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Di�culties in Comparing
Machine Learning Heuristics

One of the original goals of computational learning
theory was that of formulating models that permit
meaningful comparisons between the di�erent machine
learning heuristics that are used in practice [Kearns
et al., 1987]. Despite the other successes of com-
putational learning theory, this goal has proven elu-
sive. Empirically successful machine learning algo-
rithms such as C4:5 and the backpropagation algo-
rithm for neural networks have not met the criteria
of the well-known Probably Approximately Correct
(PAC) model [Valiant, 1984] and its variants, and thus
such models are of little use in drawing distinctions
among the heuristics used in applications. Conversely,
the algorithms suggested by computational learning
theory are usually too limited in various ways to �nd
wide application.

The Theoretical Status
of Decision Tree Learning

As an illustration, let us review what has been dis-
covered about decision tree learning algorithms in the
computational learning theory literature. Consider the
simple framework in which a learning algorithm re-
ceives random examples, uniformly drawn from the
hypercube f0; 1gn, that are assigned binary labels ac-
cording to some decision tree T that has at most s
nodes. A natural goal would be to �nd an algorithm
that can infer a good approximation to T in time and
sample complexity that is bounded by a polynomial in
n and s. 1

The existence of such an algorithm remains an ap-
parently challenging open problem, so even with the
various favorable and unrealistic assumptions (uniform
input distribution, no noise or missing attributes in the
data, the existence of a small \target" tree, and so on),
computational learning theory has so far not provided

1Here we are in the PAC model, where there is no noise
in the sample data, with the additional restriction that the

input distribution is uniform.

vast advances in algorithm design for decision tree in-
duction from random examples. On the other hand, in
the framework under consideration, the heuristics for
decision tree learning that are in wide experimental use
do not fare much better. It is rather easy to show that
CART and C4:5 will fail to meet the stated criteria,
and for the usual reasons: if the target decision tree
computes the parity of just two out of the n variables,
top-down heuristics like CART and C4:5 may simply
build a complete binary tree of depth n before achiev-
ing non-trivial error. Of course, this particular con-
struction does not rule out the possibility that slight
modi�cations of the standard heuristics might succeed
| but a recent result [Blum et al., 1994] demonstrated
that small decision trees can not be learned by any al-
gorithm that works solely by \estimating conditional
probabilities" [Kearns, 1993]. The precise de�nition
of this notion is slightly technical, but su�ce to say
that CART and C4:5 | which operate primarily by
estimating the probabilities of reaching certain nodes
in a decision tree, or the conditional distribution of
the label given that a node is reached | are canoni-
cal examples of the notion. Thus, although computa-
tional learning theory has yet to suggest powerful al-
gorithms for decision tree learning from random exam-
ples, we can assert that if such algorithms exist, they
will look nothing like the standard heuristics. Perhaps
the more likely outcome is that the problem is sim-
ply intractable. This would mean that the assumption
that a small decision tree is labeling the data is not
especially helpful when examining decision tree learn-
ing algorithms, and we must seek alternative assump-
tions if we wish to account for the empirical success of
CART and C4:5.

Provably e�cient algorithms become available if we
are willing to assume that the learning algorithm is
provided with black-box access to the unknown tar-
get decision tree (that is, membership queries, which
let the learner actively choose the instances to be la-
beled). A number of rather simple and elegant learn-
ing algorithms have recently been proposed in this set-
ting [Bshouty, 1993; Kushilevitz and Mansour, 1991]
that will infer the unknown tree in polynomial time,



in strong contrast to the case where only random ex-
amples are available. However, because of the require-
ment for a source of information rarely available in real
applications, these algorithms seem unlikely to replace
the top-down heuristics, and their analysis sheds no
light on why such heuristics succeed.

Viewing Top-Down Decision Tree
Heuristics as Boosting Algorithms

The preceding summary indicates that some of the
models of computational learning theory are unable to
provide nontrivial insights into the behavior of CART
and C4:5. One might be tempted to attribute this
state of a�airs to an inevitable chasm between theory
and practice | that is, to claim that the standard
heuristics succeed in practice due to some favorable
structure possessed by real problems that simply can-
not be captured by theory as we currently know it.
Fortunately, some recent developments seem to demon-
strate that such a defeatist position is not necessary.
The weak learning or boosting model is a descen-

dant of the PAC model in which, rather than directly
assuming that the target function can be represented
in a particular fashion, we instead assume that there is
always a \simple" function that is at least weakly cor-
related with the target function. We refer the reader to
the literature for the precise technical de�nition, but
for our informal purposes here, it su�ces to assume
that on any input distribution, there is an attribute
whose value is correlated with the label.
In this setting, nontrivial performance bounds

have recently been proven for both CART and
C4:5 [Kearns and Mansour, 1996]. More precisely,
if we assume that there is always an attribute whose
value correctly predicts the binary label with probabil-
ity 1=2 + 
 (thus, the attribute provides an advantage

 over random guessing), then for CART it su�ces to
grow a tree of size
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in order to achieve error less than � (where c > 0 is a
constant), and for C4:5, a tree of size
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su�ces (see [Kearns and Mansour, 1996] for detailed
statements and proofs). These bounds imply, among
other things, that if we assume that the advantage 

is a �xed constant, then both algorithms will drive the
error below any �xed � in a constant number of splits.
Until the result of [Schapire, 1990], the existence of
any algorithm | much less a standard heuristic |
possessing this \boosting" behavior was not known.
The results given by Equations (1) and (2) provide
nontrivial peformance guarantees forCART andC4:5
in an independently motivated theoretical model.

A Framework for Comparisons
The theoretical results for CART and C4:5 in the
weak learning model do more than simply reassure us
that these empirically successful algorithms can in fact
be proven successful in a reasonable model. As one
might have hoped, these results also provide a techni-
cal language in which one can attempt to make detailed
comparisons between algorithms. Developing this lan-
guage further has been the focus of our recent exper-
imental e�orts [Dietterich et al., 1996], which we now
summarize.
First of all, notice that the bounds of Equations (1)

and (2) predict that the performance ofC4:5 should be
superior to that of CART. In the analysis of [Kearns
and Mansour, 1996], there are good technical reasons
for this di�erence that are beyond our current scope,
but that have to do with the di�ering concavity of the
information gain splitting criterion used by C4:5 and
the Gini splitting criterion used by CART. Further-
more, again based on concavity arguments, they also
suggest a new splitting criterion that enjoys an even
better bound of �
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on the tree size required to achieve error �. In [Diet-
terich et al., 1996] we demonstrate experimentally that
this new splitting criterion results in small but statis-
tically signi�cant improvements in accuracy and tree
size over C4:5, so the weak learning analysis seems to
have pointed us to some modest improvements to the
standard algorithms.
Another intriguing issue raised by the theoretical re-

sults emerges if one compares any of Equations (1),
(2) and (3) to the bounds enjoyed by the recently
introduced Adaboost algorithm due to [Freund and
Schapire, 1995], which requires only
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\rounds" (where each round is roughly analogous to
a single split made by a top-down decision tree al-
gorithm) to achieve error �. The naive interpreta-
tion of this bound, which is only the logarithm of the
best bound achieved by a top-down decision tree al-
gorithm given by Equation (3), would lead us to pre-
dict that Adaboost should vastly outperform, for in-
stance, C4:5. In practice, the two algorithms are in
fact rather comparable [Freund and Schapire, 1996;
Dietterich et al., 1996]. In the latter citation, we pro-
vide extensive experimental evidence that this discrep-
ancy between the disparate theoretical bounds and the
parity of the algorithms on real problems can be ex-
plained by our interpretation of the advantage param-
eter 
. Brie
y, while theoretical boosting results often
assume for convenience that there is a simple function
with a predictive advantage of 
 over random guess-
ing on any input distribution, in reality this advan-
tage varies from distribution to distribution (possibly



degrading to the trivial value of zero on \hard" distri-
butions). Since Adaboost and C4:5 explore very dif-
ferent spaces of input distributions as they grow their
hypotheses, and since the theoretical bounds are valid
only for the smallest advantage 
 that holds on the dis-
tributions actually explored by the algorithm in ques-
tion, 
 has di�erent meaning for the two algorithms.
In [Dietterich et al., 1996], we plot the advantages for
each algorithm and demonstrate that while the theo-
retical bounds for a �xed advantage 
 may be worse
for C4:5 than for Adaboost, the value of 
 achieved
on real problems is better . This empirical fact largely
reconciles the theoretical statements with the observed
behavior.
Thus, although the weak learning model provides

what seems to be the right parameter to study (namely,
the advantage 
), experimental examination of this pa-
rameter was required for real understanding of what
the theory was saying and not saying. This kind of in-
teraction | where the theory suggests improvements
to the popular algorithms, and experimentation with
these algorithmsmodi�es our interpretation of the the-
ory | seems like a good �rst step towards the goal
mentioned at the outset. There is of course still much
work to be done to further close the gap between theory
and practice; but at least in the case of decision tree
learning, the weak learning framework seems to have
provided some footholds that were missing in previous
models.
In the bibliography, we provide some additional ref-

erences on the topics discussed here.
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