/S

respectively. In the second situation, we also divide the time

averagely into 3 parts with the bandwidth decreases from high

to low just as the first situation, while we manually ensure

every allocation occur 30 seconds in each part.

Since we have 4 free components in the main loop under

Display Mode, there exists 24 = 16 allocations. We need to

switch to these allocations manually as fast as possible to avoid

recording dirty FPS of other allocations. Hence, we use Gray

Code[12] to arrange our switching sequence, so that we can

switch to every next configuration by just one click.

We used 2 computers in the same LAN to conduct the

experiment with NetBalancer2 running on the server to limit

the bandwidth of Node.js3 process, so as to control the network

bandwidth. The computers are both with Intel(R) Core(TM)

i7-4770 CPU and 8.00 GB memory (RAM), 64-bit Windows

7. The browser on the client is Chrome.

Fig. 6 shows our results. Each point in the chart represents

the average FPS in a 5-sec time slice. The curves with orange,

deep blue, and light blue color show the data in the first

situation where we let our platform automatically allocate

components. The curves with yellow, green, and gray color

show where we switch the allocation manually. We can easily

and clearly find out that, except the inception stage and the

94th-96th time slice FPS, the cognitively automatic allocation

always reaches the optimized FPS. Besides, we derive very

similar patterns from the three iteration schemes: the 1st, 5th,

6th, 8th, 9th, 11th, 12th, 16th configurations all reach the

optimized FPS, and the rest all reach the worst case FPS.

And the worst case FPS value is approximately half of the

optimized FPS value. Based on the analysis of our CFD(Fig.

2), we figured out that all worst cases have 4 client-server

transitions in one main loop, and all optimized cases have only

2 transitions. This means the time cost of data transmission

dominated our program.

VII. CONCLUSIONS AND FUTURE WORKS

From our experiment and analyses in the previous chapter,

we conclude that in order to better serve the 3D cloud games

2https://netbalancer.com/
3http://nodejs.org/

nowadays, the computation of CG primitives, such as mesh

vertex coordinate, needs to be computed locally to prevent

frequent massive data communication. Only the components

with computations that are not directly related with the CG

primitives, i.e. a physics engine, could be deployed on the

server. For our future works, we should try to improve the

compatibility of our platform, so that we can deploy more 3D

games with various 3rd party libraries conveniently to further

research this emerging trend.

VIII. ACKNOWLEDGEMENTS

This work was supported by a Mitacs Globalink Internship,

a University of British Columbia Four Year Doctoral Fellow-

ship, the Canadian Natural Sciences and Engineering Research

Council under grant STPGP 447524-13, and the Fundamental

Research Funds for the Central Universities of China.

REFERENCES

[1] W. Cai, C. Zhou, V. Leung, and M. Chen, “A cognitive platform for
mobile cloud gaming,” in Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on, vol. 1, pp. 72–
79, Dec 2013.

[2] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J.
Sherbondy, and R. Singh, “Cognitive computing,” Commun. ACM,
vol. 54, pp. 62–71, Aug. 2011.

[3] S. Gorlatch, D. Meilaender, F. Glinka, W. Zhang, and X. Liao, “Bringing
mobile online games to clouds,” in Proceeding of 33rd IEEE Internation-
al Conference on Computer Communications, INFOCOM2014, 2014.

[4] Newacct, Sp4cerat, Pieman, Codehead, and Rcrmn, “OpenGL Tutorials:
Basic Bones System.” Website, Mar. 2014. http://content.gpwiki.org/
OpenGL:Tutorials:Basic Bones System.

[5] N. Magnenat-thalmann, R. Laperrire, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object grasping,”
in Proceedings on Graphics interface, pp. 26–33, 1988.

[6] A. Jacobson, Z. Deng, L. Kavan, and J. Lewis, “Skinning: Real-time
shape deformation,” in ACM SIGGRAPH 2014 Courses, 2014.

[7] W. Cai and V. Leung, “Decomposed cloud games: Design principles and
challenges,” in Multimedia and Expo Workshops (ICMEW), 2014 IEEE
International Conference on, pp. 1–4, IEEE, 2014.

[8] S. Burbeck, Applications Programming in Smalltalk-80(TM): How to
use Model-View-Controller (MVC). ParcPlace System, Inc., 1992.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
“Pattern-oriented software architecture: a system of patterns,” Com-
putacin y Sistemas, 1996.

[10] W. Cai, M. Chen, and V. Leung, “Toward Gaming as a Service,” in IEEE
Internet Computing Magazine, pp. 12–18, IEEE Computer Society, May
2014.

[11] E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu, “Automatic pipelining from
transactional datapath specifications,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2010, pp. 1001 – 1004, 2010.

[12] R. Doran, “The gray code.,” Journal of Universal Computer Science,
vol. 13, no. 11, pp. 1573–1597, 2007.

195


