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Abstract 
In this paper we introduce an extension of the 
Probably Approximately Correct (PAC) learning 
model to study the problem of learning inclusion 
hierarchies of concepts (sometimes called is-a hi- 
erarchies) from random examples. Using only the 
hypothesis representations output over many dif- 
ferent runs of a learning algorithm, we wish to 
reconstruct the partial order (with respect to gen- 
erality) among the different target concepts used 
to train the algorithm. We give an efficient al- 
gorithm for this problem with the property that 
each run is oblivious of all other runs: each run can 
take place in isolation, without access to any ex- 
amples except those of the current target concept, 
and without access to the current pool of hypothe- 
sis representations. Thus, additional mechanisms 
providing shared information between runs are not 
necessary for the inference of some nontrivial hi- 
erarchies. 

Introduction and Motivation 
In this paper we introduce an extension of the Probably 
Approximately Correct (PAC) learning model (Valiant 
1984) to study the problem of learning inclusion hier- 
archies of concepts (sometimes called is-a hierarchies) 
from random examples. (In this paper, a concept is 
simply a set, or equivalently, its Boolean characteristic 
function.) Using the hypothesis representations out- 
put over many different runs of a learning algorithm, 
we wish to reconstruct the partial order (with respect 
to generality) among the different target concepts used 
to train the algorithm. 

Informally, our intention is to model the ability to 
not only learn (in the sense of recognition) the abstract 
concepts chair and furniture, but to also infer that all 
chairs are furniture. The scenario we have in mind is 
roughly the following: a learning algorithm L is run 
many times, and each time is trained on a potentially 
different target concept f. Each run results in the ad- 
dition of a new hypothesis representation r to an exist- 
ing pool. In addition to the usual criterion that each P 
should provide a good predictive approximation to its 
corresponding target concept f, we would like the pool 
of hypothesis representations to effectively support in- 
clusion tests between any pair of target concepts. More 

precisely, given any ri and r2 in the pool (where ~1 was 
the result of training L on a target concept fl, and r2 
was the result of training L on fz), by examining rl 
and ~2 we should be able to determine if fi > f2 (that 
is, f2(4 = 1 implies fi (2) = 1 for all z), fz ,> fr , or 
fi and fz are incomparable. 1 

We will present an algorithm for this problem that 
meets the following three conditions: 

1. 0 blliviousness: Every run of the algorithm can 
take place in complete isolation, and is oblivious of all 
past and future runs. When being trained on a target 
concept f, the algorithm needs access only to examples 
off. It does not consult the current pool of hypothesis 
representations or receive examples of other concepts. 
Thus, all runs of the algorithm are pairwise statistically 
independent. 

2. A Closed System: The pool of hypothesis rep- 
resentations output by the algorithm functions as a 
closed system. By this we mean that the inclusion 
test on r1 and r2 takes place without any additional 
sampling of values of fi or f2, and the information re- 
quired to determine the relationship between fi and 
f2 is entirely contained in rl and r2. 

3. Succinctness of ypotheses: The learning 
algorithm does not vacuously satisfy the obliviousness 
condition by, for instance, storing a large random sam- 
ple of f as part of its hypothesis representation r and 
thus letting this random sample become part of the 
“closed system” of representations. Such an approach 
would effectively allow each inclusion test to be per- 
formed with simultaneous access to examples of both 
target concepts participating in the test, and would 
render our first two conditions meaningless. The al- 
gorithm explicitly synthesizes from the training data 
some representation that is considerably more succinct 
than the training data itself, but that facilitates inclu- 

‘The most natural hypothesis representation T would 
seem to be simply the representation of some concept h that 
approximates the corresponding target concept f. While 
such a representation is clearly sufficient for the standard 
(predictive) learning problem, we will show that in our 
model it is not sufficient for supporting inclusion tests, 
but that allowing t to represent tp~o concepts (that is, 
7 = (h, h’), where h and h’ are two different concepts ap- 
proximating f) is sufficient. We will eventually clarify this 
issue rigorously, but for now will continue to refer to “hy- 
pothesis representations” in an abstract way. 
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sion testing. 
It is important to emphasize that we in no way con- 

sider these three conditions to be definitive for models 
of learning with inclusion testing. For instance, we do 
not wish to dismiss models that allow the current run 
of a learning algorithm access to the current pool of 
hypothesis representations, or that allow some limited 
sampling as part of the inclusion testing process. The 
main claim we wish to support here is that in many 
cases of interest, such additional mechanisms are un- 
necessary, and the above criteria can be met by prov- 
ably efficient and correct algorithms. 

One of our primary motivations is the problem of 
performing precise logical inference using imperfect 
learned predicates. If we interpret the output of a con- 
cept learning algorithm as an empirically acquired log- 
ical predicate, then the ability to use these predicates 
to accurately detect inclusions among the correspond- 
ing target concepts can be viewed as a simple form of 
this problem, since inclusion is equivalent to implica- 
tion or subsumption. We investigate this connection 
in greater depth in a section near the end of the paper. 

A summary of the paper follows. We begin with an 
informal discussion of the special problems posed for 
inclusion testing in the PAC model, and follow this 
with formal definitions for the PAC model. We then 
sketch our model of PAC learning with inclusion test- 
ing, and give a necessary technical aside that limits the 
pairs of target concepts for which we may reasonably 
expect to detect inclusion. 

Our first result proves that there is no hope that any 
PAC learning algorithm will already provide inclusion 
testing via direct comparison (with respect to 3) of the 
hypothesis concepts, because a single hypothgsis con- 
cept contains insufficient information. This then leads 
us to consider learning algorithms that compute mul- 
tiple hypothesis concepts on each run. The main tech- 
nical result of the paper is an algorithm that uses this 
approach, and provably provides PAC learning with in- 
clusion testing for any concept class that is closed un- 
der intersection (or dually, under union). We present 
this result over two sections, first sketching the intu- 
ition informally for a special case, and then stating the 
general theorem. We then give a modified version with 
considerably improved sample complexity, and discuss 
various ways of reconstructing an entire hierarchy or 
partial order of inclusions. In the final sections, we re- 
turn to the more general problems of logical inference 
using learned predicates, and discuss some of our other 
results. 

Why Use the PAC Model? 
The choice of the PAC model as the basis for our study 
of learning concept hierarchies is significant due to the 
probabilistic nature of the PAC model. In a model 
where the examples are generated randomly, it is in 
general impossible to exactly identify the target con- 
cept - a small amount of error is unavoidable. From 
this small error arises the difficulty in detecting inclu- 
sions. 

As an example of this difficulty, consider the stan- 
dard algorithm for learning an unknown target rectan- 
gle in the real plane whose sides are parallel to the co- 

ordinate axes (we will refer to such rectangles as being 
axis-parallel), where the examples are drawn according 
to an unknown and arbitrary probability distribution 
over the plane. (We will return to this problem as 
a running example throughout the paper). The algo- 
rithm takes a sufficiently large set of positive examples 
of the target rectangle f, and outputs as its hypothesis 
the most specific axis-parallel rectangle that includes 
all of these positive examples. While it is well-known 
that this algorithm meets the criteria of the PAC model 
(Blumer et al. 1989), consider what happens when we 
run this algorithm twice independently (that is, using 
an independent random sample for each run), using the 
same target rectangle f and the same distribution for 
each run. Although each of the two hypothesis rect- 
angles h and h’ output by the algorithm will be with 

6 high probability) good approximations to f wit re- 
spect to the distribution, the variations in the random 
samples for the two runs will almost certainly result in 
both (h - h’) and (h’ - h) being nonempty. Thus, it 
will be impossible to detect that the target was identi- 
cal for the two runs simply by direct comparison (with 
respect to the ordering 2) of the rectangles h and h’. 
This example is quite relevant, since detecting when 
the target was identical on two runs is a special (and 
hardest) case of detecting inclusions between targets. 

Some additional learning mechanism seems to be 
required here. In fact, in Theorem 1 we prove that 
some additional mechanism is required in a very gen- 
eral sense. We feel that using the PAC model to study 
learning hierarchies of concepts captures an interest- 
ing question: How is it possible to have imperfect hy- 
potheses for target concepts, yet still be able to use 
these hypotheses to precisely relate (with high proba- 
bility) the target concepts to each other with respect 
to inclusion? 

T AC Learning Model 
Let X be a and let F be any class of concepts 
(Boolean function;) over X. We think of X as the input 
space, and J= as the class of possible target concepts. 
In this paper we will think of concepts both as sets and 
as functions, and will use the notation f (2) to indicate 
the (0, 1) value assigned to x by f, and fi ,> f2 to 
indicate that for all x E X, f2(x) = 1 3 fi(x) = 1. 

Eet 27 be any probability distribution over X. On an 
execution using a particular target concept f E F and 
the distribution V, a learning algorithm in our model 
will be given access to an oracle EX( f, D) that runs in 
unit time and returns examples of the form (x, f(x)), 
where x is chosen randomly and independently accord- 
ing to D (denoted x E 27). 

Given any concept h, there is a natural measure of 
the error o with respect to f and D, defined by 
error(h) = zEp[f(x) # h(x)]. Note that error(h) 
has an implicit dependence on f and ‘D that we omit 
for brevity. If error(h) 5 6, we say that h is e-good 
(with respect to f and D). 

We are now ready to give the definition of PAC learn- 
ing (Valiant 1984) ( see also (Haussler et al. 1991)): 
Definition 1 Let F be any class of concepts over X. 
Then F is efficiently PAC learnable if there is an ulgo- 
rithm L such that for any target concept f E F, for any 
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distribution 2) over X, and for any values 0 < E < 4 
and 0 < S < 3, if L is given inputs e and 6 and access 
to EX(f,V), th e o f 11 owing two conditions are met: 

e (Eficiency) L runs in time polynomial in the inputs 
3 and $, and 

d (Learning) L outputs a concept h E 3 2 that with 
probability at least I- 6 satisfies error(h) 5 C. This 
probability is taken over the random examples re- 
$-;ed by EX(f, % and any internal randomization 

. 

We refer to h as the hypothesis of L, and we cull L a 
PAC learning algorithm for 3. 

Note that the hypothesis of the learning algorithm is 
“Probably Approximately Correct”, hence the name 
and acronym of the model. 

It will often be the case that the input space X and 
the class 3 have infinite cardinality, but are naturally 
parameterized by some complexity measure n. A typ- 
ical example is Xn = (0, 1)“) and 3,, is the class of 
all conjunctions of literals over the Boolean variables 

Now let X = UT-lX, and 3 = Ur?,Fn. 
%st&$?he asymptotic comgexity of learning &such 
cases, we allow the learning algorithm to also have a 
polynomial dependence on the smallest n such that 
f E 3n in the efficiency condition of Definition 1 above. 

C Learning with Hnclusion Testing 
Ideally, we would like to find PAC learning algorithms 
that meet the following additional criteria: if the learn- 
ing algorithm is run once using the oracle EX(fi, V) 
for fl E 3 to obtain the hypothesis hl E 3, and then 
run again independently using the oracle EX( f2, V) for 
f2 E 3 to obtain the hypothesis h2 E 3, then hl and 
h2 satisfy (with high probability) (1) hl 2. h2 if and 
only if fi > f2, and (2) h2 1 hl if and only if f2 ,> fi. 
Thus, we v&h to detect any%clusions that hold among 
pairs of target concepts by direct comparison of the hy- 
potheses output by a PAC learning algorithm. 

We will shortly see (Theorem 1) that this demand 
is actually too ambitious for even the simplest classes 
3. We will then show that if we allow each run of the 
learning algorithm to output two hypothesis concepts, 
so that the run on EX(fi ,V) will result in a pair of 
concepts (hi, h:) E 3 )< 3, and the run on EX( f2, V) 
will result in a pair of concepts (hi, hs) E 3 x 3, then 
criteria equally useful to the conditions (1) and (2) 
above can be achieved. Looking ahead, the intuitive 
idea is to find two hypothesis concepts that are upper 
and lower bounds on the target concept with respect to 
generality (although this too turns out to be difficult, 
and our algorithm essentially “fakes” this method). 

There are two important points to be made regard- 
ing the model we have sketched. First, note that al- 
though the target concept changes from run to run of 
the learning algorithm, the underlying distribution V 

‘A more standard definition allows h to be a member of 
a possibly more expressive hypothesis class ‘H 1 3. How- 
ever, the given definition suffices for the purposes of this 
paper. 

is the same for all runs. Since we think of V and rep- 
resenting the learner’s (fairly) constant environment, 
we find this invariance realistic and natural. For in- 
stance, it is reasonable to expect that the distribution 
on chairs used to train the learner is the same as the 
restriction of the distribution on furniture to chairs, 
and it can even be argued that this invariance is what 
makes detection of inclusions possible at all. It is also 
crucial to the results we present here. 

Second, notice that we have limited our attention 
to detecting inclusions only between pairs of concepts. 
This will be justified later in the paper, where we pro- 
vide several different methods of reconstructing an en- 
tire hierarchy (or more generally, a partial order) using 
only pairwise inclusion tests. 

egenerate Case of usion 
Before presenting our results, we first need to place 
a technical restriction on the pairs (fl, f2) for which 
we demand correct inclusion detection. Returning to 
our running example will best serve our purposes here: 
suppose that fi and f2 are overlapping axis-parallel 
rectangles in the real plane such that fi 2 f2 (thus 
f2 - fi # S), but V[fi - fi] = 0. Then the distribution 
of labeled examples generated by the oracle EX( f2, V) 
is identical to the distribution of labeled examples gen- 
erated by the oracle EX(fi’, V , where f2’ = fi n f2 

1 (also an axis-parallel rectangle . Thus, the learning 
algorithm has no hope of distinguishing whether the 
target rectangle is f2 or f2’ (even given unbounded 
sampling and computation time), and the answer to 
inclusion tests with fi is different in each case. This 
motivates the following definition. 
Definition 2 Let fi and f2 be concepts from the class 
3 over X, and let V be a distribution on X. For 0 < 
y < 3, we say that the pair (fi, f2) is y-fair (with 
respect to V) if the following two conditions hold: 

e either fi ,> f2 or D[f2 - fl] 1 27, and 
o either f2 1 fi or V[fi - f2] 2 2~. 

For the reasons given above, for the remainder of the 
paper we will restrict our attention to the problem of 
detecting inclusions between pairs of target concepts 
(fi, f2) that are c-fair, where E is the error input to the 
learning algorithm. 3 

Notice that if we only consider c-fair pairs of tar- 
get concepts, there is a significant statistical separa- 
tion between inclusion and non-inclusion: for any tar- 
get concepts fi, f2 E 3, either fi 2 f2 (in which case 
V[f2 - fl] = 0) or V[fz - fl] 2 2~. This suggests that 
if we have perpetual access to the distribution V or 

‘1 alternatively, are willing to store large random samp es 
from V), then we can detect inclusions simply on the 
basis of an appropriate statistical test. We can indeed 
prove that this is possible in a rather general sense. 
Such solutions violate the three conditions outlined in 
the Introduction and Motivation section. We will pro- 
ceed to describe algorithms avoiding such violations. 

3We choose to make double use of E in this way only 
for simplicity. We could instead add a new input y to the 
learning algorithm, demanding that all pairs be y-fair and 
allowing the running time to depend polynomially on $. 
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PAC Algorithms Do Not Suffice 
The obvious approach to inclusion testing is the one we 
have already sketched: suppose L is a PAC learning 
algorithm. If L outputs a concept hi in response to 
training on fi, and L outputs a concept h2 in response 
to training on fi, then to determine if fi _> f2, just 
see if hl 2 h2. Earlier we showed that for a particular 
algorithm for PAC learning rectangles in the plane, 
this approach encounters difficulty. Our first result 
shows that this approach in fact fails for essentially 
any concept class and any PAC algorithm. 

Theorem 1 Let 3 be any class of concepts over X 
containing at least two concepts that are di$erent but 
not complementary. Then there is no PAC learning 
algorithm L for 3 meeting the following condition: For 
any D and any pair (fl, f2) E 3 x 3 that is e-fair with 
respect to D, if L is run using EX(fi,V) to obtain a 
hypothesis concept hl, and L is run using EX(fz,V) 
to obtain a hypothesis concept ha, then with probability 
at least 1 - 6, hl > h2 if and only if fi _> fi, and 
hz 1 hl if and only-if f:! ,> fi. 

Proof: Suppose for contradiction that L meets the 
stated condition. Let m(c, S) be the number of exam- 
ples drawn by L on inputs c and S. Without loss of 
generality (Haussler et al. 1991), we assume that L is 
deterministic. 

Let V be any fixed distribution on X. Fix the ac- 
curacy input E and the confidence input S < i, let 

= m(~, 6), and define the mapping GL v : 3 --f 2x 
E follows: for any f E 3 GL D(f) is the unique con- 
cept over X such that when L’is run with inputs c and 
6 and access to oracle EX(f, D), the hypothesis con- 
cept h output satisfies h 
at least 1 - S. To see that 

= GL,?(f) with probability 
GL,P is well-defined, notice 

that if over two independent runs of L using oracle 
EX( f, ‘Do>, the probability exceeds S that the hypothe- 
ses hl and h2 output by L do not satisfy hl = h2, then 
the probability that (hl, h2) fails to meet the condi- 
tions of the theorem for the pair (f, f) exceeds 6. 

We now give a lemma proving that the output of 
L must remain constant under certain small perturba- 
tions of the target distribution. 

Lemma 2 Let x E X, let Vo be a distribution on 
X, and let VI be the distribution that is generated by 
drawing from V o with probability 1 - & and draw- 
ing x with probability k. Then for all f E 3, 
GL,df) = GL,Do(f). 

Proof: The probability that in m draws from VI all 
m points are drawn from VO is at least a. Thus the 
probability that L outputs a hypothesis concept h such 
that h = GLp,,(f) in m draws from EX(f,Vl) is at 
least f (1 - 26) = $ - 6 > S for S 5 $. This implies 
GL,df) = GL,df). (Lemma 2) 

Now let fi, f2 E 3 and x E X be such that 
x E f4f2 and X - fiAf2 is nonempty (these must 
exist by our assumptions on 3). Without loss of gen- 
erality, we will assume z E fi and x 6 f2. Let 230 
be any distribution such that Vo[fiAf2] = 0. Note 
that with respect to such a distribution, fi and f2 are 

indistinguishable, so GL,D,,( fl) = GL,D,( f2). Assume 
without loss of generality that x E GL,DO(fi). 

Now construct a sequence of distributions VI, . . . , Vt 
such that for each 1 5 i 5 t, Vi is generated by draw- 
ing from Vi, 1 with probability 1 - &, and drawing 
z with probability &. Then by repeated applica- 
tion of Lemma 2, we obtain GL,p,(fi) = GL,DO(f2) = 
GLp,(fz) = . . . = GLp,(f& and thus x E GLp,(f& 
Thus the error of GL,p,(fz) with respect to f2 and Vt 
(which is just Vt[GL,n,( fs)A-t;]) is at least Vt[x] = 
& cf=,( 1 - &)i = 1 - (1 - &)t+l. This can be 
made as close to 1 as desired for t large enough, con- 
tradicting the claim that L is a learn 

Note that Theorem 1 holds even if the learning al- 
gorithm is given unbounded computation time. 

The ypothesis Method 
Theorem 1 shows that there is no hope of simply run- 
ning a PAC algorithm and hoping that direct com- 
parison (with respect to 2) of the independently com- 
puted hypothesis concepts will provide accurate inclu- 
sion testing. In this section we begin the description of 
our approach to providing inclusion testing in a PAC 
setting by computing two hypothesis concepts on each 
independent run, rather than a single hypothesis. 

We begin with a theorem proving that if inclusion 
fails to hold between a pair of e-fair target concepts, 
inclusion must also fail to hold for any e-good hypothe- 
ses. 

Theorem 3 Let fi and f2 be concepts over X satis- 
fying fi 2 f2, and let V be a distribution over X such 
that V[f2 - fi] 2 2~ (thus, (fl, f2) is e-fair with respect 
to V). If hl is a concept over X that is e-good with re- 
spect to fi and V, and h2 is a concept over X that is 
e-good with respect to f2 and V, then hl 2 ha. 

Proof: Suppose for contradiction that hl 1 h2. 
Then on each point x E (f2 - fl), either x E hlAf1 or 
x E hAf2, so V[fiAh]+V[f2Ahz] 2 V[fi-fl] 2 2~. 
Thus we must have either V[fiAhl] 2 c or V[fiAh,] 
c, a contradiction. 

1 
Theorem 3) 

Stated in the contrapositive, Theorem 3 tells us that 
if we can find any c-good hypothesis hl for fi and any 
c-good hypothesis h2 for f2 such that hl _> h2, then 
we may assert with confidence that fi > f2. This 
suggests the following approach to design&g learning 
algorithms that support inclusion testing in the PAC 
model: when training on a target concept f, rather 
than trying to find a single c-good hypothesis h, the 
learning algorithm should try to find many “different” 
hypotheses (h’, . . . , hk), each one c-good for f. Then 
given the hypothesis list (hi, . . . , hf) from a run on fi 
and the hypothesis list (hi,. . . , hi) from a run on f2, 
we assert that fi _> f2 if and only if for some 1 5 
i, j 5 L, we have hf 2 hi. If all hypotheses are e-good 
with respect to the corresponding target, Theorem 3 
guarantees that no false inclusions will be detected; 
it remains to determine conditions on the hypothesis 
lists that will guarantee that all true inclusions will 
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be detected. We call this generic scheme the multiple 
hypothesis method. 

Theorem 1 proves that the Ic = 1 case of the multiple 
hypothesis method must always fail. We will shortly 
prove that for many concept classes of interest, the 
Ic = 2 case can be made to work. 

The intuition is that we would like to use two hy- 
pothesis concepts to upper and lower bound the target 
concept. Thus, when learning f we should find one 
c-good hypothesis h” that is more specific than f (that 
is, h” C_ f), and another c-good hypothesis hg that is 
more general than f (that is, hg ,> f). Our hypothesis 
list will then be (h”, hg). Note that if fi 2 f2, then 
we have hf ,> fl 2 f2 _> h& so the inclusion will be 
detected correctly by the comparison method for the 
lists (hi, hy ) and (h$, h;) g iven above. The hypotheses 
hS, and h; are not used to answer the test fi 2 f2, but 
are used for the test f2 _> fi. 

Unfortunately, for almost every class of interest (in- 
cluding all those mentioned in this paper) it is difficult 
to find one of h” and h 9. As an example of the diffi- 
culty, for Boolean conjunctions the set g(S) of maxi- 
mally general conjunctions consistent with a set S of 
positive and negative examples can grow expynentially 
in the number of variables (Haussler 1988). 

However, in the next section we show that for many 
concept classes, while it may be difficult to find a suit- 
able hg (or hS) we can nevertheless successfully simu- 
lute the above approach. 

The idea is to replace the idealized h” and hg described 
above with a “weak” hypothesis hwk and a “strong” hy- 
pothesis hst . The names are a reference to the number 
of examples used to obtain each hypothesis, as will be- 
come clear shortly. We think of h wk as playing the role 
of h”, and hst as playing the role of hg. As before, hwk 
will be more specific than the target concept f, that 
is hwk G f. In contrast to the idealized hg , however, 
hst will also obey hst C f. Thus, our hypothesis list 
(hwk, hSt) for f will consist of two overly specific hy- 
potheses. The key property we will guarantee is that 
if fi 2 f2, and we run our learning algorithm once 
using fi to obtain (hr”, hit) and again independently 
using f2 to obtain (hyk, hst), then with high probabil- 
ity hit _> hZJk. We now explain the intuition behind 
our algorithm’s computation of h,“” and hit. 

We return to the example of learning axis-parallel 
rectangles in the plane to illustrate our ideas. Suppose 
fi and f2 are rectangles such that fi 2 f2. Consider 
first the computation of hyk, when EX(f2, V) is the 
source of examples. Our algorithm will take a certain 
number m& of positive examples of f2 (where m,& is 
determined by the analysis), and set hy” be the most 
specific rectangle including all these positive examples 

4Note that it is not enough to find any element of both 
the “lower version space” S(S) and the “upper version 
space” O(S) (Mitchell 1982); here we actually need to know 
that the chosen elements are truly more specific and more 
general than the target. 

(see Figure 1, where each * represents a positive exam- 
ple of f;! received by the algorithm during its compu- 
tation of h?Jk). 

For the analysis, consider the four rectangular sub- 
regions L,R,T and B of f2 that are respectively flush 
with the left, right, top and bottom of f2, as shown 
in Figure 1. Define these regions to each have weight 
exactly 5 ,&$ under the distribution V (thus they 
may have differing areas). We now wish to argue that 
L, R, T, B C (f2 - hYk), as shown in Figure 1; thus 
hyk has “missed” a “significant” part of f2 on all four 
sides, where by “significant” we mean weight td 
with respect to V. To see this, note that the probabil- 
ity that we hit L at least once in m& examples is at 
most (a = k. Thus the probability we fail to 

w ’ hit L is at least 1 - - , in which case L & (f2 - hyk). 

The same analysis o%!ously holds for the regions R,T _ - 
and B. 

--a- 

l 
f2 fll 

Figure 1. 
Now consider our algorithm’s independent compu- 

tation of hit, when EX(fi,V) is the source of exam- 
ples. With respect to correctly detecting the inclusion 
fl ,> f2, the intuitive goal of this computation is to 
hit all four of the subregions L,R,T and B of f2 de- 
fined above. Note that since each of the subregions 
has weight exactly (b under V, then if we take 

mst 23 (mwk)3 p osi ive examples of fi from V, then t 
with probability considerably greater than I- & we 
will have at least one hit in each of the four &bre- 
gions. Our hypothesis hit is the most specific rectan- 
gle including all the positive examples of fi. If all four 
subregions were hit on this run, and none of them were 
hit in the computation of hrk, then it is easily verified 
that hit 1 hyk, as desired. These two events occur si- 
multaneously with probability at least 1 - e, so for 
mwk large enough we detect the inclusion gith high 
probability. 

The informal analysis given here exploits the geom- 
etry of rectangles. In the following section we give our 
main algorithm, a generalization of the algorithm for 
rectangles, and state a theorem showing that it works 
under rather general circumstances, even when this ge- 
ometric intuition is absent. We emphasize that the 
sample sizes suggested here were for illustrative pur- 
poses only. The proposed algorithm is actually consid- 

‘Distributions ZJ that defy such a definition are handled 
in the full proof; here we simply sketch the intuition. 
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erably more efficient, and can be further improved as 
will be shown in a later section. 

The ain Algorithm 
We first develop the necessary definitions and machin- 
ery for our algorithm. Let 3 be any class of concepts 
over X, and let S C X be any set of positive exam- 
ples of f E 3. Then we define minF(S) to be the 
unique most specific concept in 3 that includes the 
set S - that is, minF(S) is the concept f' E 3 sat- 
isfying f’ ,> S, and for any f” E 3 such that f" 2 S 
we have f” > f’. If no such f’ exists, then minF(S) is 
undefined. 

There is a characterization of the classes for which 
minF(S) is always defined due to (Natarajan 1987). 
We say that 3 is closed under intersection if for any 
fi,,f2 E3we have finf2 ~3. 
Theorem 4 (Natarajan 1987) Let 3 be a concept 
class over X. Then minF(S) is defined for every set 
S of positive examples of any f E 3 if and only if 3 
is closed under intersection, and furthermore we have 
minm = nftEF,f13S ft. 

We next define the well-known Vupnik-Chervonenkis 
dimension of a class 3. 

Definition 3 Let 3 be a concept class over X and let 
S be a finite subset of X. Then S is shattered by 3 if 
l{f n s : f E 3}/ = 2w 

Definition 4 Let 3 be a concept class. The Vapnik- 
Chervonenkis (VC) d imension of 3 is the largest in- 
teger d such that there exists a set S of cardinality d 
that is shattered by 3. If no such d exists, the VC 
dimension is infinite. 

Our algorithm is defined for any class 3 that is 
closed under intersection and has finite VC dimension, 
and is given below. 
Main Algorithm: 

1. Take ?nvrk = 0( $ log i) random examples of the 
unknown target function f E 3 from the oracle 
EX( f, V), where d is the VC dimension of 3. Ig- 
nore the negative examples received, and let Swk be 
the set of positive examples received. 

2. Compute hwk = minF(S”“). 

3. Take m,t = 0( $ log2 i) additional random exam- 
ples from EX(f,V), and let SSt be the set of positive 
examples received. 

4. Compute hst = minF(Swk U Sst). 

5. Output (hwk, hst). 

Recall our method for answering an inclusion test 
for targets fi, f2 E 3: if the algorithm is run once 
using target concept fi and outputs (hpk, hit), and 
run independently using target concept f2 and outputs 
(hJJk, hst), then we assert that fi _> f2 if and only 
if hit 1 hyk 

wk 
, and assert that f2 _> fi if and only if 

list > h 2- 1. 
The central theorem we give is the following: 

Theorem 5 Let 3 be any concept class over X that is 
closed under intersection and has VC dimension d. Let 
V be any distribution over X, and let (fl, f2) E 3 x 3 
be e-fair with respect to V. Then if the Main Algorithm 
is run once using oracle EX( fi , V) and again indepen- 
dently using oracle EX(fz,V), then with probability at 
least 1 - 6, we have 

e (Learning) hpk and hit will both be e-good with re- 
spect to fi and V, and hyk and hGt will both be e-good 
with respect to f2 and V, and 

e (Inclusion Testing) hit > hTk if and only if fi _> f2, 
and Qt _> hyk if and only if f2 _> fi. 

Furthermore, if minF(S) can always be computed in 
time polynomial in ISI, then the Main Algorithm runs 
in time polynomial in :, i and d. 

Proof: (Outline) The details of the proof are omit- 
ted; here we simply sketch the main ideas. That all 
four hypotheses are c-good for their corresponding tar- 
gets follows from a standard PAC analysis; see (Blumer 
et al. 1989). That no false inclusions will be detected 
follows immediately from Theorem 3. To show that 
a true inclusion fi _> f2 will be detected, we argue in 
two steps. First, we must show that the region f2 -hit 
will have such small weight under V that m,& exam- 
ples from V are unlikely to hit the region. This can 
be shown with a VC dimension analysis using tools of 
(Blumer et al. 1989), and a simple probabilistic argu- 
ment. Second, given that the r&k examples drawn to 
compute hyk miss the region fl - hst, we must show 
hTk C hit. This follows from the fact that 3 is closed 
under intersection. Theorem 5) 

Note that the Main Algorithm requires only posi- 
tive examples. There is a straightforward dual to the 
algorithm that uses only negative examples (in order 
to find weak and strong maximally general hypothe- 
ses) that is provably correct for any class closed under 
union. 

Comments and 
We begin by noting that our Main Algorithm meets the 
three conditions given in the Introduction and Motiva- 
tion section in the strongest possible sense. Oblivious- 
ness follows immediately from the fact that each run 
of the Main Algorithm uses examples of only a sin- 
gle target concept, and is statistically independent of 
all other runs. The pool of hypothesis pairs (hyk, hft) 
clearly form a closed system since we need only con- 
sult the two pairs corresponding to target concepts fi 
and fj to determine the relationship between fi and fj. 
The hypothesis pairs are the most succinct representa- 
tion we could possibly hope for in light of Theorem 1. 

It is well-known that minF(S) can be efficiently 
computed for the classes of axis-parallel rectangles 
in n dimensions (Blumer et al. 1989)) conj unc- 
tions of Boolean literals and k-CNF formulae over 
the n-dimensional hypercube (Valiant 1984), and sub- 
spaces of certain n-dimensional vector spaces (Helm- 
bold, Sloan and Warmuth 1990). To all of these classes 
we may immediately apply the Main Algorithm and 
obtain an algorithm running in time polynomial in $, 
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i and n, thus providing reliable inclusion testing. The 
same holds for the dual algorithm for the dual classes. 

The time and sample complexity of the Main Algo- 
rithm are dominated by the strong sample size m,t. In 
this section we describe a method that applies only to 
certain classes, but greatly reduces m,t and hence the 
complexity of our algorithm. We again illustrate the 
main idea using the example of axis-parallel rectangles 
in the plane. Recall that if we have rectangles fi 2 fi, 
then the goal in computing hi’ is to hit all four of 
the regions L, R,T and B ( see Figure l), where each of 
these four regions had a certain small but significant 
weight p (where p = &) under 23. 

The key observation ys if we can somehow make p 
larger while still forcing all four regions to be con- 
tained in f2 - hyk, then we can make m,t smaller, 
since the regions we are trying to hit now have larger 
weight under 2). To do this, we modify the compu- 
tation of the weak hypothesis for our Main Algorithm 
(described here for the target fz) as follows: starting 
with h,W” = min~(S”~) where Swk is the set of positive 
examples, we “squeeze in” each side of h$‘” until a frac- 
tion 5 of the examples are misclassified on each side 
(see Figure 2). Note that we are essentially setting 
h yk = mini for an appropriately chosen subset 
S’ 5 SWk. Since this results in only 5 of the examples 
being misclassified by hyk, it is easy to show that hyk 
is still r-good for f2. Now, however, we may define the 
regions L,R,T and B so that they have weight p = 5. 
This turns out to be considerably larger than the pre- 
vious value for p, and allows the computation of hit in 
the Main Algorithm (which is left unmodified except 
for the new sample size) to take only mSt = O(mwk) 
examples. 
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Figure 2. 

This modified algorithm is easily generalized to work 
for the classes of n-dimensional axis-parallel rectan- 
gles and conjunctions of Boolean literals over the n- 
dimensional hypercube. In these cases the required 
sample sizes now become r&k = o(? log f) and mSt = 
O(? log $), so mSt = O(m,k), and in fact both runs 
have the optimal number of examples required for stan- 
dard PAC learning. 

Recorastructing a ieraschy of Ccmcepts 
So far we have limited our attention to detecting in- 
clusions between any pair of target concepts. In this 

section we give methods for reconstructing an entire 
inclusion hierarchy of target concepts using pairwise 
inclusion tests among the hypotheses. 

Suppose that our Main Algorithm will be called 2 
times on target concepts fi, . . . , fl. Then if we set 
the confidence input on each run to be b, where 6 is 
the overall confidence we wish to achieve, it is easy to 
show that with probability at least 1 - S, the inclusion 
tests between any two hypothesis pairs (hi”‘“, hgtj and 
(hj”“, hjt) will correctly determine the inclusion rela- 
tionship between fi and fj. 

We have a number of significant improvements to 
this method that we now describe. First of all, the 
method as stated has an undesirable dependence on 1. 
In many cases we may not know the value of 1 in ad- 
vance. We can in fact give an “on-line” version of this 
method: if the Main Algorithm is run on a sequence of 
target concepts fi, . . . ,fi,. . . of unknown length, then 
for any value of i the ith run of the algorithm takes time 
polynomial in i (and the other usual parameters). The 
simple trick used is to divide up the confidence param- 
eter S grudually over the runs (using an appropriate 
decreasing sequence such as &), rather than allot- 
ting an equal portion of 6 as is done above. We can 
also give a reconstruction method in which each run 
of the Main Algorithm takes time polynomial in the 
hierarchy depth instead of the size. 

Following any of these methods, we can also implic- 
itly propagate positive examples upwards through the 
hierarchy in a useful way. The basic idea is most easily 
illustrated for the case of Boolean conjunctions of lit- 
erals. Suppose that our algorithm has output two hy- 
pothesis conjunction pairs (hyk, hit) and (hyk, h;t) for 
unknown target conjunctions fi and f2, and we guess 
that fl _> f2 because hit _> h?fk. Then assuming this 
guess is correct, we can do the following: if the variable 
~i does not appear in hst then we are safe in deleting 
si from Ihit (we will refer to the resulting conjunction 
as the modified strong conjunction for fi). The reason 
for this is that if fi _> f2, pi was deleted from hit due 
to a positive example of f2 in which zi = 0. Since this 
is also a positive example of fi , the deletion is justified 
in hit as well. 

Thus, starting from the bottom of the hierarchy, we 
propagate all deletions in the strong conjunction of a 
node upwards to the strong conjunction of the node’s 
parent, to obtain modified strong conjunctions for all 
nodes except the leaves. This method has two advan- 
tages: first, propagating the deletions upwards results 
in modified strong conjunctions of greater accuracy; 
and second, the concept represented by the modified 
strong conjunction of any node will actually be a sub- 
set of the concept represented by the modified strong 
conjunction of that node’s parent. This provides an 
interesting contrast to Theorem 1, which essentially 
shows that directly obtaining such conjunctions as the 
output of the learning algorithm is impossible. Here we 
have shown that such conjunctions can be constructed 
once all hypothesis pairs are available. 

This same method applies to the Main Algorithm: 
the operation that is analogous to propagating dele- 
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tions upwards is simply letting the modified strong hy- 
pothesis for fl be the most specific representation h in 
J= that satisfies h 1 hit U hst. Such an h is guaranteed 
to exist since r is closed under intersection. 6 

Detecting More Complex Implications 
Consider the following straightforward reformulation 
of the inclusion testing problem as a limited type of 
logical inference using learned representations: after 
(independent) training on target concepts fi and fj, 
we would like to use the hypothesis representations Q 
and Tj output by a learning algorithm to determine the 
validity of logical assertions of the form fi =+ fj (short- 
hand for (Vz E X)[fi 
are thinking of fi 

z) = 1 j fi (z) = 11). Here we 
an 6 fj as logical predicates whose 

exact description is inaccessible, and only the learned 
hypothesis representations may be used to determine 
the validity of the assertion. This reformulation nat- 
urally leads us to ask if more complex assertions can 
also be accurately validated using the methods we have 
presented. Here we briefly sketch the possibilities and 
apparent limitations in this direction. 

For instance, consider formulae of the form 
(Vf=lfi) + fj. S UC a h f ormula is valid if and only if 
we have fi E fj for all 1 < i 5 k, so we can use the hy- 
pothesis pairs ( hyk, hft) (from independent runs of the 
Main Algorithm) to guess that (Vi”=, fi) a fj is valid 
if and only if we have hyk C hj” for all 1 5 i 5 k. It is 
easy to prove that under our assumption that the tar- 
get functions are pairwise c-fair with respect to V, this 
test will with high probability give the correct result 
for any class F meeting the conditions of Theorem 5. 
For similar reasons, we can determine the validity of 
fj a (/\FZ1 fi) by checking that we have hi”” C hft for 
all 1 5 i 5 k. 

A more subtle example is formulae of the form 
fj + (Vf==,fi). When the targets are drawn from 
a class F that is closed under intersection, if such a 
formula is valid we will have (with high probability) 
hrk n fi c hft for each 1 5 i < k, since hi”” n fi E F. 
From this we obtain uhl(hrknfi) E Ufllhft, or equiv- 
alently hyk n (Ufzl fi) z $, hft. Since hrk n (uf=, fi) 
is equivalent to hrk whenever fj E (Uf=, fi) (because 
hi”” E fj always), this means we can test the validity 
of the formula by checking that hi”” E (Uf=, hit). 

The formula type (A;= 1 fi) + 1’ is one for which 
there is no apparent method for using our Main Algo- 
rithm’s hypothesis pairs to determine validity. Thus 
it is worth emphasizing that the ability to detect sim- 
ple implications using learned representations does not 
automatically imply the ability to perform general in- 
ference - although our methods handle a number of 

61n order to safely apply this method, it is crucial that 
all pairs of target representations in the hierarchy be r-fair. 
Otherwise, our algorithm may detect false inclusions, in 
which case the upward propagation is unjustified and may 
result in modified strong hypotheses with large error with 
respect to ‘D. 

formula types, they fail on others, and in general we 
must expect that different hypothesis representations 
may support or omit various assertion types. 

Other Results and Conclusion 
Our Main Algorithm can be modified to apply to some 
settings in which minF(S) may not be defined. We can 
give algorithms that provide accurate inclusion testing 
for conjunctions of Boolean literals even in the pres- 
ence of a large rate of classification noise (based on a 
PAC algorithm due to (Angluin and Laird 1988)), and 
accurate inclusion testing for monotone DNF formula 
in the PAC model with membership queries (based on 
an algorithm due to (Angluin 1988)). 

We also have results on applying our methods to 
detect the validity of formulae in mixed logic, where 
we allow both target function symbols fi, and exact 
descriptions of defined concepts. An example of such 
a formula is fi 3 (fj V ~r?Es~s). Here fi and fj are 
target functions whose exact descriptions are Boolean 
conjunctions (but which we can reason about only via 
learned hypothesis representations), and ziZs25 is the 
exact description of a conjunction over the same vari- 
able set. 

In conclusion, in this paper we have introduced a 
new model for studying the detection of inclusions be- 
tween independently learned target concepts, and have 
given an algorithm in this model that is efficient, uses 
minimal shared information between runs, and has op- 
timally succinct hypothesis representations. 
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