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We consider se�ings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may

emphasize short-term pro�ts and property safety) to treat arriving clients fairly, in order to prevent overall

discrimination against individuals or groups. We model such se�ings in both classical and contextual bandit

models in which the myopic agents maximize rewards according to current empirical averages, but are also

amenable to exogenous payments that may cause them to alter their choices. Our notion of fairness asks that

more quali�ed individuals are never (probabilistically) preferred over less quali�ed ones [8].

We investigate whether it is possible to design inexpensive subsidy or payment schemes for a principal to

motivate myopic agents to play fairly in all or almost all rounds. When the principal has full information about

the state of the myopic agents, we show it is possible to induce fair play on every round with a subsidy scheme

of total cost o(T ) (for the classic se�ing with k arms, Õ (
√
k3T ), and for the d-dimensional linear contextual

se�ing Õ (d
√
k3T )). If the principal has much more limited information (as might o�en be the case for an

external regulator or watchdog), and only observes the number of rounds in which members from each of

the k groups were selected, but not the empirical estimates maintained by the myopic agent, the design of

such a scheme becomes more complex. We show both positive and negative results in the classic and linear

bandit se�ings by upper and lower bounding the cost of fair subsidy schemes.

1 INTRODUCTION
Recent uses of machine learning to make decisions of consequence for individual citizens (such

as credit, employment and criminal sentencing) have led to concerns about the potential for these

techniques to be discriminatory or unfair ([1], [4], [2]). Existing research has emphasized dis-

criminatory outcomes originating from biases encoded into the data sets on which algorithms are

trained.
1
In this paper, we consider a di�erent source of unfairness in a stochastic bandit se�ing.

�e key friction we examine is when a forward-looking principal concerned with fairness (such as

a regulator or technology platform) is not the one directly making the choices. Instead, a sequence

of myopic agents are making the choices. To prevent unfair choices by these agents, the principal

1
For example, Boston’s Street Bump program, which uses smartphones to determine where road repairs are needed, results

in certain areas being underserved because of the sparsity of smartphones traversing them ([12]).
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may o�er targeted monetary rewards to agents to incentivize them to make di�erent choices than

they would have in the absence of such payments. Our concern in this paper is how much the

principal needs to be prepared to pay in order to incentivize fair decisions by myopic agents.

To help �x ideas and motivate our problem, consider a challenge faced by peer-to-peer (P2P)

platforms such as Prosper (P2P lending) or Airbnb (P2P short-stay housing). �e platform cannot

dictate to their users who to extend loans or rent to. Nevertheless, it may wish to ensure the choices

its users make are fair, either to avoid criticism,
2
or to comply with existing regulations. P2P

lending, for example, is subject to the Equal Credit Opportunity Act (ECOA). One provision of the

Act is a requirement that lenders furnish reasons for adverse lending decisions. �is obligation falls

on the shoulders of the platform, and is challenging to discharge because the platform aggregates

the decisions of many di�erent lenders.
3

In our model, an agent arrives at each period and must choose amongst a set of available

alternatives. (For instance, the agent might be a lender on Prosper choosing to whom they will

grant a loan, or an Airbnb host choosing which guest to accept.) We model this as a choice of which

arm to pull in a stochastic bandit se�ing. We consider both the classic and contextual bandit cases.

In the classic se�ing, each arm represents an individual, who will over time repeatedly be considered

for service. In the contextual se�ing, each arm represents a group, and individual members of that

group are represented by contexts (i.e. sets of individual features) which change at each round. A

stochastic reward from the pull of an arm models the uncertain payo� associated with serving an

individual (i.e. extending a loan, or having the individual rent). Each agent is myopic in the sense

that they are occasional users of this platform, and thus care only about their current expected payo�.

Because of myopia, the agent chooses the arm with the highest empirical mean in the classical case,

and the context with the highest predicted reward according to a �xed one-shot learning procedure

known to the principal (e.g. ordinary least squares regression, or ridge regression). Each agent is

limited to pulling a single arm to model their limited resources (e.g., they may only have the funds to

grant one loan, or host one guest on any particular night), and of course this simpli�es our analysis.

�e platform, motivated by a need for “accountability,” would like to be fair. Our formal de�nition

of fairness (Joseph et al. [8]) may be found in Section 2, and can be informally described as follows:

Suppose an auditor knew the expected reward of each arm (or more generally, in the contextual

case, of each context), and looked back at the platform’s decisions. Fairness requires that a worse

individual was never favored over a be�er individual. More precisely, if a platform is fair, then on

any day t , the probability px that the agent pulls arm x is such that if the expected reward of x
is at least that of x ′, then px ≥ px ′ . Fairness as de�ned in this paper does not address inequities

“outside the model.” For example, if one group has lower expected payo� for every context than

another, perhaps due to historical inequities, and there are no additional features available to the

learning algorithm, our notion of fairness permits the agent to favor the higher expected group.

In this sense our fairness notion is aligned with (apparent) meritocracy.

Intuitively, there are two impediments to fairness in this model. First, neither the platform nor the

agents know the distribution of rewards of each arm. If these were known, the problem would be

trivial: it would be both fair and agent-optimal to always pull the arm with highest expected reward.

Second, the agents are myopic — they have no incentive to directly invest in fairness or learning.

We examine whether it is possible for the platform, herea�er called the principal, to incentivize

the agents to make fair choices by o�ering the agent payments for selecting particular arms. �ese

2
Airbnb has very recently received scrutiny over both anecdotal reports and systematic studies of racist behavior by

landlords on their platform ([5]). �is study also suggests that myopia may play a role in discrimination, in the sense

that landlords with no prior exposure to minority renters were more likely to discriminate.

3
Lenders on Prosper must agree to comply with the relevant provisions of the ECOA, but there is still evidence of

discrimination; see [14].
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Full Information Partial Information

Classical Õ (
√
k3T ) cost O (

√
T ) cost for k = 2

Ω(T ) cost for k ≥ 3

Õ (
√
k3T ) cost allowing Õ (k2) unfair rounds

Linear Contextual Õ (d
√
k3T ) cost o(T ) unfair rounds→ Ω(T ) cost

o(T ) cost→ Ω(T ) unfair rounds

Table 1. Summary of cost to incentivize perfect fairness and fairness in all but a limited number of rounds.

payments can be randomized. Because the agents behave identically in our model (they are all

myopic), we treat them as if they are a single myopic entity, whom we term the agent. We inves-

tigate how much information a principal needs to incentivize fair behavior. Characterizing the

information requirements is important, since sometimes the principal may be an external regulator

or other entity tasked with oversight without the full information available to the platform. At one

extreme, called partial information, we suppose the principal observes only which decisions were

made by the agent in each of the previous rounds but not the rewards. In the P2P context, rewards

might be unobservable because the reward an agent experiences is a function of both observed

characteristics of the borrower or renter and a private type of the agent. At the other extreme of

full information, the principal has the same information as the agent.

We ask each of these questions in both the classic and linear contextual bandits se�ings. In the

classic case, individual i is be�er than individual j if the mean of distribution i is higher than that

of distribution j. In the contextual case, individual i on day t is represented by a set of features,

or a context x ti , and that individual’s expected reward is de�ned as fi (x
t
i ) for some fi ∈ C .

1.1 Our Results
Table 1 summarizes our results for characterizing the cost of incentivizing fair play in myopic

agents. Informally, we show a stark separation: in the partial information model, any fair payment

scheme must cost Ω(T ); while in the full information model there are payment schemes which cost

Õ (d
√
k3T ). In both the classic and contextual se�ings, the full information upper bounds e�ectively

incentivize the agent to play known fair algorithms. �e lower bounds for the partial information

model look somewhat di�erent. For the classic se�ing, our lower bound simply shows that the �rst

round at which the principal doesn’t o�er a payment of 1 will be unfair with constant probability;

for the contextual se�ing, every round must either be unfair or o�er Ω(1) payment.

We additionally show that in partial information model, the classic problem is somewhat easier

in two cases. When there are only 2 arms, we give a simple payment scheme that only incurs a

cost of O (
√
T ) and guarantees with high probability that the agent is fair at every round. Even

when k ≥ 3, a principal who is allowed Õ (k2) unfair rounds can design a payment scheme which

costs only Õ (
√
k3T ).4 In the full information model, we exhibit a payment scheme for the principal

which, with high probability, is fair in every round, and has cost Õ (
√
k3T ).

It is interesting to observe that all our payment schemes that guarantee fairness (either in each

period, or except at a constant number of periods) and achieve sublinear costs also induce the agent

to play so as to experience sublinear regret. If we think of sub-linear regret as a proxy for e�ciency,

our full information results say we can achieve both e�ciency and fairness with subsides that grow

4
In other words, we show that by allowing a constant number of unfair rounds, independent of T , one can achieve sublinear

costs.
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slowly over time. Under certain conditions, this is also possible in the partial information se�ing,

which does not require the principal to “open the books” of the agent.

1.2 Related Work
Our work is closely related to the literature on incentivizing experimentation in bandit se�ings.

In these papers, a sequence of agents arrives one at a time and each is allowed to select an arm

to pull. Each agent “lives” for one period and therefore pulls the arm that has the highest current

estimated payo� given the history. �e agents’ myopia means that they do not explore su�ciently

and the patient principal must encourage it.

In this context, Frazier et al. [6] explore the achievable set between the monetary rewards the

principal must pay to incentivize exploration and the time discounted expected reward to the

principal. In this paper the history of actions and outcomes is observed by the principal and there

is, therefore, no examination of what happens with limited information. More importantly, there

is no consideration of fairness, which is our primary interest.

A di�erent string of papers does not explicitly allow for monetary payments, but instead the

principal discloses information about past agents’ realized rewards to the future agents, see e.g.

Kremer et al. [9], a more general exploration in Mansour et al. [10, 11], or an analytical solution

in a continous time Poisson bandit se�ing by Che and Horner [3] and the same in a discrete time

se�ing in Papanastasiou et al. [13]. �e key point of departure for our work is that for us, the

principal is not explicitly interested in the long term reward of the agent, but is instead interested

in promoting “fairness” (although this will incidentally have the property of increasing long-term

reward of the agent by encouraging experimentation).

Joseph et al. [8] originally proposed our de�nition of contextual fairness. �ey consider the

tradeo�s between requiring this form of fairness and achieving no-regret in both classic and

contextual bandit se�ings. �is notion was also employed in Joseph et al. [7], when specialized to

the linear contextual bandits case.

2 PRELIMINARIES
A principal faces a sequence of homogeneous myopic agents, each operating in a contextual bandit

se�ing. For simplicity, we view the agents as a single agent repeatedly making myopic choices.

2.1 Contextual Bandits
Let {k } refer to a set of arms. In each round t ∈ [T ], an adversary reveals to the agent a context

x tj ∈ X, where X is the common domain of contexts, for each arm j ∈ [k].

Fix some class C of functions of the form f : X → [0, 1]. Associated with each arm j is a
function fj ∈ C , unknown to both the agent and the principal.

5
. An agent who chooses an arm

j in period t with context is x tj receives a stochastic reward r
t
j ∼ F

x tj
j , where E[r tj ] = fj (x

t
j ), for

some distribution F
x tj
j over [0, 1].

Remark 1 (Linear Contextual Bandits). �e results in this paper which involve contexts are for

the case where the set of contexts X = {x ∈ [0, 1]d : | |x | | ≤ 1} for some number d > 0, and

C =
{
fj : there exists some θ j ∈ [0, 1]

d , | |θ j | | ≤ 1, s.t. fj (x j ) = 〈θ j ,x j 〉, ∀x j ∈ X
}
.

Remark 2 (Classic Bandits). �e classic bandits problem is a special case of the contextual bandits

problem where the set of possible contexts is a singleton. �en F ·j = Fj and r
t
j ∼ Fj .

5
O�en, the contextual bandit problem is de�ned so that there is a single function f associated with all of the arms. Our

model is only more general.
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In the running example of P2P lending, X represents possible pro�les of a�ributes that a lender

can observe about a potential borrower. �e exact relationship between a pro�le of a�ributes at

time t , denoted x tj , and the expected reward earned from extending a loan to a borrower with this

pro�le is fj (x
t
j ); this functional form is unknown to the lender, the platform, and the agent.

2.2 The Myopic Agent and the Principal
In each period t , the principal can o�er a vector of payments pt ∈ <k

+ to the agent. Here pti is to
be interpreted as the monetary incentive the agent receives from the principal if they selects arm

i on top of any reward that would accrue from the arm itself.

We assume the agent makes myopic choices facing empirical estimates of the reward from each

arm (we describe how these empirical estimates are constructed momentarily). We use µ̂ti to denote
the empirical estimated reward for selecting arm i in round t . When the agent receives a proposed

subsidy vector pt ∼ γ t (·), they choose the arm which maximizes the sum of empirical expected

reward and payment, i.e. chooses it ∈ argmaxi (µ̂
t
i + p

t
i ). �is is the sense in which the agent is

myopic—they maximize (their estimate of) today’s net reward plus payment, with no concern for

the future. Note that we assume that rewards are expressed in monetary terms, i.e. that they are

directly comparable to o�ered payments.

For concreteness and without loss of generality, we �x a tie-breaking rule—ifM = argmaxi (µ̂
t
i +

pti ) contains multiple elements, the agent chooses uniformly at random amongst the members of

M that also maximize payment, i.e. from the set argmaxi ∈M pti .
6
�e principal experiences cost

pti t at round t , and total cost

∑T
t=1 p

t
i t over the course of T rounds. �e payments o�ered by the

principal, and the empirical estimates of the agent, depend on what they know about past choices

and outcomes. We de�ne these next.

2.3 Information and Histories
�e agent will, in any period t , recall history ht ∈

(
Xk ×<k

+ × [k] × [0, 1]
)t−1

= H t .�is is a

record of the previous t − 1 rounds experienced by the agent: t − 1 4-tuples encoding the realization
of the contexts for each arm in a given period, the payments the principal o�ered, the arm chosen,

and the realized reward observed.

In the linear contextual case, let
ˆθ ti represent an estimate of the linear model θi based on the

history ht (this could, for example, be the ordinary least-squares or regularized ridge regression

estimator — the important thing is that whichever method is used is known to the principal). �e

myopic decision maker, at day t , when facing contexts x t
1
, . . . ,x tk will have empirical estimated

reward µ̂ti = 〈
ˆθ ti ,x

t
i 〉. In the classic se�ing,

µ̂ti =

∑
t ′<t r

t ′
i

|{t ′ < t : i played in round t ′}|

that is, it represents the empirical average for the set of previous rewards observed from arm i in
previous rounds.

Note that during the �rst several rounds, the myopic reward estimates µ̂ti are not necessarily
de�ned, e.g. if in the classic se�ing, the agent has not yet observed any rewards from arm i , or if
in the linear contextual case, the agent has not observed su�ciently many reward/context pairs

to uniquely de�ne the OLS estimator. To get around this issue, we assume that the agent has

previously observed su�ciently many observations from each arm to make these estimates well

6
Our results do not depend in any important way on the particulars of the tie-breaking rule—we chose this one to simplify

parts of the lower bound proof.
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de�ned — i.e. at least one observation per arm in the classic case, and observations corresponding

to contexts that combined form a full rank matrix in the linear case.

We consider two information models for the principal. In the full informationmodel, the principal

observes everything the agent observes, i.e. there is no information asymmetry between the two. In

the partial information model, the principal observes neither the contexts faced by the agents, nor

the realized reward of the arm the agent pulled. We will denote this by ht ∈
(
<k
+ × [k]

)t−1
= H t

.

�e principal’s information scheme is a function of the information they have.

In what follows, we de�ne various notions of performance of algorithm. �is is without loss:

the payments that the principal o�ers, and the resulting choices made by the agents choices, taken

together, can be thought of as an algorithm making choices in a stochastic bandit se�ing.

2.4 Fairness and Regret
A standard method for measuring the performance of a bandit algorithm is to measure its regret. If

one knew { fj }j ∈[k], selecting the arm with highest expected reward in each period would be optimal.

Fix an algorithmA and let π t be the distribution over arms at round t of the algorithm: the regret
of A is the di�erence between the reward of the optimal policy, and the reward of the agent:

Regret(x1, . . . ,xT ) =
∑
t

max

j

(
fj (x

t
j )

)
− Ei t∼π t [

∑
t

fi t (x
t
i t )].

We say that A satis�es regret bound R (T ), if maxx 1, ...,xT Regret(x1, . . . ,xT ) ≤ R (T ).
We denote by π tj |ht the probability that A chooses arm j a�er observing contexts x t in period

t , given ht . For economy, we will o�en drop the superscript t on the history when referring to the

distribution over arms: π tj |h B π tj |ht .

We now de�ne what it means for an algorithm A to be fair in a particular round t . Informally,

this will mean that A will play arm i with higher probability than arm j in round t only if i has
higher true expected reward than j in round t .

De�nition 2.1 (Round Fairness). Fix some history ht . Recall π tj |ht is the probability that A plays

arm j in round t given the history ht . We will say A is fair in round t if, for any context x t , for
all pairs of arms j, j ′ ∈ [k],

π tj |h > π
t
j′ |h only if fj (x

t
j ) > fj′ (x

t
j′ ).

Similarly, a payment scheme is fair in round t if the selection by the myopic agent under the

payment distribution is fair.

Remark 3. When this de�nition is specialized to the classic (noncontextual) case, the reward

distributions do not vary with time, i.e. F t
j = Fj for all t . �us, “noncontextual” fairness reduces to

guaranteeing that if arm i is played with higher probability than arm j, it must be that the average

reward drawn from distribution Fi is higher than the average reward drawn from distribution Fj .

Remark 4. To be clear about this de�nition in the partial information model, and what we mean

by probabilities: note that the “algorithm” has access to ht at the beginning of time t . By this

we mean that, the principal has access to ht . �e principal then o�ers payments to the agent,

possibly randomizing. �e agent sees the full history ht , and the realized payments drawn from

a distribution, and makes a choice. �e principal’s randomization, and then, if there are ties, the

agent’s randomization in period t , can be amalgamated into a net probability of each arm being

selected in period t a�er history ht . �ese are the π ’s that the de�nition refers to.

We now introduce a notion of fairness which holds at every round with high probability over

the history of observed rewards.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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De�nition 2.2 (Contextual Fairness). A (·) is fair if, for any input δ ∈ (0, 1), for all sequences of
contexts, x1, . . . ,x t and all reward distributions F t

1
, . . . ,F t

k , with probability at least 1 − δ over

the realization of the history h, for all rounds t ∈ [T ], A (δ ) is fair in round t .

Contextual fairness, introduced in Joseph et al. [8], formalizes the idea that highly quali�ed

individuals should be treated at least as well as less quali�ed individuals. Here, an individual’s

quali�cation is measured in terms of their expected reward for A. If two individuals have di�erent

pro�les (or contexts) but generate the same expected reward to the learner, this de�nition enforces

that both be played with equal probability every round. We also introduce a relaxation of contextual

fairness, which allows for an algorithm to have some number of unfair rounds.

De�nition 2.3 (д-Contextual Fairness). A (δ ) is д-fair if, for any input δ ∈ (0, 1), for all sequences
of contexts, and all reward distributions, with probability at least 1 − δ over the realization of the

history h, for all but д rounds t ∈ [T ], A (δ ) is fair in round t .

Our principal is willing to incentivize the agent’s behavior to ensure contextual fairness (and,

incidentally, low regret). We investigate what subsidy schemes incentivize fair choices by a myopic

agent, and the cumulative cost of such subsidies. We show this answer depends upon the kind

of information the principal has access to: incentivizing fair play with partial information is in

general very expensive, while incentivizing fair play under full information need not be so.

3 A PRINCIPAL WITH PARTIAL INFORMATION CANNOT ENSURE T FAIR ROUNDS
In this section, we give a lower bound on the total payments needed in the partial information

se�ing to ensure contextual fairness in every round. In fact, we don’t even need to move to the

contextual case: this section focuses on the classic bandit se�ing (where the context x tj is invariant

with respect to t for each arm j). We show that in the partial information se�ing, any principal who

incentivizes a myopic agent to satisfy contextual fairness in each round must incentivize uniformly

random play in each of the T rounds, which has cumulative cost Ω(T ).

Theorem 3.1. Suppose k ≥ 3. �ere is an instance such that any fair payment scheme in the partial

information model must, with probability 1 − δ , (where δ is the fairness parameter passed to the

principal) spend Ω(T ) in payments over T rounds and incur regret Ω(T ).

�e lower bound proceeds from the following idea: at the �rst round, the principal has no

information about what the instance is. Hence, in order to guarantee fairness against all instances,

they must proceed cautiously and use a payment scheme that is able to induce uniformly random

play (the only distribution that is fair for all instances) for every possible realization of empirical

means. Because empirical means can range between 0 and 1, this will cost 1. However, because this

payment distribution (by design) induces identical behavior on every possible instance, it does not

allow the principal to learn anything about the instance. �us, in every round before which fair

play has been guaranteed, the principal has the same informational disadvantage. By induction,

therefore, they must induce uniformly random play at every round, at a cost of 1 per round.

We show that fairness at every round, against all instances is equivalent to the payment scheme

in each round being what we term peaked. A peaked payment rule is one that can always incentivize

the play of some arm regardless of the empirical means the myopic agent currently has. �is is

equivalent to saying that there is some arm i ∈ [k] for which pi ≥ pi′ + 1 for all i
′ , i . �is will

imply the payment scheme must spend Ω(1) in each round to incentivize fair play, or Ω(T ) in total.

De�nition 3.2 (Peaked). Let p ∈ Rk . If for some i ∈ [k], pi ≥ maxi′,i pi′ + 1, we say p is peaked. If

Pp∼D[p is peaked] = 1

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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then we call distribution D peaked.

Observation 1. If a principal uses a peaked distribution D in a round, they learn nothing about

the instance the agent faces from the agent’s play in that round.

Proof. By De�nition 3.2, every payment scheme drawn from D is peaked. In other words, for

every p` ∼ D: there is some i` such that pi` ≥ maxi′,i` pi′ + 1. �us, the myopic agent will choose

i` when presented with p` regardless of the instance the agent faces. �

�e main idea behind �eorem 3.1 is in proving that any fair payment scheme must be peaked

in every round. Technically, we use the fact that the principal learns nothing about the instance

from a peaked distribution to allow us freedom to design a lower bound instance as a function of

the �rst distribution Dt
deployed by the principal that is not peaked. Because this distribution, by

virtue of being the �rst non-peaked distribution, cannot be a function of the underlying instance,

we are unconstrained in our ability to tailor the instance as a function of Dt
. We then show this

instance forces an unfair round for Dt
; we can conclude that with probability 1 − δ , the principal

must never deploy any distribution over payments that is not peaked.

Lemma 3.3. For any fairness parameter δ , a fair payment scheme must with probability 1 − δ
generate a sequence of payment distributions D1, . . . ,DT

such that each Dt
is peaked.

We now conclude the proof of �eorem 3.1 before presenting the proof of Lemma 3.3.

Proof. Lemma 3.3 implies that a fair payment scheme must with probability 1 − δ generate T
peaked payment distributions. Since maxi pi ≥ maxj,i pj + 1, and µ̂

t
i ∈ [0, 1] for all i , the payment

scheme’s largest payment is always at least 1, and is always accepted. �us, the myopic agent will

receive a payment of at least 1 in every round, for a total cost of Ω(T ).
To prove the regret of this payment scheme may be Ω(T ) on some instances, consider each of the

k instances in which one arm has mean 1 and the remaining k−1 arms have mean 0. By Observation

1, the principal has no information about which of these instances is realized. �erefore to be to

be fair with respect to all of these instances, each arm must be assigned the largest payment with

equal probability, which induces uniformly random play amongst all k arms, Ω(1) regret per round,
and cumulative regret Ω(T ). �

We now present the proof of the main lemma for this section: that in order for a payment dis-

tribution to be fair, it must be peaked. Informally, we �rst show that any fair payment distribution

must be “invariant under permutation”: any coordinate i should have have an equal probability of

having the largest payment, and have an equal probability of j being the second-largest payment

with margin c , for each value of j and c . We then show in the �rst round t at which the payment

distribution is unpeaked, Dt
is unfair for some instance I constructed as a function of Dt

.

Proof of Lemma 3.3. We consider some round t . Suppose that for every round t ′ < t , the
payment distribution Dt ′

was peaked. If the payment distribution Dt = D at round t is fair, we
show that it too must be peaked. Observe that by Observation 1, D must be de�ned independently

of the underlying instance I , and because fairness is de�ned in the worst case over instances, we

continue to have complete freedom in choosing I .
We �rst claim that in round t , if D is fair, for any two distinct i, i ′, ∈ [k] and any c ∈ [0, 1], that

Pp∼D[pi ≥ max

`∈[k], `,i
p` + c] = Pp∼D[p

′
i ≥ max

`∈[k], `,i′
p` + c]. (1)

Suppose Equation 1 does not hold. We construct an instance for which D will not be fair, a

contradiction. Suppose the le�-hand side is larger than the right-hand side. Consider an instance
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where µi = µi′ = 1 − c , and all other arms (of which there is at least 1) have means µ j = 1. Suppose

further that the distribution over i’s reward is deterministic point mass at 1− c , whereas i ′’s reward
distribution yields reward 1 − c + ϵ with probability

1

2
and 1 − c − ϵ with probability

1

2
. �en, with

probability at least
1

4
, µ̂i′ < µ̂i .

7
�us, with probability

1

4
over the history of rewards observed, i

wins with higher probability than i ′, since i wins whenever i’s payment is the largest by c , and
i ′ can only win when i ′’s payment is the largest by at least c for any history for which µ̂i′ < µi′ .
�is is a violation to fairness for δ < 1

4
.

Notice that Equation 1 implies that each arm receives the highest payment with probability
1

k ,

and that this also holds conditioning on any gap c between highest and second-highest payments.

Now, since D is not peaked,

Pp∼D[∃i : pi ≥ max

i′,i
pi′ + 1] < 1.

De�ne c as follows:

c = sup

y≥0
s.t. Pp∼D[∃i : pi ≥ max

i′,i
pi′ + y] = 1.

Notice, this implies that:

∀ϵ > 0,∃η > 0 s.t. Pp∼D[∃i : pi ≥ max

i′,i
pi′ + c + ϵ] ≤ 1 − η. (2)

We now construct an instance as a function of c . �ere are two cases – either c > 0 or c = 0.

Case 1: c > 0. Consider the following instance, de�ned in terms of c and a constant 0 < ϵ < c:
arm 1 has mean 1 − c with deterministic rewards, arm 2 has mean 1 − c with reward 1 − c − ϵ
with probability

1

2
and reward 1 − c + ϵ with probability

1

2
, and arms 3, . . . ,k have a deterministic

reward of 1. Note that by de�nition of c , and the deterministic nature of arm 1’s distribution, we

have that for every history h, π t
1 |h ≥ 1/k . By the fairness constraint, we must therefore also have

that for every other arm i > 1, π ti |h ≥ 1/k , since no other arm has lower mean. �is implies that

for every arm i , it must be that π ti |h = 1/k .

Note, as we argued in footnote 7, that with probability at least
1

4
, for any t , µ̂2 < µ̂1 = 1−c , by con-

struction. In this case, there is some ϵ ′ > 0 such that arm 2 is not played unlessp2 > maxi,2 pi+c+ϵ
′
.

However, by de�nition of c , this occurs with probability strictly less than 1/k , contradicting the
assertion that D is a fair distribution.

Case 2: c = 0. Consider the instance in which arms 1, . . . ,k − 1 have mean
1

2
and determinis-

tic reward distributions, while arm k has mean 1/2, and stochastic rewards that are
1

2
− ϵ with

probability
1

2
and

1

2
+ ϵ with probability

1

2
. Note that in this case, fairness requires that all arms

be played with identical probabilities. With probability at least
1

4
, arm k has empirical mean lower

than its true mean. Condition on µ̂k < µk . In this case, since c = 0, with arm k must be selected

with probability less than
1

k since the payment to arm k will be strictly less than µk − µ̂k with

strictly positive probability (2), and therefore unfair. �

3.1 A Fair Payment Scheme for Two Arms
We now show that having at least three arms is necessary for our lower bound result. Indeed, in the

classic stochastic partial information se�ing with two arms there exists a simple payment scheme

that can ensure fairness in every round while achieving sublinear regret and payment.

�e key idea in this payment scheme is to maintain con�dence intervals around empirical reward

means for the two arms. �e following lemma tells us how to construct con�dence intervals.

7
For t odd it is

1

2
, for even t it is 1

2

(
1 − ·

(
t
t /2

))
· 1

2
t ≥

1

4
, achieved at t = 2 and increasing in t .

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1 S. Kannan et al.

Lemma 3.4 (Lemma 1, [8]). Suppose arm i has been pulled nti times before round t . Let `ti =

µ̂ti −

√
ln

(π (t+1))2
3δ

2nti
, and uti = µ̂ti +

√
ln

(π (t+1))2
3δ

2nti
. �en, with probability at least 1 − δ , for every

i ∈ [k], t ∈ [T ], `ti ≤ µi ≤ uti .

In the light of this result, we will de�ne the function ConfidenceWidth as follows, which will

also be useful for describing our payment scheme in the following section.

ConfidenceWidth(δ , t ,n) = 2

√
ln

(
(π ·(t+1))2

3δ

)
n

(3)

Given this con�dence width function, our payment scheme is the following: in each round t , choose
an arm at uniformly at random, and o�er payment p (δ , t ,nt

1
,nt

2
) for playing arm at and o�er 0 for

playing the other arm, where

p (δ , t ,nt
1
,nt

2
) = ConfidenceWidth(δ , t ,nt

1
) + ConfidenceWidth(δ , t ,nt

2
)

and nt
1
,nt

2
denote the number of times that the two arms are played before round t . Whenever the

agent selects the arm associated with zero payment, the principal will then o�er zero payment for

both arms in all future rounds.

Theorem 3.5. Consider the classic case with k = 2 arms in the partial information se�ing. �en

the payment scheme above instantiated with parameter δ is fair in every round with probability at

least 1 − δ . Moreover, the incurred total cost and expected regret are at most Õ (
√
T ).

4 CLASSIC SETTING: SUBLINEAR PAYMENTS WITH ONLY Õ (K2) UNFAIR ROUNDS
�e necessity of linear growth in subsidies (�eorem 3.1) was driven by the requirement that the

agent satisfy contextual fairness in each period. It is natural to ask what would happen if one

relaxed this requirement. In this section, we describe how to design a payment scheme which will

satisfy contextual fairness in all but Õ (k2) rounds. We show that it is possible to achieve payments

and regret which grow sub-linearly with T .
�e rough idea behind this upper bound is inspired by Joseph et al. [8] who show that fairness

can be achieved by maintaining con�dence intervals around empirical arm means, and enforcing

the constraint that any pair of arms with overlapping con�dence intervals are played with equal

probability: in particular, a fair no-regret algorithm can play uniformly at random amongst the

set of arms “chained” to the arm with highest upper con�dence bound by the con�dence intervals,

called the chained set X .

Denote the con�dence interval associated with arm i at round t by [`ti ,u
t
i ]. Fix a set of con�dence

intervals at round t , [`t
1
,ut

1
], . . . , [`tk ,u

t
k ]. We say i is linked to j if [`ti ,u

t
i ] ∩ [`tj ,u

t
j ] , ∅, and i is

chained to j if i and j are in the same component of the transitive closure of the linked relation.

We refer to the set of arms chained to the arm with highest upper con�dence bound as the chained

set X . We say the sequence of con�dence intervals are valid if, with probability 1 − δ , they contain

the true and empirical averages of every arm in every round.

In the absence of explicit knowledge of the sample means, the principal does not have su�cient

information to incentivize uniformly random play amongst exactly the set of arms chained to the

arm with highest upper con�dence bound X 8
. �e principal does not know the empirical means

of the arms, and therefore cannot compute the arms contained in X directly.

�e principal can, however, incentivize the myopic agent to play an arm j with a payment vector

pt such that ptj ≥ maxi p
t
i + |maxi µ̂

t
i − µ̂

t
j |. Unfortunately, the principal neither knows which arms

8
Indeed, the ability to do so would contradict �eorem 3.1 by acheiving sublinear regret with zero unfair rounds.
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belong to X , nor how many arms are in X , nor how far apart the empirical means are in X . Instead,

the principal can maintain upper bounds on all of these quantities. Namely, the principal tracks

a superset of the chained set X , called the active set X̂ . |X̂ | will then act as an upper bound on the

size of the chained set, and |X̂ | · xX̂ will upper bound the di�erence between the highest arm mean

and the lowest chained arm’s means, where xX̂ is the width of the largest con�dence interval of

any arm in X̂ . By o�ering a payment of |X̂ | · xX̂ to an arm selected uniformly from X̂ (and zero

for all other arms), the principal will cause uniformly random play amongst X̂ if all arms in X̂ have

empirical means within |X̂ | · xX̂ of the best empirical mean.

�is is fair if in every round X̂ = X : all means will then be within |X̂ | · xX̂ by the de�nition of

chaining and xX̂ , and so this will induce uniformly random play amongst the chained set, exactly

the behavior shown to be fair in Joseph et al. [8]. On the other hand, if X̂ \ X , ∅, this behavior
could be unfair, either because not all arms within X̂ have empirical means within |X̂ | · xX̂ of one

another (i.e., not all arms in the set are chained together), or because some arms in X̂ chain to other

arms outside of X̂ , or because some arms in X̂ are “below” arms outside of X̂ . We will guarantee the

la�er issues do not occur, by always ensuring X̂ contains any arms “above” or chained to any arm

in X̂ . �e former issue (that some arms in X̂ may not be chained to others in X̂ , and their empirical

means may then not be close enough for the payment to change the myopic agent’s behavior in all

cases) cannot be entirely avoided. However, we can quickly discover if any arm in X̂ has empirical

mean less than |X̂ | · xX̂ below the best empirical mean: in O (X̂ ) = Õ (k ) rounds, that arm will be

o�ered the subsidy and it won’t change the agent’s decision. �ose Õ (k ) rounds will be unfair, as
are several rounds which follow this discovery and update the set X̂ .

�e following lemma, a generalization of the analysis of Joseph et al. [8], can be interpreted to

mean the following. Fix a de�niton of con�dence intervals which are all valid over all rounds for

all arms with probability 1− δ . Consider any set of arms S which (a) contains the “upper chain” (all

arms chained to the arm with highest upper con�dence bound), (b) contains any arms “above” the

con�dence intervals of any arm in the set, and (c) is closed under chaining. �en, playing uniformly

at random amongst S will satisfy contextual fairness.

Lemma 4.1. Suppose, with probability 1 − δ , at every round t and for every arm i , µti ∈ [`ti ,u
t
i ].

Consider a set S of arms with the k ′ highest upper con�dence bounds for some k ′ < k . �en, it is fair

to play uniformly at random over S ∪ {i chained to an arm in S }.

�e pseudo-code in Figure 1 describes the payment scheme, which we analyze therea�er.

�e performance of this payment scheme is summarized in the following theorem.

Theorem 4.2. For any δ , PlayAll is O (k2 ln(k/δ ))-fair, and has expected cost and regret

O *
,
k ·

∑
t

ConfidenceWidth(δ , t ,
t

k
)+
-
= O *

,

√
k3T ln

T

δ
+
-
.

We present the proof to this theorem a�er stating several lemmas describing the behavior of

PlayAll. Observation 2 states that using x as a con�dence interval width for all arms in X̂ yields

valid con�dence intervals. Herea�er, we use [`ti ,u
t
i ] = [µ̂ti − x , µ̂

t
i + x] as valid con�dence intervals

for all i ∈ X̂ , t ∈ [T ]. Lemma 4.3 shows that FindChained outputs a set which contains the upper

con�dence chain in its output round. Lemma 4.4 states that FindChained’s output is closed under

chaining (e.g., that every arm in its output is only chained to arms also belonging to the output

set) and contains all arms “above” any arms in its output. Lemma 4.5 argues that the empirical

means of every arm in the set output by FindChained are within 4 con�dence interval widths

of some other arm in the set. Lemma 4.6 shows that when this is the case (that the empirical means
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ALGORITHM 1: O (k2 ln k
δ )-fair Payment Scheme

Function PlayAll (δ ,T )
x ← 1;

X̂ ← {1, . . . ,k };

while t ≤ T do
(x , X̂ ) ← ChainedFair(δ ,x , X̂ );

end
Function ChainedFair (δ ,x , X̂ )

Choose jt ∈UAR X̂ ; // Pick arm to incentivize

x ← min(x ,ConfidenceWidth(δ , t ,minj ∈X̂ ntj ));

O�er pt : ptjt = 4x · |X |,pti′,jt = 0;

it ← the myopic player’s choice;

if it , jt then
X̂ ← FindChained(x , X̂ , t );

end
return (x , X̂ )

Function FindChained (x , X̂ , t )

O�er pt = ~0;

it ← the myopic player’s choice;

R ← {it };

O�er pt = pt−1 + 2 · x ·
∑
i ∈X̂ \R ei ;

while it ← the myopic player’s choice

and it < R do
R = R ∪ {it };

t ← t + 1;

O�er pt = pt−1 + 2 · x ·
∑
i ∈X̂ \R ei

; // add 2 · x to payments

of arms in X̂ not yet chosen

end
return R

are within 4x of each other, as is the case right a�er a call to FindChained), that ChainedFair

induces uniformly random play amongst X̂ . Lemma 4.7 upper-bounds the number of rounds before

which ChainedFair will discover when it is inducing unfair play. All proofs of these lemmas can

be found in the full version of this paper.

Observation 2. With probability 1 − δ , for all t ∈ [T ], i ∈ X̂ t
, µi ∈ [µ̂

t
i − x , µ̂

t
i + x].

Lemma 4.3. FindChained(x , X̂ , t ) contains all arms chained to the arm with highest upper con-

�dence bound in its output round t ′.

Lemma 4.4. Any arm chained to the set R = FindChained(x , X̂ , t ) belongs to R. Moreover, any

arm i < R must have uti < mini′∈R `
t
i′ .

Lemma 4.5. Let t ′ be the round in which R = FindChained(x , X̂ , t ′) outputs R. �en, for any

j ∈ R = FindChained(x , X̂ , t ′),
µ̂t
′

j ≥ min

j′∈R\{j }
µ̂t
′

j′ − 4 · x .

Moreover, maxj ∈R µ̂
t ′
j −minj ∈R µ̂

′t
j ≤ (2|R | + 2) · x .

Lemma 4.6. Suppose maxi, j ∈X̂ |µ̂
t
i − µ̂

t
j | ≤ 4|X̂ | · x . �en ChainedFair(δ , X̂ ) induces uniformly

random play amongst X̂ .

Lemma 4.7. Whenever there is an arm i such that maxj ∈X̂ |µ̂
t
j − µ̂

t
i | > 4|X̂ | · x , with probability

1 − δ , FindChained will be called within O (k · ln(1/δ )) many rounds.

Proof of Theorem 4.2. We �rst upper-bound the number of rounds in which PlayAll might

violate the fairness condition.

We argue iteratively about the set X̂ : that (a) all arms chained to the top arm belong to X̂ , and
(b) all arms chained to any arm in X̂ belong to X̂ . �is is trivially true initially as X̂ = {1, . . . ,k }.
X̂ is only updated as the result of a call to FindChained. By Lemma 4.3, any arm chained to the

top arm will remain in X̂ . Furthermore, by Lemma 4.4, any arm chained to an arm in its output

also belongs to its output. �us, (a) and (b) hold for X̂ for all rounds.
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So, in rounds in which ChainedFair induces uniformly random play from X̂ , (a) and (b) imply

ChainedFair satis�es the fairness condition. For any round in which maxi, j ∈X̂ |µ̂
t
i − µ̂

t
j | ≤ 2|X̂ | · x ,

Lemma 4.6 implies ChainedFair induces uniformly random play from X̂ . By Lemma 4.4, X̂ contains

any arms either above or chained to arms in X̂ . �us, Lemma 4.1 applies and these rounds are fair.

We now upper-bound the number of rounds for which ChainedFair does not induce uniformly

random play amongst X̂ . For any particular i and round t such that maxj ∈X̂ |µ̂
t
j − µ̂

t
i | > 4|X̂ | · x ,

Lemma 4.7 implies that this will be found in O (k ln(1/δ )) rounds, and FindChained will be

called. In any future round t ′ ≥ t , since the con�dence intervals are valid, we know that

maxj ∈X̂ |µ̂
t ′
j − µ̂

t ′
i | > 4( |X̂ | − 2) · x , since either of the two means can change but by at most

x each. Lemma 4.5 will return X̂ such that maxi, j ∈X̂ |µ̂
t
i − µ̂

t
j | ≤ (2|X̂ | + 2) ·x . �us, as |X̂ | ≥ 2, then

arm i will be removed at the �rst round in which it was the impetus for FindChained to be called

as maxi, j ∈X̂ |µ̂
t ′
j − µ̂

t ′
i | ≤ 2( |X̂ | + 2) · x ≤ 4( |X̂ | − 2) · x < maxj ∈X̂ |µ̂

t
j − µ̂

t
i |, a contradiction if i ∈ X̂ .

Since x is non-increasing, so is X̂ : thus, at most k calls to FindChained are made. �us, the total

number of unfair rounds is equal to the number of rounds in which maxi, j ∈X̂ |µ̂
t
i − µ̂

t
j | > 4|X̂ | ·x plus

the number of rounds in FindChained. �e former is bounded by O (k2 ln(k/δ )) (With probability

1 − δ/k it will take at most O (k ln(k/δ )) rounds of unfair play before FindChained is called when

this is the case, and each call will reduce the size of X̂ so it can be called at most k times. In total, this

bound holds for all k rounds with probability 1− δ .); the la�er byO (k2) (each call of FindChained

uses O (k ) rounds, and there are at most O (k ) calls to FindChained).

We now upper-bound the cost of this payment scheme and the regret of the agent. In the

O (k2 ln(k/δ )) unfair rounds, the payments might be Ω(1); similarly, the regret of the algorithm in

those rounds might be Ω(1). In all other rounds, the myopic agent is playing uniformly at random

amongst a set of arms whose true means are within 2k · x of the best true mean, so 2k · x in each

fair round is an upper-bound on per-round regret. �e maximum payment o�ered in any round

is 4k · x as well, so that also upper bounds the cost. �e overall upper bound follows from some

basic algebra and the fact that each arm in X̂ will have been played Ω̃
(
t
k

)
times in round t . �

5 CONTEXTUAL SETTINGWITH PARTIAL INFORMATION:
LINEAR PAYMENTS OR UNFAIR ROUNDS

In this section, we argue that the partial information model is much harder in the linear contextual

case — in every round that the principal does not pay Ω(1), an adversary can force the myopic agent

to behave unfairly. �is implies that on an adversarially chosen instance, every round is either

unfair or has constant cost: thus, either the sum of the payments must be Ω(T ), or the number

of unfair rounds must be Ω(T ), or both. �is rules out positive results in the partial information

model of the sort we were able to obtain in the classic bandits se�ing. In the following, we assume

that the myopic agent is using an ordinary least squares estimator, for simplicity. Identical results

can also be proven for other natural estimators, like ridge regression estimators.

Theorem 5.1. Suppose k ≥ 3. Consider any payment scheme in the partial information model in

the linear contextual bandit se�ing. For any η ∈ (0, 1), there is an instance for which with probability

1 − δ , in every round, either the round is unfair, or the expected cost for the principal is
k−1
k · (1 − η).

�e proof of the theorem relies on the fact that the principal cannot observe the adversarially

chosen contexts; the expected rewards in any round then can be (almost) arbitrary. In the classic

case, it was only in the �rst unpeaked round that we had the freedom to design our lower bound

instance arbitrarily – a�er that, the principal would have learned some information about the

instance, and hence the payment distribution could be a function of the instance. In the linear
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contextual case, we have su�cient freedom to design a lower bound instance at -every- round.

Although the principal may have learned a great deal about the underlying linear functions, she by

de�nition has no information about the realized contexts at the current round, which we use to our

advantage. As in the classic se�ing, in any round where the payment scheme is not peaked, the

largest payment is strictly less than 1 larger than the other payments with probability more than

zero. We will use this to construct an instance over which there is constant probability (over the

history) that the myopic agent chooses an unfair distribution over arms. Additional complications

arise from the fact that the principal learns about the instance from the set of previous unfair rounds

(which, in the classic case, we did not have, since we only argued there had to be a single unfair

round if the payment scheme was not peaked). We circumvent this problem by arguing that the

principal must deploy a peaked distribution to be fair, even if the principal knows everything about

the instance I and even if the principal knows the empirical estimates
ˆθ ti for all t ∈ [T ], i ∈ [k].

Proof. Consider the one-dimensional case, where θi ∈ R≥0. We construct an instance I such
that even for a principal who has full information about I , and ˆθ ti for all t ′ ≤ t , i , in order to

guarantee that the payment distribution in round t is fair for any set of arriving contexts x t , the
largest payment must be at least 1 − η with probability

k−1
k . �is clearly holds for any round

in which a peaked payment distribution is used, and so for the remainder, we assume that the

distribution in round t is not peaked.
Let θi = 1−η ∈ (0, 1) for all i , and let arm 1 have deterministic rewards equal to their mean, so that

θ1x
t
1
= x t

1
for all t . As the rewards are deterministic and the agent is using an ordinary least squares

estimator, the myopic agent’s prediction
ˆθ t
1
= θ t

1
as well for all t . For all i , 1, let Dt

i,x ti
= U [θix

t
i −

ϵ,θix
t
i + ϵ] for some very small ϵ . Pr ti ∼D

t
i,xti

[r ti > θix
t
i ] =

1

2
= Pr ti ∼D

t
i,xti

[r ti < θix
t
i ]: the rewards

drawn from these distributions have the right expectation but are always larger or smaller than their

expectation, and each with equal probability. �en, again by properties of the ordinary least squares

estimator, this will imply that with probability
1

2
over observations, in any round t and for any

i ∈ [k]\ {1}, ˆθ ti > θ
t
i , and with probability

1

2
,
ˆθ ti < θ

t
i , for any round t . Furthermore, with probability

1, in every round t , every empirical estimate of the coe�cients is distinct:
ˆθ ti ,

ˆθ tj for all i , j ∈ [k].

We begin by arguing that every coordinate i must have equal probability of receiving the largest

payment in any round t if the round is to be fair (with probability 1 − δ over the history). Precisely,

�x some history ht , and let

di = Pp∼γ t (ht )[i wins with payment vector p,x ti = ~0,∀i |h
t
].

Since for all i ∈ [k] and any ht , θi · x
t
i = 0, it must be that di =

1

k for all i if round t is fair for this ht .
We have assumed the payment scheme is not peaked in round t , conditioned on ht . �us,

Pp∼γ t (ht )[max

i
pi −max

j,i
pj ≥ 1] < 1.

We argue round t must be unfair conditioned on ht , or with probability
k−1
k , maxi pi ≥ 1 − η. Let

c = sup

c
: Pp∼γ t (ht )[max

i
pi −max

j,i
pj ≥ c] = 1;

we again know that some such c ≥ 0 must exist, and that c < 1 because the payment scheme is

unpeaked. Let arm i have the largest empirical coe�cient:
ˆθ t
i
> maxi′,i

ˆθ ti′ in round t and arm i

have the smallest empirical coe�cient,
ˆθ ti < mini′,i ˆθ

t
i′ . Further de�ne

ci′ = sup

c
: Pp∼γ t ( ·)[pi′ − pi ≥ c |pi′ ≥ max

i′′,i′
pi′′] = 1,
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e.g. that ci′ is the margin by which i ′ has payment larger than arm i when i ′ has largest payment.

Note ci′ ∈ [0, 1] for all i
′
. Let imax ∈ argmaxi′ ci′ be an arm with largest payment margin over i and

imin = argmini′ci′ be the arm with the smallest payment margin over i . We consider three cases:

when cimax
> 1− η, when 1− η ≥ cimax

> cimin
, and when 1− η ≥ cimax

= cimin
. In each case, we show

that either the largest payment is at least 1 − η with probability at least
k−1
k , or the round is unfair.

Case 1: cimax
> 1 − η. We claim here that either cimin

> 1 − η or the round is unfair: this will

imply that with probability
k−1
k , maxi pi ≥ 1 − η. Suppose the round is fair. Consider the context

x t
i
=

1−η
ˆθ t
i

and x ti′ = 0 for all i ′ , i . �en,
ˆθ t
i
x t
i
= 1 − η, and ˆθ ti x

t
i = 0 = θix

t
i for all other i . Fairness

will imply that all i , 1 should be played with equal probability. Notice that imax is played with

probability
1

k : precisely when imax has the largest payment (which must be largest by cimax
> 1 − η).

imin wins only when her payment is largest (which happens with probability
1

k ) and larger than

i’s by at least 1 − η. So, if π timin |ht
= π timax |ht

= 1

k , it must be that cimin
≥ 1 − η.

Case 2: 1 − η ≥ cimax
> cimin

. We argue that the round must be unfair if cimax
> cimin

.

Choose contexts x ti such that
ˆθ t
i
x t
i
= cimax

≤ 1−η and x ti′ = 0 for all other i ′. �en, since θix
t
i = 0

for all i , i , if this round is to be fair, all arms i , i must be played with equal probability. Arm imax

wins whenever it has the largest payment, since pimax
≥ pi + cimax

whenever imax has the largest

payment. �erefore imax wins with probability
1

k .

imin, on the other hand, wins only when they have the largest payment and beat i’s payment

by cimax
> cimin

, which happens with strictly less probability than imin having largest payment

(probability
1

k ) by the de�nition of cimin
. So, imin wins with probability strictly less than that of imax;

this round must be unfair.

Case 3: 1 − η ≥ cimax
= cimin

. In this case, ca = cb = β for all a,b ∈ [k] \ {i}. If β ≥ 1 − η, the claim

holds (the largest payment is at least 1 − η with probability at least
k−1
k , so assume β < 1 − η.

Suppose β > 0. We exhibit a set of contexts for which this payment scheme combined with the

agent is unfair. Fix some D ∈ (β, 1 − η); de�ne the contexts

• x t
i
:
ˆθ t
i
x t
i
= D > β

• x tj :
ˆθ tj x

t
j = D − β > 0 for j the arm with second-largest empirical coe�cient,

• x ti′ = x tj for all i
′ < {i, j}.

�en,
ˆθ ti′x

t
i′ <

ˆθ tj x
t
j , and so arm j is played whenever j has the largest payment, since j (and all

other arms) has margin over i of at least β when they have the largest payment; thus j is played
with probability

1

k . Since θ jx
t
j = θi′x

t
i′ for all i

′ , i , if this round is fair, each i ′ must also be played

with probability
1

k , in particular for i ′ with smallest
ˆθ ti′ . However,

ˆθ ti′x
t
i′ < D − β ; i ′ can only win

if her payment is the largest and it beats the payment of i by strictly more than β , which happens

with probability strictly less than
1

k by de�nition of β . �us i ′ cannot win with probability as large

as j and so round t is unfair if ca = cb = β > 0 for all a,b , i .
Finally, we consider the case where β = 0 and separately argue that this round cannot be fair.

�e contexts x ti′ = 1 for all i ′ should prove this: arm i will be played with probability
1

k (precisely

the probability that i gets the weakly largest payment), but arms with smaller empirical means

will need to have the largest payment by some margin, which happens with strictly less probability

than them having the largest payment by the de�nition of β , so they win with probability less than

1

k , meaning fairness is violated in this round, since θix
t
i
= 1 − η = θi′x

t
i′ . �

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1 S. Kannan et al.

6 FULL INFORMATION: PERFECT FAIRNESS WITH SUBLINEAR PAYMENTS
In this section, we show that a principal with full information about the state of a myopic agent can

design a payment scheme which is fair in every round and has sublinear cost for both the classic

and linear contextual bandits problems. �is contrasts with the partial information model, where

for k ≥ 3 arms, in both the classic and linear contextual se�ings, in which there must be unfair

rounds for any payment scheme with total cost o(T ).
Roughly, the fair payment scheme operates as follows. In each round, the scheme knows the

empirical estimates of rewards used by the myopic agent. Moreover, the scheme can compute

con�dence intervals around these estimates (the scheme knows how many times each arm was

pulled, and, in a contextual se�ing, the contexts for each previous choice). In such a round, the

payment scheme then will choose an arm i uniformly at random from the set of arms chained to

the arm with highest upper con�dence bound, and o�er a payment for choosing i equal to the

di�erence between the empirical estimate of i’s reward and the empirical estimate of the highest

reward in that round. �is induces uniformly random play amongst the top set of arms, and by

Lemma 4.1, this will be a fair distribution.

We now present the pseudocode in Figure 2 a parametrized family of payment schemes de-

scribed informally above. A payment scheme in this family is instantiated by giving a method of

constructing valid con�dence intervals around myopic predictions.

ALGORITHM 2: A Fair Full Information Payment Scheme

Function Fair-Payments(δ ,T )

X̂ ← {1, . . . ,k };

while t ≤ T do
it = argmaxi µ̂

t
i t ;

Let X̂ t = {i chained to it by δ -valid con�dence intervals from round t };

Choose jt ∈UAR X̂ ; // Pick an arm in the upper chain to incentivize

O�er pt : ptjt = µ̂
t
i t − µ̂

t
jt ,p

t
i′,jt = 0;

end

Theorem 6.1. Consider an instance of Fair-Payments(δ ,T ) instantiated with con�dence intervals

[`ti ,u
t
i ] such that µ̂ti =

uti −`
t
i

2
, and with probability 1 − δ , for all i ∈ [k], t ∈ [T ], µti ∈ [`

t
i ,u

t
i ]. �en,

Fair-Payments(δ ,T ) is fair at every round, and has cost and regret O (k
∑

t w (t ) + δT ), wherew (t ) is
the maximum width of any con�dence interval in the top chained set.

Before proving �eorem 6.1, we mention that this theorem, when combined with standard

methods of constructing con�dence intervals, implies the existence of fair payment schemes with

sublinear cost and regret, both in the classic and linear contextual se�ings.

Corollary 6.2. Consider the classic bandits problem. �en, Fair-Payments(δ ,T ) using the con-
�dence interval for arm i introduced by ConfidenceWidth(δ ,T ,nti ) is fair and has cost and regret

O (
√
k3T ln

kT
δ ).

Proof. By Lemma 3.4, with probability 1 − δ , these con�dence intervals are all valid for all

t ∈ [T ], i ∈ [k]. So, �eorem 6.1 applies, and states that this payment scheme is fair, and has regret

O (k ·
∑

t w (t )), where w (t ) is the maximum width of any arm in the active set at round t . Since
the chained set is monotone, at round t every arm in the chained set has been chained for t rounds.
�erefore, in expectation each arm in the chain has been pulled

t
k times. An additive Cherno�
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bound implies that any particular arm has, with probability at least 1 − δ
2kt 2 , been pulled in round

t at least t
k −

√
t ln

(
2t2k
δ

)
2

times, and so this bound holds for all rounds and all arms with probability

at lest 1 − δ
2
summing up over all k arms and all t . �en, by Lemma 3 in Joseph et al. [8], we know

thatw (t ) ≤ 2

√
ln((πt )2/3δ )

2
t
k −

√
t ln

(
2kt2
δ

)
2

. Summing over all t we have the desired result. �

Corollary 6.3. Consider the linear contextual bandits problem. Suppose the myopic agent uses

a ridge regression estimator:
ˆθ ti =

(
XT
i Xi + λI

)−1
XT
i Yi , where Xi ,Yi are the design matrices and

observations before round t . �en, de�ne

wt
i = | |x

t
i | |(XT

i Xi+λI )
−1 (m

√
d ln

1 + t/λ

δ
+
√
λ,

and

`ti = 〈
ˆθ ti ,x

t
i 〉 −w

t
i , uti = 〈

ˆθ ti ,x
t
i 〉 +w

t
i .

�en, Fair-Payments(δ ,T ) is fair and has cost and regret O
(
md
√
k3T ln

2 T 2k
dλδ

)
.

Proof. �e analysis in the proof of �eorem 2 of Joseph et al. [7] shows that these con�dence

intervals are valid with probability 1 − δ . �eir analysis upper-bounds k
∑

t w (t ) wherew (t ) is the
largest width of any con�dence interval in the chained set in round t , by

O

(
md
√
k3T ln

2
T 2k

dλδ

)
.

�us, the resulting algorithm is fair, and the bounds on cost and regret follow from�eorem 6.1. �

We now proceed with the proof of �eorem 6.1.

Proof. We begin by proving that Fair-Payments(δ ,T ) is fair in every round. By assumption,

with probability 1 − δ , for all i ∈ [k], t ∈ [T ], µti ∈ [`
t
i ,u

t
i ]. �us it follows from Lemma 4.1 that

it su�ces to show that these payments su�ce to induce uniformly random play amongst the set

of arms chained to the arm with upper con�dence bound. By de�nition, the top chain in round

t is exactly X̂ t
. �e distribution over payments in round t chooses each jt ∈ X̂ t

with probability

1

|X̂ t |
and accordingly a pt such that ptjt = µ̂

t
i t − µ̂

t
jt and p

t
i′ = 0. �is induces the myopic agent to

choose jt in all such cases. �us, each jt ∈ X̂ t
is chosen by the myopic agent with probability

1

|X̂ t |
.

So, Fair-Payments(δ ,T ) is fair.
Condition on all con�dence intervals being valid. �e myopic agent under this payment

scheme chooses uniformly at random from the top chain, which has regret in round t bounded by∑
i ∈X̂ t uti − `

t
i ≤ kw (t ), wherew (t ) = maxi ∈X̂ t uti − `

t
i . �us, in total, the regret is upper bounded

by k
∑

t w (t ). Moreover, the payment in round t is µ̂ti t − µ̂
t
jt ≤ uti t − `

t
jt ≤

∑
i ∈X̂ t uti − `

t
i ≤ kw (t ),

and so the same bound holds for the cost of the payment scheme. With probability δ , the widths
of the con�dence intervals could be arbitrary, as could the inaccuracy of the sampled means. An

additive δT bounds the additional expected regret. �
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