
Fairness in Reinforcement Learning ∗

Shahin Jabbari Matthew Joseph Michael Kearns Jamie Morgenstern Aaron Roth 1

Abstract
We initiate the study of fairness in reinforcement
learning, where the actions of a learning algo-
rithm may affect its environment and future re-
wards. Our fairness constraint requires that an
algorithm never prefers one action over another
if the long-term (discounted) reward of choosing
the latter action is higher. Our first result is neg-
ative: despite the fact that fairness is consistent
with the optimal policy, any learning algorithm
satisfying fairness must take time exponential in
the number of states to achieve non-trivial ap-
proximation to the optimal policy. We then pro-
vide a provably fair polynomial time algorithm
under an approximate notion of fairness, thus es-
tablishing an exponential gap between exact and
approximate fairness.

1. Introduction
The growing use of machine learning for automated
decision-making has raised concerns about the potential for
unfairness in learning algorithms and models. In settings
as diverse as policing [22], hiring [19], lending [4], and
criminal sentencing [2], mounting empirical evidence sug-
gests these concerns are not merely hypothetical [1; 25].

We initiate the study of fairness in reinforcement learning,
where an algorithm’s choices may influence the state of the
world and future rewards. In contrast, previous work on fair
machine learning has focused on myopic settings where
such influence is absent, e.g. in i.i.d. or no-regret mod-
els [5; 6; 9; 10]. The resulting fairness definitions therefore
do not generalize well to a reinforcement learning setting,
as they do not reason about the effects of short-term ac-
tions on long-term rewards. This is relevant for the set-
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tings where historical context can have a distinct influence
on the future. For concreteness, we consider the specific
example of hiring (though other settings such as college
admission or lending decisions can be embedded into this
framework). Consider a firm aiming to hire employees for
a number of positions. The firm might consider a variety
of hiring practices, ranging from targeting and hiring ap-
plicants from well-understood parts of the applicant pool
(which might be a reasonable policy for short-term produc-
tivity of its workforce), to exploring a broader class of ap-
plicants whose backgrounds might differ from the current
set of employees at the company (which might incur short-
term productivity and learning costs but eventually lead to
a richer and stronger overall applicant pool).

We focus on the standard model of reinforcement learning,
in which an algorithm seeks to maximize its discounted
sum of rewards in a Markovian decision process (MDP).
Throughout, the reader should interpret the actions avail-
able to a learning algorithm as corresponding to choices or
policies affecting individuals (e.g. which applicants to tar-
get and hire). The reward for each action should be viewed
as the short-term payoff of making the corresponding deci-
sion (e.g. the short-term influence on the firm’s productiv-
ity after hiring any particular candidate). The actions taken
by the algorithm affect the underlying state of the system
(e.g. the company’s demographics as well as the available
applicant pool) and therefore in turn will affect the actions
and rewards available to the algorithm in the future.

Informally, our definition of fairness requires that (with
high probability) in state s, an algorithm never chooses an
available action a with probability higher than another ac-
tion a′ unless Q∗(s, a) > Q∗(s, a′), i.e. the long-term re-
ward of a is greater than that of a′. This definition, adapted
from Joseph et al. (2016), is weakly meritocratic: facing
some set of actions, an algorithm must pick a distribution
over actions with (weakly) heavier weight on the better ac-
tions (in terms of their discounted long-term reward). Cor-
respondingly, a hiring process satisfying our fairness def-
inition cannot probabilistically target one population over
another if hiring from either population will have similar
long-term benefit to the firm’s productivity.

Unfortunately, our first result shows an exponential separa-
tion in expected performance between the best unfair algo-
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rithm and any algorithm satisfying fairness. This motivates
our study of a natural relaxation of (exact) fairness, for
which we provide a polynomial time learning algorithm,
thus establishing an exponential separation between exact
and approximately fair learning in MDPs.

Our Results Throughout, we use (exact) fairness to refer
to the adaptation of Joseph et al. (2016)’s definition defin-
ing an action’s quality as its potential long-term discounted
reward. We also consider two natural relaxations. The first,
approximate-choice fairness, requires that an algorithm
never chooses a worse action with probability substantially
higher than better actions. The second, approximate-action
fairness, requires that an algorithm never favors an action
of substantially lower quality than that of a better action.

The contributions of this paper can be divided into two
parts. First, in Section 3, we give a lower bound on the time
required for a learning algorithm to achieve near-optimality
subject to (exact) fairness or approximate-choice fairness.

Theorem (Informal statement of Theorems 3, 4, and 5).
For constant ε, to achieve ε-optimality, (i) any fair or
approximate-choice fair algorithm takes a number of
rounds exponential in the number of MDP states and (ii)
any approximate-action fair algorithm takes a number of
rounds exponential in 1/(1− γ), for discount factor γ.

Second, we present an approximate-action fair algorithm
(Fair-E3) in Section 4 and prove a polynomial upper bound
on the time it requires to achieve near-optimality.

Theorem (Informal statement of Theorem 6). For constant
ε and any MDP satisfying standard assumptions, Fair-
E3 is an approximate-action fair algorithm achieving ε-
optimality in a number of rounds that is (necessarily) expo-
nential in 1/(1− γ) and polynomial in other parameters.

The exponential dependence of Fair-E3 on 1/(1 − γ) is
tight: it matches our lower bound on the time complexity
of any approximate-action fair algorithm. Furthermore, our
results establish rigorous trade-offs between fairness and
performance facing reinforcement learning algorithms.

1.1. Related Work

The most relevant parts of the large body of literature on
reinforcement learning focus on constructing learning al-
gorithms with provable performance guarantees. E3 [13]
was the first learning algorithm with a polynomial learn-
ing rate, and subsequent work improved this rate (see Szita
and Szepesvári (2010) and references within). The study of
robust MDPs [16; 18; 20] examines MDPs with high pa-
rameter uncertainty but generally uses “optimistic” learn-
ing strategies that ignore (and often conflict with) fairness
and so do not directly apply to this work.

Our work also belongs to a growing literature studying the

problem of fairness in machine learning. Early work in
data mining [8; 11; 12; 17; 21; 29] considered the question
from a primarily empirical standpoint, often using statisti-
cal parity as a fairness goal. Dwork et al. (2012) explicated
several drawbacks of statistical parity and instead proposed
one of the first broad definitions of algorithmic fairness,
formalizing the idea that “similar individuals should be
treated similarly”. Recent papers have proven several im-
possibility results for satisfying different fairness require-
ments simultaneously [7; 15]. More recently, Hardt et al.
(2016) proposed new notions of fairness and showed how
to achieve these notions via post-processing of a black-box
classifier. Woodworth et al. (2017) and Zafar et al. (2017)
further studied these notion theoretically and empirically.

1.2. Strengths and Limitations of Our Models

In recognition of the duration and consequence of choices
made by a learning algorithm during its learning process
– e.g. job applicants not hired – our work departs from
previous work and aims to guarantee the fairness of the
learning process itself. To this end, we adapt the fairness
definition of Joseph et al. (2016), who studied fairness in
the bandit framework and defined fairness with respect to
one-step rewards. To capture the desired interaction and
evolution of the reinforcement learning setting, we mod-
ify this myopic definition and define fairness with respect
to long-term rewards: a fair learning algorithm may only
choose action a over action a′ if a has true long-term re-
ward at least as high as a′. Our contributions thus depart
from previous work in reinforcement learning by incorpo-
rating a fairness requirement (ruling out existing algorithms
which commonly make heavy use of “optimistic” strategies
that violates fairness) and depart from previous work in fair
learning by requiring “online” fairness in a previously un-
considered reinforcement learning context.

First note that our definition is weakly meritocratic: an al-
gorithm satisfying our fairness definition can never proba-
bilistically favor a worse option but is not required to favor
a better option. This confers both strengths and limitations.
Our fairness notion still permits a type of “conditional dis-
crimination” in which a fair algorithm favors group A over
group B by selecting choices from A when they are supe-
rior and randomizing between A and B when choices from
B are superior. In this sense, our fairness requirement is
relatively minimal, encoding a necessary variant of fairness
rather than a sufficient one. This makes our lower bounds
and impossibility results (Section 3) relatively stronger and
upper bounds (Section 4) relatively weaker.

Next, our fairness requirement holds (with high probabil-
ity) across all decisions that a fair algorithm makes. We
view this strong constraint as worthy of serious consid-
eration, since “forgiving” unfairness during the learning
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may badly mistreat the training population, especially if the
learning process is lengthy or even continual. Additionally,
it is unclear how to relax this requirement, even for a small
fraction of the algorithm’s decisions, without enabling dis-
crimination against a correspondingly small population.

Instead, aiming to preserve the “minimal” spirit of our def-
inition, we consider a relaxation that only prevents an al-
gorithm from favoring a significantly worse option over
a better option (Section 2.1). Hence, approximate-action
fairness should be viewed as a weaker constraint: rather
than safeguarding against every violation of “fairness”, it
instead restricts how egregious these violations can be. We
discuss further relaxations of our definition in Section 5.

2. Preliminaries
In this paper we study reinforcement learning in Markov
Decision Processes (MDPs). An MDP is a tuple M =
(SM ,AM , PM , RM , T, γ) where SM is a set of n states,
AM is a set of k actions, T is a horizon of a (possibly infi-
nite) number of rounds of activity inM , and γ is a discount
factor. PM : SM ×AM → SM andRM : SM → [0, 1] de-
note the transition probability distribution and reward dis-
tribution, respectively. We use R̄M to denote the mean of
RM .2 A policy π is a mapping from a history h (the se-
quence of triples (state, action, reward) observed so far)
to a distribution over actions. The discounted state and
state-action value functions are denoted by V π andQπ , and
V π(s, T ) represents expected discounted reward of follow-
ing π from s for T steps. The highest values functions are
achieved by the optimal policy π∗ and are denoted by V ∗

and Q∗ [24]. We use µπ to denote the stationary distribu-
tion of π. Throughout we make the following assumption.
Assumption 1 (Unichain Assumption). The stationary dis-
tribution of any policy inM is independent of its start state.

We denote the ε-mixing time of π by Tπε . Lemma 1 relates
the ε-mixing time of any policy π to the number of rounds
until the V πM values of the visited states by π are close to
the expected V πM values (under the stationary distribution
µπ). We defer all the omitted proofs to the Appendix.
Lemma 1. Fix ε > 0. For any state s, following π for
T ≥ Tπε steps from s satisfies

Es∼µπ [V πM (s)]− E

[
1
T

T∑
t=1

V πM (st)

]
≤ ε

1−γ ,

where st is the state visited at time t when following π from
s and the expectation in the second term is over the transi-
tion function and the randomization of π.3

2Note that R̄M ≤ 1 and Var(RM ) ≤ 1 for all states. The
bounded reward assumption can be relaxed (see e.g. [13]). Also
assuming rewards in [0, 1] can be made w.l.o.g. up to scaling.

3Lemma 1 can be stated for a weaker notion of mixing time

The horizon time Hγ
ε := log (ε(1− γ)) / log(γ) of an

MDP captures the number of steps an approximately opti-
mal policy must optimize over. The expected discounted
reward of any policy after Hγ

ε steps approaches the ex-
pected asymptotic discounted reward (Kearns and Singh
(2002), Lemma 2). A learning algorithm L is a non-
stationary policy that at each round takes the entire history
and outputs a distribution over actions. We now define a
performance measure for learning algorithms.
Definition 1 (ε-optimality). Let ε > 0 and δ ∈ (0, 1/2).
L achieves ε-optimality in T steps if for any T ≥ T

Es∼µ∗ [V ∗M (s)]− E

[
1

T

T∑
t=1

V ∗M (st)

]
≤ 2ε

1− γ
, (1)

with probability at least 1− δ, for st the state L reaches at
time t, where the expectation is taken over the transitions
and the randomization of L, for any MDP M .

We thus ask that a learning algorithm, after sufficiently
many steps, visits states whose values are arbitrarily close
to the values of the states visited by the optimal policy.
Note that this is stronger than the “hand-raising” notion
in Kearns and Singh (2002),4 which only asked that the
learning algorithm stop in a state from which discounted
return is near-optimal, permitting termination in a state
from which the optimal discounted return is poor. In Def-
inition 1, if there are states with poor optimal discounted
reward that the optimal policy eventually leaves for better
states, so must our algorithms. We also note the following
connection between the average V πM values of states vis-
ited under the stationary distribution of π (and in particular
an optimal policy) and the average undiscounted rewards
achieved under the stationary distribution of that policy.
Lemma 2 (Singh (2016)). Let R̄M be the vector of mean
rewards in states of M and VπM the vector of discounted
rewards in states under π. Then µπ ·R̄M = (1−γ)µπ ·VπM .

We design an algorithm which quickly achieves ε-
optimality and we bound the number of steps T before this
happens by a polynomial in the parameters of M .

2.1. Notions of Fairness

We now turn to formal notions of fairness. Translated to
our setting, Joseph et al. (2016) define action a’s quality as
the expected immediate reward for choosing a from state
s and then require that an algorithm not probabilistically
favor a over a′ if a has lower expected immediate reward.

However, this naive translation does not adequately cap-
ture the structural differences between bandit and MDP set-

called the ε-reward mixing time which is always linearly bounded
by the ε-mixing time but can be much smaller in certain cases
(see Kearns and Singh (2002) for a discussion).

4We suspect unfair E3 also satisfies this stronger notion.
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tings since present rewards may depend on past choices in
MDPs. In particular, defining fairness in terms of imme-
diate rewards would prohibit any policy sacrificing short-
term rewards in favor of long-term rewards. This is un-
desirable, since it is the long-term rewards that matter in
reinforcement learning, and optimizing for long-term re-
wards often necessitates short-term sacrifices. Moreover,
the long-term impact of a decision should be considered
when arguing about its relative fairness. We will therefore
define fairness using the state-action value function Q∗M .
Definition 2 (Fairness). L is fair if for all input δ > 0, all
M , all rounds t, all states s and all actions a, a′

Q∗M (s, a) ≥ Q∗M (s, a′)⇒ L(s, a, ht−1) ≥ L(s, a′, ht−1)

with probability at least 1− δ over histories ht−1. 5

Fairness requires that an algorithm never probabilistically
favors an action with lower long-term reward over an action
with higher long-term reward. In hiring, this means that
an algorithm cannot target one applicant population over
another unless the targeted population has a higher quality.

In Section 3, we show that fairness can be extremely re-
strictive. Intuitively, Lmust play uniformly at random until
it has high confidence about the Q∗M values, in some cases
taking exponential time to achieve near-optimality. This
motivates relaxing Definition 2. We first relax the proba-
bilistic requirement and require only that an algorithm not
substantially favor a worse action over a better one.
Definition 3 (Approximate-choice Fairness). L is α-choice
fair if for all inputs δ > 0 and α > 0: for all M , all rounds
t, all states s and actions a, a′:

Q∗M (s, a) ≥ Q∗M (s, a′)⇒ L(s, a, ht−1) ≥ L(s, a′, ht−1)−α,

with probability of at least 1 − δ over histories ht−1.
If L is α-choice fair for any input α > 0, we call L
approximate-choice fair.

A slight modification of the lower bound for (exact) fair-
ness shows that algorithms satisfying approximate-choice
fairness can also require exponential time to achieve near-
optimality. We therefore propose an alternative relaxation,
where we relax the quality requirement. As described in
Section 1.1, the resulting notion of approximate-action fair-
ness is in some sense the most fitting relaxation of fair-
ness, and is a particularly attractive one because it allows
us to give algorithms circumventing the exponential hard-
ness proved for fairness and approximate-choice fairness.
Definition 4 (Approximate-action Fairness). L is α-action
fair if for all inputs δ > 0 and α > 0, for all M , all rounds
t, all states s and actions a, a′:

Q∗M (s, a) > Q∗M (s, a′)+α⇒ L(s, a, ht−1) ≥ L(s, a′ht−1)

5L(s, a, h) denotes the probability L chooses a from s given history h.

with probability of at least 1 − δ over histories ht−1.
If L is α-action fair for any input α > 0, we call L
approximate-action fair.

Approximate-choice fairness prevents equally good ac-
tions from being chosen at very different rates, while
approximate-action fairness prevents substantially worse
actions from being chosen over better ones. In hiring, an
approximately-action fair firm can only (probabilistically)
target one population over another if the targeted popu-
lation is not substantially worse. While this is a weaker
guarantee, it at least forces an approximately-action fair
algorithm to learn different populations to statistical con-
fidence. This is a step forward from current practices, in
which companies have much higher degrees of uncertainty
about the quality (and impact) of hiring individuals from
under-represented populations. For this reason and the
computational benefits mentioned above, our upper bounds
will primarily focus on approximate-action fairness.

We now state several useful observations regarding fair-
ness. We defer all the formal statements and their proofs
to the Appendix. We note that there always exists a (pos-
sibly randomized) optimal policy which is fair (Observa-
tion 1); moreover, any optimal policy (deterministic or ran-
domized) is approximate-action fair (Observation 2), as is
the uniformly random policy (Observation 3).

Finally, we consider a restriction of the actions in an MDP
M to nearly-optimal actions (as measured by Q∗M values).

Definition 5 (Restricted MDP). The α-restricted MDP of
M , denoted by Mα, is identical to M except that in each
state s, the set of available actions are restricted to {a :
Q∗M (s, a) ≥ maxa′∈AM Q∗M (s, a′)− α | a ∈ AM}.

Mα has the following two properties: (i) any policy in Mα

is α-action fair in M (Observation 4) and (ii) the optimal
policy in Mα is also optimal in M (Observation 5). Ob-
servations 4 and 5 aid our design of an approximate-action
fair algorithm: we constructMα from estimates of theQ∗M
values (see Section 4.3 for more details).

3. Lower Bounds
We now demonstrate a stark separation between the per-
formance of learning algorithms with and without fairness.
First, we show that neither fair nor approximate-choice fair
algorithms achieve near-optimality unless the number of
time steps T is at least Ω(kn), exponential in the size of the
state space. We then show that any approximate-action fair
algorithm requires a number of time steps T that is at least

Ω(k
1

1−γ ) to achieve near-optimality. We start by proving a
lower bound for fair algorithms.

Theorem 3. If δ < 1
4 , γ > 1

2 and ε < 1
8 , no fair algorithm
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can be ε-optimal in T = O(kn) steps.6

Standard reinforcement learning algorithms (absent a fair-
ness constraint) learn an ε-optimal policy in a number of
steps polynomial in n and 1

ε ; Theorem 3 therefore shows
a steep cost of imposing fairness. We outline the idea for
proof of Theorem 3. For intuition, first consider the special
case when the number of actions k = 2. We introduce the
MDPs witnessing the claim in Theorem 3 for this case.

Definition 6 (Lower Bound Example). ForAM = {L,R},
let M(x) = (SM ,AM ,PM ,RM , T, γ, x) be an MDP with

• for all i ∈ [n], PM (si, L, s1) = PM (si, R, sj) = 1
where j = min{i+ 1, n} and is 0 otherwise.

• for i ∈ [n− 1], RM (si) = 0.5, and RM (sn) = x.

Figure 1. MDP(x): Circles represent states (labels denote the state
name and deterministic reward). Arrows represent actions.

Figure 1 illustrates the MDP from Definition 6. All the
transitions and rewards in M are deterministic, but the re-
ward at state sn can be either 1 or 1

2 , and so no algorithm
(fair or otherwise) can determine whether the Q∗M values
of all the states are the same or not until it reaches sn and
observes its reward. Until then, fairness requires that the
algorithm play all the actions uniformly at random (if the
reward at sn is 1

2 , any fair algorithm must play uniformly
at random forever). Thus, any fair algorithm will take ex-
ponential time in the number of states to reach sn. This can
be easily modified for k > 2: from each state si, k − 1 of
the actions from state si (deterministically) return to state
s1 and only one action (deterministically) reaches any other
state smin{i+1,n}. It will take kn steps before any fair algo-
rithm reaches sn and can stop playing uniformly at random
(which is necessary for near-optimality). The same exam-
ple, with a slightly modified analysis, also provides a lower
bound of Ω((k/(1 + kα))n) time steps for approximate-
choice fair algorithms as stated in Theorem 4.

Theorem 4. If δ < 1
4 , α < 1

4 , γ > 1
2 and ε < 1

8 , no α-
choice fair algorithm is ε-optimal for T = O(( k

1+kα )n)
steps.

Fairness and approximate-choice fairness are both ex-
tremely costly, ruling out polynomial time learning rates.

6We have not optimized the constants upper-bounding param-
eters in the statement of Theorems 3, 4 and 5. The values pre-
sented here are only chosen for convenience.

Hence, we focus on approximate-action fairness. Before
moving to positive results, we mention that the time com-
plexity of approximate-action fair algorithms will still suf-
fer from an exponential dependence on 1

1−γ .

Theorem 5. For δ < 1
4 , α < 1

8 , γ > max(0.9, c), c ∈
( 1

2 , 1) and ε < 1−ec−1

16 , no α-action fair algorithm is ε-

optimal for T = O((k
1

1−γ )c) steps.

The MDP in Figure 1 also witnesses the claim of Theo-
rem 5 when n = d log(1/(2α))

1−γ e. The discount factor γ
is generally taken as a constant, so in most interesting
cases 1

1−γ � n: this lower bound is substantially less
stringent than the lower bounds proven for fairness and
approximate-choice fairness. Hence, from now on, we fo-
cus on designing algorithms satisfying approximate-action
fairness with learning rates polynomial in every parameter
but 1

1−γ , and with tight dependence on 1
1−γ .

4. A Fair and Efficient Learning Algorithm
We now present an approximate-action fair algorithm,
Fair-E3 with the performance guarantees stated below.

Theorem 6. Given ε > 0, α > 0, δ ∈
(
0, 1

2

)
and

γ ∈ [0, 1) as inputs, Fair-E3 is an α-action fair algorithm
which achieves ε-optimality after

T = Õ

(
n5T ∗ε k

1
1−γ+5

min{α4, ε4}ε2 (1− γ)
12

)
(2)

steps where Õ hides poly-logarithmic terms.

The running time of Fair-E3 (which we have not attempted
to optimize) is polynomial in all the parameters of the MDP
except 1

1−γ ; Theorem 5 implies that this exponential de-
pendence on 1

1−γ is necessary.

Several more recent algorithms (e.g. R-MAX [3]) have
improved upon the performance of E3. We adapted E3 pri-
marily for its simplicity. While the machinery required
to properly balance fairness and performance is somewhat
involved, the basic ideas of our adaptation are intuitive.
We further note that subsequent algorithms improving on
E3 tend to heavily leverage the principle of “optimism in
face of uncertainty”: such behavior often violates fairness,
which generally requires uniformity in the face of uncer-
tainty. Thus, adapting these algorithms to satisfy fairness
is more difficult. This in particular suggests E3 as an apt
starting point for designing a fair planning algorithm.

The remainder of this section will explain Fair-E3, be-
ginning with a high-level description in Section 4.1. We
then define the “known” states Fair-E3 uses to plan in Sec-
tion 4.2, explain this planning process in Section 4.3, and
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bring this all together to prove Fair-E3’s fairness and per-
formance guarantees in Section 4.4.

4.1. Informal Description of Fair-E3

Fair-E3 relies on the notion of “known” states. A state s is
defined to be known after all actions have been chosen from
s enough times to confidently estimate relevant reward dis-
tributions, transition probabilities, and QπM values for each
action. At each time t, Fair-E3 then uses known states to
reason about the MDP as follows:

• If in an unknown state, take a uniformly random trajec-
tory of length Hγ

ε .
• If in a known state, compute (i) an exploration policy

which escapes to an unknown state quickly and p, the
probability that this policy reaches an unknown state
within 2T ∗ε steps, and (ii) an exploitation policy which
is near-optimal in the known states of M .
– If p is large enough, follow the exploration policy; oth-

erwise, follow the exploitation policy.

Fair-E3 thus relies on known states to balance exploration
and exploitation in a reliable way. While Fair-E3 and E3

share this general idea, fairness forces Fair-E3 to more
delicately balance exploration and exploitation. For ex-
ample, while both algorithms explore until states become
“known”, the definition of a known state must be much
stronger in Fair-E3 than in E3 because Fair-E3 addition-
ally requires accurate estimates of actions’ QπM values in
order to make decisions without violating fairness. For this
reason, Fair-E3 replaces the deterministic exploratory ac-
tions of E3 with random trajectories of actions from un-
known states. These random trajectories are then used to
estimate the necessary QπM values.

In a similar vein, Fair-E3 requires particular care in com-
puting exploration and exploitation policies, and must re-
strict the set of such policies to fair exploration and fair
exploitation policies. Correctly formulating this restriction
process to balance fairness and performance relies heavily
on the observations about the relationship between fairness
and performance provided in Section 2.1.

4.2. Known States in Fair-E3

We now formally define the notion of known states for
Fair-E3. We say a state s becomes known when one can
compute good estimates of (i) RM (s) and PM (s, a) for all
a, and (ii) Q∗M (s, a) for all a.

Definition 7 (Known State). Let

m1 = O

(
kH

γ
ε +3n

(
1

(1− γ)α

)2

log

(
k

δ

))
and

m2 = O

((
n

min{ε, α}

)4

Hγ
ε

8 log

(
1

δ

))
.

A state s becomes known after taking

mQ := k ·max{m1,m2} (3)

length-Hγ
ε random trajectories from s.

It remains to show that motivating conditions (i) and (ii)
indeed hold for our formal definition of a known state. In-
formally, m1 random trajectories suffice to ensure that we
have accurate estimates of all Q∗M (s, a) values, and m2

random trajectories suffice to ensure accurate estimates of
the transition probabilities and rewards.

To formalize condition (i), we rely on Theorem 7, connect-
ing the number of random trajectories taken from s to the
accuracy of the empirical V πM estimates.

Theorem 7 (Theorem 5.5, Kearns et al. (2000)). For any
state s and α > 0, after

m = O

(
kH

γ
ε +3

(
1

(1− γ)α

)2

log

(
|Π|
δ

))

random trajectories of length Hγ
ε from s, with probability

of at least 1 − δ, we can compute estimates V̂ πM such that
|V πM (s)− V̂ πM (s) | ≤ α, simultaneously for all π ∈ Π.

Theorem 7 enables us to translate between the number of
trajectories taken from a state and the uncertainty about its
V πM values for all policies (including π∗ and hence V ∗M ).
Since |Π| = kn, we substitute log (|Π|) = n log (k). To
estimate Q∗M (s, a) values using the V ∗M (s) values we in-
crease the number of necessary length-Hγ

ε random trajec-
tories by a factor of k.

For condition (ii), we adapt the analysis of E3 [13], which
states that if each action in a state s is taken m2 times,
then the transition probabilities and reward in state s can
be estimated accurately (see Section 4.4).

4.3. Planning in Fair-E3

We now formalize the planning steps in Fair-E3 from
known states. For the remainder of our exposition, we
make Assumption 2 for convenience (and show how to re-
move this assumption in the Appendix).

Assumption 2. T ∗ε is known.

Fair-E3 constructs two ancillary MDPs for planning: MΓ

is the exploitation MDP, in which the unknown states of M
are condensed into a single absorbing state s0 with no re-
ward. In the known states Γ, transitions are kept intact and
the rewards are deterministically set to their mean value.
MΓ thus incentivizes exploitation by giving reward only
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Figure 2. Left: An MDP M with two actions (L and R) and de-
terministic transition functions and rewards. Green denotes the
set of known states Γ. Middle: MΓ. Right: M[n]\Γ.

for staying within known states. In contrast, M[n]\Γ is the
exploration MDP, identical to MΓ except for the rewards.
The rewards in the known states Γ are set to 0 and the re-
ward in s0 is set to 1. M[n]\Γ then incentivizes exploration
by giving reward only for escaping to unknown states. See
the middle (right) panel of Figure 2 for an illustration of
MΓ (M[n]\Γ), and Appendix for formal definitions.

Fair-E3 uses these constructed MDPs to plan according to
the following natural idea: when in a known state, Fair-E3

constructs M̂Γ and M̂[n]\Γ based on the estimated transi-
tion and rewards observed so far (see the Appendix for for-
mal definitions), and then uses these to compute additional
restricted MDPs M̂α

Γ and M̂α
[n]\Γ for approximate-action

fairness. Fair-E3 then uses these restricted MDPs to
choose between exploration and exploitation.

More formally, if the optimal policy in M̂α
[n]\Γ escapes to

the absorbing state of MΓ with high enough probability
within 2T ∗ε steps, then Fair-E3 explores by following that
policy. Otherwise, Fair-E3 exploits by following the opti-
mal policy in M̂α

Γ for T ∗ε steps. While following either of
these policies, whenever Fair-E3 encounters an unknown
state, it stops following the policy and proceeds by taking
a length-Hγ

ε random trajectory.

4.4. Analysis of Fair-E3

In this section we formally analyze Fair-E3 and prove The-
orem 6. We begin by proving that Mα

Γ is useful in the fol-
lowing sense: Mα

Γ has at least one of an exploitation policy
achieving high reward or an exploration policy that quickly
reaches an unknown state in M .

Lemma 8 (Exploit or Explore Lemma). For any state s ∈
Γ, β ∈ (0, 1) and any T > 0 at least one of the statements
below holds:

• there exists an exploitation policy π in Mα
Γ such that

max
π̄∈Π

E
T∑
t=1

V π̄M
(
π̄t(s), T

)
− E

T∑
t=1

V πMΓ

(
πt(s), T

)
≤ βT

where the random variables πt(s) and π̄t(s) denote the
states reached from s after following π and π̄ for t steps,
respectively.

• there exists an exploration policy π in Mα
Γ such that the

probability that a walk of 2T steps from s following π
will terminate in s0 exceeds β/T .

We can use this fact to reason about exploration as follows.
First, since Observation 2 tells us that the optimal policy in
M is approximate-action fair, if the optimal policy stays in
the set ofM ’s known statesMΓ, then following the optimal
policy in Mα

Γ is both optimal and approximate-action fair.

However, if instead the optimal policy in M quickly es-
capes to an unknown state in M , the optimal policy in Mα

Γ

may not be able to compete with the optimal policy in M .
Ignoring fairness, one natural way of computing an escape
policy to “keep up” with the optimal policy is to compute
the optimal policy in M[n]\Γ. Unfortunately, following this
escape policy might violate approximate-action fairness –
high-quality actions might be ignored in lieu of low-quality
exploratory actions that quickly reach the unknown states
of M . Instead, we compute an escape policy in Mα

[n]\Γ
and show that if no near-optimal exploitation policy exists
in MΓ, then the optimal policy in Mα

[n]\Γ (which is fair by
construction) quickly escapes to the unknown states of M .

Next, in order for Fair-E3 to check whether the optimal
policy inMα

[n]\Γ quickly reaches the absorbing state ofMΓ

with significant probability, Fair-E3 simulates the execu-
tion of the optimal policy of Mα

[n]\Γ for 2T ∗ε steps from the
known state s in Mα

Γ several times, counting the ratio of
the runs ending in s0, and applying a Chernoff bound; this
is where Assumption 2 is used.

Having discussed exploration, it remains to show that
the exploitation policy described in Lemma 8 satisfies ε-
optimality as defined in Definition 1. By setting T ≥ T ∗ε
in Lemma 8 and applying Lemmas 1 and 10, we can prove
Corollary 9 regarding this exploitation policy.

Corollary 9. For any state s ∈ Γ and T ≥ T ∗ε if there
exists an exploitation policy π in Mα

Γ then∣∣∣∣∣ 1

T
E

T∑
t=1

V πM
(
πt(s), T

)
− Es∼µ∗V ∗M (s)

∣∣∣∣∣ ≤ ε

1− γ
.

Finally, we have so far elided the fact that Fair-E3 only has
access to the empirically estimated MDPs M̂α

Γ and M̂α
[n]\Γ

(see the Appendix for formal definitions). We remedy this
issue by showing that the behavior of any policy π in M̂α

Γ

(and M̂α
[n]\Γ) is similar to the behavior of π in Mα

Γ (and
Mα

[n]\Γ). To do so, we prove a stronger claim: the behavior

of any π in M̂Γ (and M̂[n]\Γ) is similar to the behavior of
π in MΓ (and M[n]\Γ).

Lemma 10. Let Γ be the set of known states and M̂Γ the
approximation toMΓ. Then for any state s ∈ Γ, any action
a and any policy π, with probability at least 1− δ:
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1. V πMΓ
(s) − min{α/2, ε} ≤ V π

M̂Γ
(s) ≤ V πMΓ

(s) +

min{α/2, ε},
2. QπMΓ

(s, a) − min{α/2, ε} ≤ Qπ
M̂Γ

(s, a) ≤
QπMΓ

(s, a) + min{α/2, ε}.

We now have the necessary results to prove Theorem 6.

Proof of Theorem 6. We divide the analysis into separate
parts: the performance guarantee of Fair-E3 and its
approximate-action fairness. We defer the analysis of the
probability of failure of Fair-E3 to the Appendix.

We start with the performance guarantee and show that
when Fair-E3 follows the exploitation policy the average
V ∗M values of the visited states is close to Es∼µ∗V ∗M (s).
However, when following an exploration policy or taking
random trajectories, visited states’ V ∗M values can be small.
To bound the performance of Fair-E3, we bound the num-
ber of these exploratory steps by the MDP parameters so
they only have a small effect on overall performance.

Note that in each T ∗ε -step exploitation phase of Fair-E3, the
expectation of the average V ∗M values of the visited states
is at least Es∼µ∗V ∗M (s)− ε/(1− γ)− ε/2 by Lemmas 1, 8
and Observation 5. By a Chernoff bound, the probability
that the actual average V ∗M values of the visited states is
less than Es∼µ∗V ∗M (s)− ε/(1− γ)− 3ε/4 is less than δ/4

if there are at least
log(

1
δ )

ε2 exploitation phases.

We now bound the total number of exploratory steps of
Fair-E3 by

T1 = O

(
nmQH

γ
ε + nmQ

T ∗ε
ε

log
(n
δ

))
,

where mQ is defined in Equation 3 of Definition 7. The
two components of this term bound the number of rounds
in which Fair-E3 plays non-exploitatively: the first bounds
the number of steps taken when Fair-E3 follows random
trajectories, and the second bounds how many steps are
taken following explicit exploration policies. The former
bound follows from the facts that each random trajectory
has length Hγ

ε ; that in each state, mQ trajectories are suf-
ficient for the state to become known; and that random tra-
jectories are taken only before all n states are known. The
latter bound follows from the fact that Fair-E3 follows
an exploration policy for 2T ∗ε steps; and an exploration
policy needs to be followed only O(

T∗ε
ε log(nδ )) times be-

fore reaching an unknown state (since any exploration pol-
icy will end up in an unknown state with probability of at
least ε

T∗ε
according to Lemma 8, and applying a Chernoff

bound); that an unknown state becomes known after it is
visited mQ times; and that exploration policies are only
followed before all states are known.

Finally, to make up for the potentially poor performance in

exploration, the number of 2T ∗ε steps exploitation phases
needed is at least

T2 = O

(
T1(1− γ)

ε

)
.

Therefore, after T = T1 + T2 steps we have

Es∼µ∗V ∗M (s)− 1

T
E
T∑
t=1

V ∗M (st) ≤
2ε

1− γ
,

as claimed in Equation 2. The running time of Fair-E3 is
O(nT

3

ε ): the additional nT 2

ε factor comes from offline
computation of the optimal policies in M̂α

Γ and M̂α
[n]\Γ.

We wrap up by proving Fair-E3 satisfies
approximate-action fairness in every round. The ac-
tions taken during random trajectories are fair (and hence
approximate-action fair) by Observation 3. Moreover,
Fair-E3 computes policies in M̂α

Γ and M̂α
[n]\Γ. By

Lemma 10 with probability at least 1 − δ any Q∗ or V ∗

value estimated in M̂α
Γ or M̂α

[n]\Γ is within α/2 of its
corresponding true value in Mα

Γ or Mα
[n]\Γ. As a result,

M̂α
Γ and M̂α

[n]\Γ (i) contain all the optimal policies and
(ii) only contain actions with Q∗ values within α of the
optimal actions. It follows that any policy followed in M̂α

Γ

and M̂α
[n]\Γ is α-action fair, so both the exploration and

exploitation policies followed by Fair-E3 satisfy α-action
fairness, and Fair-E3 is therefore α-action fair.

5. Discussion and Future Work
Our work leaves open several interesting questions. For ex-
ample, we give an algorithm that has an undesirable expo-
nential dependence on 1/(1− γ), but we show that this de-
pendence is unavoidable for any approximate-action fair al-
gorithm. Without fairness, near-optimality in learning can
be achieved in time that is polynomial in all of the param-
eters of the underlying MDP. So, we can ask: does there
exist a meaningful fairness notion that enables reinforce-
ment learning in time polynomial in all parameters?

Moreover, our fairness definitions remain open to further
modulation. It remains unclear whether one can strengthen
our fairness guarantee to bind across time rather than sim-
ply across actions available at the moment without large
performance tradeoffs. Similarly, it is not obvious whether
one can gain performance by relaxing the every-step na-
ture of our fairness guarantee in a way that still forbids dis-
crimination. These and other considerations suggest many
questions for further study; we therefore position our work
as a first cut for incorporating fairness into a reinforcement
learning setting.
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A. Omitted Proofs
A.1. Omitted Proofs for Section 2

Proof of Lemma 1. Let µ̂πT denote the distribution of π on
states of M after following π for T steps starting from s.
Then we know

Es∼µπV πM (s) − 1

T
E

T∑
t=1

V πM (st)

=

n∑
i=1

(µπ(si)− µ̂πT (si))V
π
M (si)

≤
n∑
i=1

|µπ(si)− µ̂πT (si)|V πM (si)

≤ ε

1− γ
.

The last inequality is due to the following observations:
(i) V πM (si) ≤ 1

1−γ as rewards are in [0, 1] and (ii)
Σni=1 |µπ(si)− µ̂πT (si)| ≤ ε since T is at least the ε-mixing
time of π.

A.2. Omitted Proofs for Section 3

We first state the following useful Lemma about M .

Lemma 11. Let M be the MDP in Definition 6. Then for
any i ∈ {1, . . . , n}, V ∗M (si) <

1+2γn−i+1

2(1−γ) .

Proof.

V ∗M (si) = discounted reward before reaching state n
+ discounted reward from staying at state n

<

[
n−i−1∑
t=1

γt

2

]
+
γn−i+1

1− γ

=

[
1

2

(
1

1− γ
− γn−i

1− γ

)]
+
γn−i+1

1− γ

=
1− γn−i

2(1− γ)
+
γn−i+1

1− γ

=
1 + γn−i(2γ − 1)

2(1− γ)

<
1 + 2γn−i+1

2(1− γ)
,

via two applications of the summation formula for geomet-
ric series.

Proof of Theorem 3. We prove Theorem 3 for the special
case of k = 2 first. Consider coupling the run of a fair
algorithm L on both M(0.5) and M(1). To achieve this,
we can fix the randomness of L up front, and use the same
randomness on both MDPs. The set of observations and

hence the actions taken on both MDPs are identical until
L reaches state sn. Until then, with probability at least
1− δ, L must play L and R with equal probability in order
to satisfy fairness (since, for M(0.5), the only fair policy
is to play both actions with equal probability at each time
step). We will upper-bound the optimality of uniform play
and lower-bound the number of rounds before which sn is
visited by uniformly random play.

Let fγ = d 1
1− 3
√
γ e and T = 2n−2fγ for n ≥ 100(fγ)2.

First observe that the probability of reaching a fixed state si
for any i ≥ n−fγ from a random walk of length T is upper
bounded by the probability that the random walk takes i ≥
n − fγ consecutive steps to the right in the first T steps.
This probability is at most p = 2n−2fγ ( 1

2 )n−fγ = 2−fγ

for any fixed i. Since reaching any state i > i′ requires
reaching state i′, the probability that the T step random
walk arrives in any state si for i ≥ n − fγ is also upper
bounded by p.

Next, we observe that V ∗M (si) is a nondecreasing function
of i for both MDPs. Then the average V ∗M values of the vis-
ited states of any fair policy can be broken into two pieces:
the average conditioned on (the probability at least 1 − δ
event) that the algorithm plays uniformly at random before
reaching state sn and never reaching a state beyond sn−fγ ,
and the average conditioned on (the probability at most δ
event) that the algorithm does not make uniformly random
choices or the uniform random walk of length T reaches a
state beyond sn−fγ . So, we have that

1

T
E
T∑
t=1

V ∗M (st) ≤ (1− p− δ)V ∗M (sn−fγ ) + (p+ δ)
1

1− γ

≤ (1− p− δ) 1 + 2γfγ+1

2(1− γ)
+ (p+ δ)

1

1− γ
.

The first inequality follows from the fact that V ∗M (si) ≤
1

1−γ for all i, and the second from Lemma 11 along with
V ∗M values being nondecreasing in i. Putting it all together,

Es∼µ∗ V ∗M (s)− 1

T
E
T∑
t=1

V ∗M (st)

≥ 1

1− γ
−
[
(1− p− δ) 1 + 2γfγ+1

2(1− γ)
+ (p+ δ)

1

1− γ

]
=

1− p− δ
1− γ

[
1− 1 + 2γfγ+1

2

]
.

So ε-optimality requires

2ε

1− γ
≥ 1− p− δ

1− γ

[
1− 1 + 2γfγ+1

2

]
. (4)
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However, if ε < 1
8 we get

2ε

1− γ
<

1− 0.04− 1/4

1− γ

[
1− 1 + 2× e−3

2

]
<

1− 2−fγ − δ
1− γ

[
1− 1 + 2γfγ+1

2

]
,

where the third inequality follows when δ < 1
4 and γ >

1
2 . This means ε < 1

8 makes ε-optimality impossible, as
desired.

Throughout we considered the special case of k = 2 and
proved a lower bound of Ω(2n) time steps for any fair al-
gorithm satisfying the ε-optimality condition. However, it
is easy to see that MDP M in Definition 6 can be easily
modified in a way that k − 1 of the actions from state si
reach state s1 and only one action in each state si reaches
states smin{i+1,n}. Hence, a lower bound of Ω(kn) time
steps can be similarly proved.

Proof of Theorem 4. We mimic the argument used to prove
Theorem 3 with the difference that, until visiting sn, L
may not play R with probability more than 1

2 + α (as
opposed to 1

2 in Theorem 3). Let fγ = d 1
1− 3
√
γ e and

T = ( 2
1+2α )n−2fγ for n ≥ 100(fγ)2. By a similar pro-

cess as in Theorem 3, the probability of reaching state si
for any i ≥ n − fγ from a random walk of length T is
bounded by p = ( 2

1+2α )−fγ , and so the probability that the
T steps random walk arrives in any state si for i ≥ n− fγ
is bounded by p. Carrying out the same process used to
prove Theorem 3 then once more implies that ε-optimality
requires Equation 4 to hold when δ < 1

4 , α < 1
4 and γ > 1

2 .
Hence, ε < 1

8 violates this condition as desired.

Finally, throughout we considered the special case of k =
2. The same trick as in the proof of Theorem 3 can be used
to prove the lower bound of Ω(( k

1+kα )n) time steps for any
fair algorithm satisfying the ε-optimality condition.

Proof of Theorem 5. We also prove Theorem 5 for the spe-
cial case of k = 2 first, again considering the MDP in
Definition 6. We set the size of the state space in M to

be n = d log(
1

2α )

1−γ e. Then given the parameter ranges, for
any i, Q∗M (si, R) − Q∗M (si, L) > α in M(1). Therefore,
any approximate-action fair algorithm should play actions
R and L with equal probability.

Let T = 2cn = Ω((21/(1−γ))c). First observe that the
probability of reaching a fixed state si for any i ≥ (c +
1)n/2 from a random walk of length T is upper bounded by
the probability that the random walk takes i ≥ (c+ 1)n/2
consecutive steps to the right in the first T steps. This prob-
ability is at most p = 2cn2−(c+1)n/2 = 2(c−1)n/2 for any
fixed i. Then the probability that the T steps random walk

arrives in any state si for i ≥ (c + 1)n/2 is also upper
bounded by p.

Next, we observe that V ∗M (si) is a nondecreasing function
of i, for both MDPs. Then the average V ∗M values of the vis-
ited states of any fair policy can be broken into two pieces:
the average conditioned on the 1 − δ fairness and never
reaching a state beyond s(c+1)n/2, and the average when
fairness might be violated or the uniform random walk of
length T reaches a state beyond s(c+1)n/2. So, we have
that

1

T
E
T∑
t=1

V ∗M (st) ≤ (1− p− δ)V ∗M (s(c+1)n/2)

+ (p+ δ)
1

1− γ

≤ (1− p− δ) 1 + (2γ − 1)γ
(1−c)n

2

2(1− γ)

= (p+ δ)
1

1− γ
.

The first inequality follows from the fact that V ∗M (si) ≤
1

1−γ for all i, and the second from (the line before the last
in) Lemma 11 along with V ∗M values being nondecreasing
in i. Putting it all together,

Es∼µ∗ V ∗M (s)− 1

T
E
T∑
t=1

V ∗M (st)

≥ 1

1− γ
− (1− p− δ) 1 + (2γ − 1)γ

(1−c)n
2

2(1− γ)

− (p+ δ)
1

1− γ

=
1− p− δ

1− γ

[
1− 1 + (2γ − 1)γ

(1−c)n
2

2

]

=
1− p− δ

1− γ

[
1

2
− (2γ − 1)γ

(1−c)n
2

2

]
.

So ε-optimality requires

2ε

1− γ
≥ 1− p− δ

1− γ

[
1

2
− (2γ − 1)γ

(1−c)n
2

2

]
.

Rearranging and using δ < 1
4 , we get that ε-optimality re-

quires

4ε ≥
[
0.75− 2

(c−1)n
2

] [
1− (2γ − 1)γ

(1−c)n
2

]
and expand n to get

ε ≥ 1

4

[
0.75− 2

(c−1) log( 1
2α

)

2(1−γ)

]
×[

1− (2γ − 1)γ
(1−c) log( 1

2α
)

2(1−γ)

]
≡ xy

4
.
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Noting that x is minimized when 2
(c−1) log( 1

2α )

2(1−γ) is maxi-
mized, and that this quantity is maximized when log( 1

2α )

2(1−γ) is
minimized (as c − 1 is negative), we get that ε-optimality
requires

ε ≥

[
0.75− 2

c−1
1−γ

]
y

4

from α < 1
8 . Similarly, α < 1

8 implies that ε-optimality
requires

ε ≥

[
0.75− 2

c−1
1−γ

] [
1− (2γ − 1)γ

1−c
1−γ

]
4

.

Note that 0.75 − 2
c−1
1−γ is minimized when γ is small, so

γ > c implies that ε-optimality requires

ε ≥

[
0.75− 2−1

] [
1− (2γ − 1)γ

1−c
1−γ

]
4

≥ 1

16

[
1− (2γ − 1)γ

1−c
2(1−γ)

]
.

Conversely, 1−(2γ−1)γ
1−c
1−γ is minimized when γ is large,

so as
lim
γ→1

(2γ − 1) γ
1−c
1−γ = ec−1

we get that ε-optimality requires

ε ≥ 1

16

(
1− ec−1

)
.

Finally, the same trick as in the proof of Theorem 3 can be
used to prove the Ω((k1/(1−γ))c) lower bound for k > 2
actions.

A.3. Omitted Proofs for Section 4

Proof of Lemma 8. We first show that either

• there exists an exploitation policy π in MΓ such that

1

T
max
π̄∈Π

E
T∑
t=1

V π̄M
(
π̄t(s), T

)
− 1

T
E

T∑
t=1

V πMΓ

(
πt(s), T

)
≤ β

where the random variables πt(s) and π̄t(s) denote the
states reached from s after following π and π̄ for t steps,
respectively, or

• there exists an exploration policy π in MΓ such that the
probability that a walk of 2T steps from s following π
will terminate in s0 exceeds β

T .

Let π be a policy in M satisfying

1

T
E

T∑
t=1

V πM (πt(s), T ) =
1

T
max
π̄∈Π

E
T∑
t=1

V π
′

M (π̄t(s), T ) := Ṽ .

For any state s′, let p(s′) denote all the paths of length T
in M that start in s′, q(s′) denote all the paths of length T
in M that start in s′ such that all the states in every path of
length T in q(s′) are in Γ and r(s′) all the paths of length
T in M that start in s′ such that at least one state in every
path of length T in r(s′) is not in Γ. Suppose

1

T
E

T∑
t=1

V πMΓ
(πt(s)) < Ṽ − β.

Otherwise, π already witnesses the claim. We show that a
walk of 2T steps from s following π will terminate in s0

with probability of at least βT . First,

E
T∑
t=1

V πM (πt(s), T ) = E
T∑
t=1

∑
p(πt(s))

P[p(πt(s))]VM (p(πt(s)))

= E
T∑
t=1

∑
q(πt(s))

P[q(πt(s))]VM (q(πt(s)))

+ E
T∑
t=1

∑
r(πt(s))

P[r(πt(s))]VM (r(πt(s)))

since p(πt(s)) = q(πt(s)) ∪ r(πt(s)), which is a disjoint
union. Next,

E
T∑
t=1

∑
q(πt(s))

P[q(πt(s))]VM (q(πt(s)))

= E
T∑
t=1

∑
q(πt(s))

PπMΓ
[q(πt(s))]VMΓ

(q(πt(s)))

≤ E
T∑
t=1

V πMΓ
(πt(s), T ),

where the equality is due to Definition 9 and the definition
of q, and the inequality follows because V πMΓ

(πt(s), T ) is
the sum over all the T -paths inMΓ, not just those that avoid
the absorbing state s0. Therefore by our original assump-
tion on π,

E
T∑
t=1

∑
q(πt(s))

P[q(πt(s))]VM (q(πt(s)))

≤ E
T∑
t=1

V πMΓ
(πt(s), T ) < TṼ − Tβ.



Fairness in Reinforcement Learning

This implies

E
T∑
t=1

∑
r(πt(s))

P[r(πt(s))]VM (r(πt(s)))

= E
T∑
t=1

V πM (πt(s), T )

− E
T∑
t=1

∑
q(πt(s))

P[q(πt(s))]VM (q(πt(s)))

= T Ṽ − E
T∑
t=1

∑
q(πt(s))

P[q(πt(s))]VM (q(πt(s))) ≥ Tβ,

where the last step is the result of applying the previous
inequality. However,

E
T∑
t=1

∑
r(πt(s))

P[r(πt(s))]VM (r(πt(s)))

≤ TE
T∑
t=1

∑
r(πt(s))

P[r(πt(s))],

because it is immediate that VM (r(πt(s))) ≤ T for all
πt(s). So Tβ ≤ TE

∑T
t=1

∑
r(πt(s)) P[r(πt(s))]. Finally,

if we let Pπ2T denote the probability that a walk of 2T steps
following π terminates in s0, i.e. the probability that π es-
capes to an unknown state within 2T steps, then for each
t ∈ [T ], E

∑
r(πt(s)) ≤ TPπ2T . It follows that

Tβ ≤ T 2Pπ2T

and rearranging yields Pπ2T ≥
β
T as desired.

Next, note that the exploitation policy (if it exists) can be
derived by computing the optimal policy inMΓ. Moreover,
the exploration policy (if it exists) in the exploitation MDP
MΓ can indeed be derived by computing the optimal policy
in the exploration MDPM[n]\Γ as observed by (Kearns and
Singh, 2002). Finally, by Observation 5, any optimal policy
in M̂α

Γ (M̂α
[n]\Γ) is an optimal policy in M̂Γ (M̂[n]\Γ)

To prove Lemma 10, we need some useful background
adapted from Kearns and Singh (2002).

Definition 8 (Definition 7, Kearns and Singh (2002)). Let
M and M̂ be two MDPs with the same set of states and
actions. We say M̂ is a β-approximation of M if

• For any state s,

R̄M (s)− β ≤ R̄M̂ (s) ≤ R̄M (s) + β.

• For any states s and s′ and action a,

PM (s, a, s′)− β ≤ PM̂ (s, a, s′) ≤ PM (s, a, s′) + β.

Lemma 12 (Lemma 5, Kearns and Singh (2002)). Let M
be an MDP and Γ the set of known states of M . For any
s, s′ ∈ Γ and action a ∈ A, let P̂M (s, a, s′) denote the
empirical probability transition estimates obtained from
the visits to s. Moreover, for any state s ∈ Γ let ¯̂

R(s)
denote the empirical estimates of the average reward ob-
tained from visits to s. Then with probability at least 1− δ,

|P̂M (s, a, s′)− PM (s, a, s′)| = O

(
min{ε, α}2

n2Hγ
ε

4

)
,

and

| ¯̂RM (s)− R̄M (s)| = O

(
min{ε, α}2

n2Hγ
ε

4

)
.

Lemma 12 shows that M̂Γ and M̂[n]\Γ are O(min{ε,α}2

n2Hγε
4 )-

approximation MDPs for MΓ and M[n]\Γ, respectively.

Lemma 13 (Lemma 4, Kearns and Singh (2002)). Let M
be an MDP and M̂ its O(min{ε,α}2

n2Hγε
4 )-approximation. Then

for any policy π ∈ Π and any state s and action a

V πM (s)−min{ε, α} ≤ V π
M̂

(s) ≤ V πM (s) + min{ε, α
4
},

and

QπM (s, a)−min{α
4
, ε} ≤ Qπ

M̂
(s, a)

≤ QπM (s, a) + min{α
4
, ε}.

Proof of Lemma 10. By Definition 7 and Lemma 12, M̂Γ is
a O(min{ε,α}2

n2Hγε
4 )-approximation of MΓ. Then the statement

directly follows by applying Lemma 13.

Rest of the Proof of Theorem 6. The only remaining part
of the proof of Theorem 6 is the analysis of the probability
of failure of Fair-E3. To do so, we break down the prob-
ability of failure of Fair-E3 by considering the following
(exhaustive) list of possible failures:

1. At some known state the algorithm has a poor ap-
proximation of the next step, causing M̂Γ to not be a
O(min{ε,α}2

n2Hγε
4 )-approximation of MΓ.

2. At some known state the algorithm has a poor approxi-
mation of the Q∗M values for one of the actions.

3. Following the exploration policy for 2T ∗ε steps fails to
yield enough visits to unknown states.

4. At some known state, the approximation value of that
state in M̂Γ is not an accurate estimate for the value of
the state in MΓ.

We allocate δ
4 of our total probability of failure to each of

these sources:
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1. Set δ′ = δ
4n in Lemma 10.

2. Set δ′ = δ
4nk in Theorem 7.

3. By Lemma 8, each attempted exploration is a Bernoulli
trial with probability of success of at least ε

4T∗ε
. In the

worst case we might need to make every state known
before exploiting, leading to the nmQ trajectories (mQ

as Equation 3 in Definition 7) of length Hγ
ε . Therefore,

the probability of taking fewer than nmQ trajectories of
lengthHγ

ε would be bounded by δ
4 if the number of 2T ∗ε

steps explorations is at least

mexp = O

(
T ∗ε nmQ

ε
log
(n
δ

))
. (5)

4. Set δ′ = δ
4mexp

(mexp as defined in Equation 5) in
Lemma 10, as Fair-E3 might make 2T ∗ε steps explo-
rations up to mexp times.

A.4. Relaxing Assumption 2

Throughout Sections 4.3 and 4.4 we assumed that T ∗ε , the
ε-mixing time of the optimal policy π∗, was known (see
Assumption 2). Although Fair-E3 uses the knowledge of
T ∗ε to decide whether to follow the exploration or exploita-
tion policy, Lemma 8 continues to hold even without this
assumption. Note that Fair-E3 is parameterized by T ∗ε and
for any input T ∗ε runs in time poly(T ∗ε ). Thus if T ∗ε is
unknown, we can simply run Fair-E3 for T ∗ε = 1, 2, . . .
sequentially and the running time and sample complexity
will still be poly(T ∗ε ). Similar to the analysis of Fair-E3

when T ∗ε is known we have to run the new algorithm for
sufficiently many steps so that the possibly low V ∗M values
of the visited states in the early stages are dominated by
the near-optimal V ∗M values of the visited states for large
enough guessed values of T ∗ε .

B. Observations on Optimality and Fairness
Observation 1. For any MDP M , there exists an optimal
policy π∗ such that π∗ is fair.

Proof. In time t, let state st denote the state from which
π chooses an action. Let a∗ = argmaxaQ

∗
M (st, a) and

A∗(st) = {a ∈ A | Q∗M (st, a) = Q∗M (st, a
∗)}. The pol-

icy of playing an action uniformly at random from A∗(st)
in state st for all t, is fair and optimal.

Approximate-action fairness, conversely, can be satisfied
by any optimal policy, even a deterministic one.

Observation 2. Let π∗ be an optimal policy in MDP M .
Then π∗ is approximate-action fair.

Proof. Assume that π∗ is not approximate-action fair.
Given state s, the action that π∗ takes from s is uniquely
determined since π∗ is deterministic we may denote it by
a∗. Then there exists a time step in which π∗ is in state
s and chooses action a∗(s) such that there exists another
action a with

Q∗M (s, a) > Q∗M (s, a∗(s)) + α,

a contradiction of the optimality of π∗.

Observations 1 and 2 state that policies with optimal per-
formance are fair; we now state that playing an action uni-
formly at random is also fair.

Observation 3. An algorithm that, in every state, plays
each action uniformly at random (regardless of the history)
is fair.

Proof. Let L denote an algorithm that in every state
plays uniformly at random between all available actions.
Then L(s, ht−1)a = L(s, ht−1)a′ regardless of state
s, (available) action a, or history ht−1. Q∗M (s, a) >
Q∗M (s, a′) + α ⇒ L(s, ht−1)a ≥ L(s, ht−1)a′ then
follows immediately, which guarantees both fairness and
approximate-action fairness.

Observation 4. Let M be an MDP and Mα the α-
restricted MDP of M . Let π be a policy in Mα. Then π
is α-action fair.

Proof. Assume π is not α-action fair. Then there must ex-
ist round t, state s, and action a such that Q∗M (s, a) >
Q∗M (s, a′) + α and L(s, ht−1)a < L(s, ht−1)a′ . There-
fore L(s, ht−1)a′ > 0, so Mα must include action a′ from
state s. But this is a contradiction, as in state s Mα only
includes actions a′ such that Q∗M (s, a′) + α ≥ Q∗M (s, a).
π is therefore α-action fair.

Observation 5. Let M be an MDP and Mα the α-
restricted MDP of M . Let π∗ be an optimal policy in Mα.
Then π∗ is also optimal in M .

Proof. If π∗ is not optimal in M , then there ex-
ists a state s and action a such that Q∗M (s, a) >
Ea∗(s)∼π∗(s)Q∗M (s, a∗(s)) where a∗(s) is drawn from
π∗(s) and the expectation is taken over choices of a∗(s).
This is a contradiction because action a is available from
state s in Mα by Definition 5.

C. Omitted Details of Fair-E3

We first formally define the exploitation MDP MΓ and the
exploration MDP M[n]\Γ:
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Definition 9 (Definition 9, Kearns and Singh (2002)). Let
M = (SM ,AM , PM , RM , T, γ) be an MDP with state
space SM and let Γ ⊂ SM . We define the exploration MDP
MΓ = (SMΓ

,AM , PMΓ
, RMΓ

, T, γ) on Γ where

• SMΓ = Γ ∪ {s0}.
• For any state s ∈ Γ, R̄MΓ

(s) = R̄M (s), rewards in MΓ

are deterministic, and R̄MΓ
(s0) = 0.

• For any action a, PMΓ
(s0, a, s0) = 1. Hence, s0 is an

absorbing state.
• For any states s1, s2 ∈ Γ and any action a,
PMΓ

(s1, a, s2) = PM (s1, a, s2), i.e. transitions be-
tween states in Γ are preserved in MΓ.

• For any state s1 ∈ Γ and any action a, PMΓ
(s1, a, s0) =

Σs2 /∈ΓPM (s1, a, s2). Therefore, all the transitions be-
tween a state in Γ and states not in Γ are directed to s0

in MΓ.

Definition 10 (Implicit, Kearns and Singh (2002)). Given
MDP M and set of known states Γ, the exploration MDP
M[n]\Γ on Γ is identical to the exploitation MDP MΓ ex-
cept for its reward function. Specifically, rewards inM[n]\Γ
are deterministic as in MΓ, but for any state s ∈ Γ,
R̄M[n]\Γ(s) = 0, and R̄M[n]\Γ(s0) = 1.

We next define the approximation MDPs M̂Γ and M̂[n]\Γ
which are defined over the same set of states and actions as
in MΓ and M[n]\Γ, respectively.

Let M be an MDP and Γ the set of known states of M . For
any s, s′ ∈ Γ and action a ∈ A, let P̂MΓ

(s, a, s′) denote the
empirical probability transition estimates obtained from the
visits to s. Moreover, for any state s ∈ Γ let ¯̂

RMΓ(s) de-
note the empirical estimates of the average reward obtained
from visits to s. Then M̂Γ is identical to MΓ except that:

• in any known state s ∈ Γ, R̂M̂Γ
(s) =

¯̂
RMΓ(s).

• for any s, s′ ∈ Γ and action a ∈ A, PM̂Γ
(s, a, s′) =

P̂MΓ
(s, a, s′).

Also M̂[n]\Γ is identical to M[n]\Γ except that:

• for any s, s′ ∈ Γ and action a ∈ A, PM̂[n]\Γ
(s, a, s′) =

P̂M[n]\Γ(s, a, s′).


