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Abstract. We study a very general class of games — multi-dimensional
aggregative games — which in particular generalize both anonymous
games and weighted congestion games. For any such game that is also
large, we solve the equilibrium selection problem in a strong sense. In
particular, we give an efficient weak mediator : a mechanism which has
only the power to listen to reported types and provide non-binding sug-
gested actions, such that (a) it is an asymptotic Nash equilibrium for
every player to truthfully report their type to the mediator, and then
follow its suggested action; and (b) that when players do so, they end up
coordinating on a particular asymptotic pure strategy Nash equilibrium
of the induced complete information game. In fact, truthful reporting is
an ex-post Nash equilibrium of the mediated game, so our solution ap-
plies even in settings of incomplete information, and even when player
types are arbitrary or worst-case (i.e. not drawn from a common prior).
We achieve this by giving an efficient differentially private algorithm for
computing a Nash equilibrium in such games. The rates of convergence
to equilibrium in all of our results are inverse polynomial in the num-
ber of players n. We also apply our main results to a multi-dimensional
market game.

Our results can be viewed as giving, for a rich class of games, a more
robust version of the Revelation Principle, in that we work with weaker
informational assumptions (no common prior), yet provide a stronger
solution concept (ex-post Nash versus Bayes Nash equilibrium). In com-
parison to previous work, our main conceptual contribution is showing
that weak mediators are a game theoretic object that exist in a wide
variety of games – previously, they were only known to exist in traffic
routing games. We also give the first weak mediator that can implement
an equilibrium optimizing a linear objective function, rather than imple-
menting a possibly worst-case Nash equilibrium.

Keywords: differential privacy, equilibrium computation, mechanism
design

The full version of this extended abstract can be found on arXiv [9].
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1 Introduction

Games with a large number of players are almost always played, but only some-
times modeled, in a setting of incomplete information. Consider, for example,
the problem of selecting stocks for a 401k portfolio among the companies listed
in the S&P500. Because stock prices are the result of the aggregate decisions
of millions of investors, this is a large multi-player strategic interaction, but
it is so decentralized that it is implausible to analyze it in a complete infor-
mation setting (in which every player knows the types or utilities of all of his
opponents), or even in a Bayesian setting (in which every agent shares common
knowledge of a prior distribution from which player types are drawn). How play-
ers will behave in such interactions is unclear; even under settings of complete
information, there remains the potential problem of coordinating or selecting a
particular equilibrium among many.

One solution to this problem, recently proposed by Kearns et al. [20] and Rogers
and Roth [28], is to modify the game by introducing a weak mediator, which es-
sentially only has the power to listen and to give advice. Players can ignore the
mediator, and play in the original game as they otherwise would have. Alter-
nately, they can use the mediator, in which case they can report their type to it
(although they have the freedom to lie). The mediator provides them with a sug-
gested action that they can play in the original game, but they have the freedom
to disregard the suggestion, or to use it in some strategic way (not necessarily
following it). The goal is to design a mediator such that good behavior – that is,
deciding to use the mediator, truthfully reporting one’s type, and then faithfully
following the suggested action – forms an ex-post Nash equilibrium in the medi-
ated game, and that the resulting play forms a Nash equilibrium of the original
complete information game, induced by the actual (but unknown) player types.
A way to approximately achieve this goal – which was shown in Kearns et al.
[20], Rogers and Roth [28] – is to design a mediator which computes a Nash
equilibrium of the game defined by the reported player types under a stability
constraint known as differential privacy [12]. Prior to our work, this was only
known to be possible in the special case of large, unweighted congestion games.

In this paper, we extend this approach to a much more general class of games
known as multi-dimensional aggregative games (which among other things, gen-
eralize both anonymous games and weighted congestion games). In such a game,
there is a vector of linear functions of players’ joint actions called an aggregator .
Each player’s utility is then a possibly non-linear function of the aggregator
vector and their own action. For example, in an investing game, the imbalance
between buyers and sellers of a stock, which is a linear function of actions, may
be used in the utility functions to compute prices, which are a non-linear function
of the imbalances (see the full version). In an anonymous game, the aggregator
function represents the number of players playing each action. In a weighted con-
gestion game, the aggregator function represents the total weight of players on
each of the facilities. Our results apply to any large aggregative game, meaning
that any player’s unilateral change in action can have at most a bounded influ-
ence on the utility of any other player, and the bound on this influence should
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be a diminishing function in the number of players in the game. Conceptually,
our paper is the first to show that weak mediators are a game-theoretic object
that exists in a large, general class of games: previously, although defined, weak
mediators were only known to exist in traffic routing games [28].

This line of work can be viewed as giving robust versions of the Revelation
Principle, which can implement Nash equilibria of the complete information
game using a “direct revelation mediator,” but without needing the existence of a
prior type distribution. Compared to the Revelation Principle, which generically
requires such a distribution and implements a Bayes Nash equilibrium, truth-
telling forms an ex-post Nash equilibrium in our setting. We include a comparison
to previous work in Table 1.

Finally, another important contribution of our work is that we are the first to
demonstrate the existence of weak mediators (in any game) that have the power
to optimize over an arbitrary linear function of the actions, and hence able to
implement near optimal equilibria under such objective functions, rather than
just implementing worst-case Nash equilibria.

Mechanism Class of Games Common
Prior?

Mediator
Strength

Equilibrium
Implemented

Revelation
Principle

[24]
Any Finite Game Yes Weak Bayes Nash

Kearns et al.
[20]

Any Large Game No Strong Correlated

Rogers and
Roth [28]

Large Congestion Games No Weak Nash

This Work Aggregative Games No Weak Nash

Table 1. Summary of truthful mechanisms for various classes of games and solution
concepts. Note that a “weak” mediator does not require the ability to verify player
types. A “strong” mediator does. Weak mediators are preferred.

1.1 Our Results and Techniques

Our main result is the existence of a mediator which makes truthful reporting of
one’s type and faithful following of the suggested action (which we call the “good
behavior” strategy) an ex-post Nash equilibrium in the mediated version of any
aggregative game, thus implementing a Nash equilibrium of the underlying game
of complete information. Unlike the previous work in this line [20, 28], we do
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not have to implement an arbitrary (possibly worst-case) Nash equilibrium, but
can implement a Nash equilibrium which optimizes any linear objective (in the
player’s actions) of our choosing. We here state our results under the assumption
that any player’s action has influence bounded by (1/n) on other’s utility, but
our results hold more generally, parameterized by the “largeness” of the game.

Theorem 1 (Informal). In a d-dimensional aggregative game of n players and
m actions, there exists a mediator that makes good behavior an η-approximate
ex-post Nash equilibrium, and implements a Nash equilibrium of the underlying
complete information game that optimizes any linear objective function to within
η, where

η = O

( √
d

n1/3
· polylog(n,m, d)

)
.

It is tempting to think that the fact that players only have small influence on
one another’s utility function is sufficient to make any algorithm that computes
a Nash equilibrium of the game a suitable weak mediator, but this is not so (see
Kearns et al. [20] for an example). What we need out of a mediator is that any
single agent’s report should have little effect on the algorithm computing the
Nash equilibrium, rather than on the payoffs of the other players.

The underlying tool that we use is differential privacy, which enforces the sta-
bility condition we need on the equilibrium computation algorithm. Our main
technical contribution is designing a (jointly) differentially private algorithm for
computing approximate Nash equilibria in aggregative games. The algorithm
that we design runs in time polynomial in the number of players, but exponen-
tial in the dimension of the aggregator function. We note that since aggrega-
tive games generalize anonymous games, where the dimension of the aggrega-
tor function is the number of actions in the anonymous game, this essentially
matches the best known running time for computing Nash equilibria in anony-
mous games, even non-privately [10]. Computing exact Nash equilibria in these
games is known to be PPAD-complete [7]. Recent work of Barman and Ligett [5]
showed that the equilibrium selection problem is also hard, even for more general
solution concepts — it is NP-hard to compute a coarse correlated equilibrium
that achieves a non-trivial approximation to the optimal welfare.

In the process of proving this result, we develop several techniques which
may be of independent interest. First, we give the first algorithm for computing
equilibria of multi-dimensional aggregative games (efficient for constant dimen-
sional games) even in the absence of privacy constraints — past work in this area
has focused on the single dimensional case [4, 19]. Second, in order to implement
this algorithm privately, we develop the first technique for solving a certain class
of linear programs under the constraint of joint differential privacy.

We also give similar results for a class of one-dimensional aggregative games
that permit a more general aggregation function and rely on different techniques,
and we show how our main result can be applied to equilibrium selection in a
multi-commodity market. The details are deferred to the full version [9].
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1.2 Related Work

Conceptually, our work is related to the classic Revelation Principle of Myer-
son [24], in that we seek to implement equilibrium behavior in a game via a
“mediated” direct revelation mechanism. Our work is part of a line, starting
with Kearns et al. [20] and continuing with Rogers and Roth [28], that attempts
to give a more robust reduction, without the need to assume a prior on types.
Kearns et al. [20] showed how to privately compute correlated equilibria (and
hence implement this agenda) in arbitrary large games. The private computation
of correlated equilibrium turns out to give the desired reduction to a direct reve-
lation mechanism only when the mediator has the power to verify types. Rogers
and Roth [28] rectified this deficiency by privately computing Nash equilibria,
but their result is limited to large unweighted congestion games. In this paper,
we substantially generalize the class of games in which we can privately com-
pute Nash equilibria (and hence solve the equilibrium selection problem with a
direct-revelation mediator).

This line of work is also related to “strategyproofness in the large,” intro-
duced by Azevedo and Budish [3], which has similar goals. In comparison to this
work, we do not require that player types be drawn from a distribution over the
type-space, do not require any smoothness condition on the set of equilibria of
the game, are algorithmically constructive, and do not require our game to be
nearly as large. Generally, their results require the number of agents n to be
larger than the size of the action set and the size of the type set. In contrast,
we only require n to be as large as the logarithm of the number of actions, and
require no bound at all on the size of the type space (which can even be infinite).

Our work is also related to the literature on mediators in games [22, 23]. In
contrast to our main goal (which is to implement solution concepts of the com-
plete information game in settings of incomplete information), this line of work
aims to modify the equilibrium structure of the complete information game. It
does so by introducing a mediator, which can coordinate agent actions if they
choose to opt in using the mediator. Mediators can be used to convert Nash equi-
libria into dominant strategy equilibria [22], or implement equilibrium that are
robust to collusion [23]. Ashlagi et al. [2] considers mediators in games of incom-
plete information, in which agents can misrepresent their type to the mediators.
Our notion of a mediator is related, but our mediators require substantially less
power than the ones from this literature. For example, our mechanisms do not
need the power to make payments [22], or the power to enforce suggested actions
[23]. Like the mediators of Ashlagi et al. [2], ours are designed to work in settings
of incomplete information and so do not need the power to verify agent types
— but our mediators are weaker, in that they can only make suggestions (i.e.
players do not need to cede control to our weak mediators).

The computation of equilibria in aggregative games (also known as summa-
rization games) was studied in Kearns and Mansour [19], which gave efficient
algorithms and learning dynamics converging to equilibria in the 1-dimensional
case. Babichenko [4] also studies learning dynamics in this class of games and
shows that in the 1-dimensional setting, sequential best response dynamics con-
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verge quickly to equilibrium. Our paper is the first to give algorithms for equi-
librium computation in the multi-dimensional setting, which generalizes many
well studied classes of games, including anonymous games. The running time
of our algorithm is polynomial in the number of players n and exponential in
the dimension of the aggregation function d, which essentially matches the best
known running time for equilibrium computation in anonymous games [10].

We use a number of tools from differential privacy [12], as well as develop
some new ones. In particular, we use the advanced composition theorem of Dwork
et al. [14], the exponential mechanism from McSherry and Talwar [21], and the
sparse vector technique introduced by Dwork et al. [13] (refined in Hardt and
Rothblum [16] and abstracted into its current form in Dwork and Roth [11]).
We introduce a new technique for solving linear programs under joint differential
privacy, which extends a line of work (solving linear programs under differential
privacy) initiated by Hsu et al. [17].

Finally, our work relates to a long line of work initiated by McSherry and
Talwar [21] using differential privacy as a tool and desideratum in mechanism
design. In addition to works already cited, this includes Blum et al. [6], Chen
et al. [8], Ghosh and Ligett [15], Kannan et al. [18], Nissim et al. [25, 26], Xiao
[29] among others. For a survey of this area see Pai and Roth [27].

2 Model and Preliminaries

2.1 Aggregative Games

Consider an n-player game with action set A consisting of m actions and a
(possibly infinite) type space T indexing utility functions. Let x = (xi,x−i)
denote a strategy profile in which player i plays action xi and the remaining
players play strategy profile x−i. Each player i has a utility function, u : T ×
An → [−1, 1], where a player with type ti experiences utility u(ti,x) when
players play according to x. When it is clear from context, we will use shorthand
and write ui(x) to denote u(ti,x), the utility of player i at strategy profile x.

The utility functions in aggregative games can be defined in terms of a
multi-dimensional aggregator function S : An → [−W,W ]d, which represents
a compact “sufficient statistic” to compute player utilities. In particular, each
player’s utility function can be represented as a function only of her own ac-
tion xi and the aggregator of the strategy profile x: ui(x) = ui(xi, S(x)). We
also assume W to be polynomially bounded by n and m. In aggregative games,
the function Sk for each coordinate k ∈ [d], is an additively separable function:
Sk(x) =

∑n
i=1 f

k
i (xi).

3

Similar to the setting of Kearns and Mansour [19] and Babichenko [4], we
focus on γ-aggregative games, in which each player has a bounded influence on

3 In the economics literature, aggregative games have more restricted aggregator func-
tion: Sk(x) =

∑n
i=1 xi. The games we study are more general, and sometimes referred

to as generalized aggregative games.
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the aggregator:

max
i

max
xi,x′i∈A

‖S(xi,x−i)− S(x′i,x−i)‖∞ ≤ γ, for all x−i ∈ An−1.

That is, the greatest change a player can unilaterally cause to the aggregator is
bounded by γ. With our motivation to study large games, we assume γ dimin-
ishes with the population size n. We also assume that all utility functions are
1-Lipschitz with respect to the aggregator: for all xi ∈ A, |ui(xi, s)− ui(xi, s′)| ≤
‖s− s′‖∞.4

For γ-aggregative games, we can express the aggregator more explicitly as

Sk(x) = γ

n∑
i=1

fki (xi),

where fki (xi) is the influence of player i’s action xi on the k-th aggregator func-
tion, and also |fki (xi)| ≤ 1 for all actions i ∈ [n] and xi ∈ A. Let fkij = fki (aj),
where aj denotes the j-th action in A.

We say that player i is playing an η-best response to x if ui(x) ≥ ui(x′i,x−i)−
η, for all x′i ∈ A. A strategy profile x is an η-pure strategy Nash equilibrium if
all players are playing an η-best response in x. We also consider mixed strategies,
which are defined by probability distributions over the action set. For any profile
of mixed strategies, given by a product distribution p, we can define expected
utility ui(p) = Ex∼p ui(x) and the expected aggregator

Sk(p) = E
x∼p

Sk(x) = γ

n∑
i=1

m∑
j=1

fkij pij = γ 〈fk,p〉. (1)

The support of a mixed strategy p, denoted Supp(pi), is the set of actions that
are played with non-zero probabilities. A mixed strategy profile p is a mixed
strategy Nash equilibrium if ui(p) ≥ Ex−i∼p−i

ui(x
′
i,x−i) for all i ∈ [n] and

x′i ∈ A.

For each aggregator s, we define the aggregative best response5 for player i
to s as BAi(s) = arg maxxi∈A{ui(xi, s)}, breaking ties arbitrarily. We define the
η-aggregative best response set for player i to s as

η-BAi(s) = {xi ∈ A|ui(xi, s) ≥ max
x′i

ui(x
′
i, s)− η}

to be the set of all actions that are at most η worse than player i’s exact ag-
gregative best response.

4 Note that the influence that any single player’s action has on the utility of others is
also bounded by γ. If γ = o(1/n), then any player’s utility is essentially independent
of other players’ actions. Therefore, we further assume that γ = Ω(1/n) for the
problem to be interesting. This will also simplify some statements.

5 Sometimes called best react [4], and apparent best response [19].



8 Cummings et al.

Remark 1. Note that best response is played against the other players’ actions
x−i, but aggregative best response is played against the aggregator value s. Ag-
gregative best response ignores the effect of the player’s action on the aggregator,
which is bounded by γ; the player reasons about the utility of playing different
actions as if the aggregator value were promised to be s. Nevertheless, aggrega-
tive best response and best response can translate to each other with only an
additive loss of γ in the approximation factor. Furthermore, aggregative best
responses to different aggregators can translate to each other as long as the cor-
responding aggregators are close. If ‖s− s′‖∞ ≤ α, then the actions in η-BA(s)
are also in (η + 2α)-BA(s′).

2.2 Mediated Games

We now define games modified by the introduction of a mediator. A mediator is
an algorithm M : (T ∪{⊥})n → An which takes as input reported types (or ⊥ for
any player who declines to use the mediator), and outputs a suggested action to
each player. Given an aggregative game G, we construct a new game GM induced
by the mediator M . Informally, in GM , players have several options: they can
opt-out of the mediator (i.e. report ⊥) and select an action independently of it.
Alternately they can opt-in and report to it some type (not necessarily their true
type), and receive a suggested action ri. They are free to follow this suggestion or
use it in some other way: they play an action fi(ri) for some arbitrary function
fi : A → A. Formally, the game GM has an action set Ai for each player i
defined as Ai = A′i ∪ A′′i , where

A′i = {(ti, fi) : ti ∈ T , fi : A → A} and A′′i = {(⊥, fi) : fi is constant}.

Players’ utilities in the mediated game are simply their expected utilities
induced by the actions they play in the original game. Formally, they have utility
functions u′i: u

′
i(t, f) = Ex∼M(t)[ui(f(x))]. We are interested in finding mediators

such that good behavior is an ex-post Nash equilibrium in the mediated game.
We first define an ex-post Nash equilibrium.

Definition 1 (Ex-Post Nash Equilibrium). A collection of strategies {σi :
T → Ai}ni=1 forms an η-approximate ex-post Nash equilibrium if for every type
vector t ∈ T n, and for every player i and action xi ∈ Ai:

u′i(σi(ti), σ−i(t−i)) ≥ u′i(xi, σ−i(t−i))− η

That is, it forms an η-approximate Nash equilibrium for every possible vector of
types.

Note that ex-post Nash equilibrium is a very strong solution concept for in-
complete information games because it does not require players to know a prior
distribution over types.

In a mediated game, we would like players to truthfully report their type,
and then faithfully follow the suggested action of the mediator. We call this
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good behavior. Formally, the good behavior strategy is defined as gi(ti) = (ti, id)
where id : A → A is the identity function – i.e. it truthfully reports a player’s
type to the mediator, and applies the identity function to its suggested action.

In order to achieve this, we use the notion of joint differential privacy de-
fined in Kearns et al. [20] (adapted from differential privacy, defined in Dwork
et al. [12]), as a privacy measure for mechanisms on agents’ private data (types).
Intuitively, it guarantees that the output to all other agents excluding player i is
insensitive to i’s private type, so the mechanism protects i’s private information
from arbitrary coalitions of adversaries.

Definition 2 (Joint Differential Privacy [20]). Two type profiles t and t′ are
i-neighbors if they differ only in the i-th component. An algorithmM : T n → An
is (ε, δ)-joint differentially private if for every i, for every pair of i-neighbors
t, t′ ∈ T n, and for every subset of outputs S ⊆ An−1,

Pr[M(t)−i ∈ S] ≤ exp(ε) Pr[M(t′)−i ∈ S] + δ.

If δ = 0, we say that M is ε-jointly differentially private.

We here quote a theorem of Rogers and Roth [28], inspired by Kearns et al.
[20] which motivates our study of private equilibrium computation.

Theorem 2 ([20, 28]). Let M be a mechanism satisfying (ε, δ)-joint differential
privacy, that on any input type profile t with probability 1 − β computes an α-
approximate pure strategy Nash equilibrium of the complete information game
G(t) defined by type profile t. Then the “good behavior” strategy g = (g1, . . . , gn)
forms an η-approximate ex-post Nash equilibrium of the mediated game GM for

η = α+ 2(2ε+ β + δ).

Our private equilibrium computation relies on two private algorithmic tools,
sparse vector mechanism (called Sparse) and exponential mechanism (called
EXP), which allows us to access agents’ types in a privacy-preserving manner.

3 Private Equilibrium Computation

Let G be a d-dimensional γ-aggregative game, and L : An → R be a γ-Lipschitz
linear loss function:

L(x) = γ
∑
i

`i(xi) and L(p) = γ E
x∼p

L(x) = γ
∑
i

〈pij , `ij〉.

where 0 ≤ `i(aj) ≤ 1 for all actions aj ∈ A, and `ij = `i(aj).

Given any ζ ≥ γ
√

8n log(2mn), let E(ζ) be the set of ζ-approximate pure
strategy Nash equilibria in the game G,6 and let

OPT(ζ) = min{L(x) | x ∈ E(ζ)}.

We give the following main result:

6 We show that E(ζ) is non-empty for ζ ≥ γ
√

8n log(2mn) in the full version.
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Theorem 3. For any ζ ≥ γ
√

8n log(2mn), there exists a mediator M that
makes good behavior an (ζ + η)-approximate ex-post Nash equilibrium of the
mediated game GM , and implements an approximate pure strategy Nash equilib-
rium x of the underlying complete information game with L(x) ≤ OPT(ζ) + η,
where

η = O
(
n1/3γ2/3

√
d · polylog(n,m, d)

)
.

Recall that the quantity γ is diminishing in n; whenever γ = O(1/n1/2+ε) for
ε > 0, the approximation factor η tends towards zero as n grows large. Plugging
in γ = 1/n and ζ = γ

√
8n log(2mn) recovers the bound in Theorem 1.

This result follows from instantiating Theorem 2 with an algorithm that
computes an approximate equilibrium under joint differential privacy as PRESL
(Private Equilibrium Selection).7 We give here an informal description of our
algorithm, absent privacy concerns, and then describe how we implement it
privately, deferring the formal treatment to the full version.

The main object of interest in our algorithm is the set-valued function

Vξ(ŝ) = {S(p) | for each i,Supp(pi) ⊆ ξ-BAi(ŝ)},

which maps aggregator values ŝ to the set of aggregator values that arise when
players are randomizing between ξ-aggregative best responses to ŝ. An approx-
imate equilibrium will yield an aggregator ŝ such that ŝ ∈ Vξ(ŝ), so we wish to
find such a fixed point for Vξ (the value of ξ will be determined in the analysis,
see the full version). Note that pure strategy Nash equilibria correspond to such
fixed points, but a-priori, it is not clear that fixed points of this function (which
may involve mixed strategies) are mixed strategy Nash equilibria. This is be-
cause player utility functions need not be linear in the aggregator, and so a best
response to the expected value of the aggregator need not be a best response to
the corresponding distribution over aggregators. However, as we will show, we
can safely round such fixed points to approximate pure strategy Nash equilibria,
because the aggregator will be well concentrated under rounding.

For every fixed value ŝ, the problem of determining whether ŝ ∈ Vξ(ŝ) is
a linear program (because the aggregator is linear), and although Supp(pi) ⊆
ξ-BAi(ŝ) is not a convex constraint in ŝ, the aggregative best responses are fixed
for each fixed value of ŝ. The first step of our algorithm simply searches through
a discretized grid of all possible aggregators X = {−W,−W + α, . . . ,W − α}d,
and solves this linear program to check if some point ŝ ∈ Vξ(ŝ). This results
in a set of aggregators S that are induced by the approximate equilibria of the
game. Let pij denote the probability that player i plays the j-th action. Then

7 In the full version of this paper, we also present details of the non-private algorithm
to compute equilibrium for aggregative games.
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the linear program we need to solve is as follows:

∀k ∈ [d], ŝk − α ≤ γ
n∑
i=1

m∑
j=1

fkijpij ≤ ŝk + α

∀i ∈ [n], ∀j ∈ ξ-BAi(ŝ), 0 ≤ pij ≤ 1

∀i ∈ [n], ∀j /∈ ξ-BAi(ŝ), pij = 0

(2)

Next, we need to find a particular equilibrium (an assignment of actions to
players) that optimizes our cost-objective function L. This is again a linear pro-
gram (since the objective function is linear) for each ŝ. Hence, for each fixed
point ŝ ∈ Vξ(ŝ) we simply solve this linear program, and out of all of the can-
didate equilibria, output the one with the lowest cost. Finally, this results in
mixed strategies for each of the players, and we round this to a pure strategy
Nash equilibrium by sampling from each player’s mixed strategy. This does not
substantially harm the quality of the equilibrium; because of the low sensitiv-
ity of the aggregator, it is well concentrated around its expectation under this
rounding. The running time of this algorithm is dominated by the grid search
for the aggregator fixed point ŝ, which takes time exponential in d. Solving each
linear program can be done in time polynomial in all of the game parameters.

Making this algorithm satisfy joint differential privacy is more difficult. There
are two main steps. The first is to identify the fixed point ŝ ∈ Vξ(ŝ) that corre-
sponds the lowest cost equilibrium. There are exponentially in d many candidate
aggregators to check, and with naive noise addition we would have to pay for
this exponential factor in our accuracy bound. However, we take advantage of
the fact that we only need to output a single aggregator – the one corresponding
to the lowest objective value equilibrium – and so the sparse vector mechanism
Sparse (described in the full version) can be brought to bear, allowing us to pay
only linearly in d in the accuracy bound.

The second step is more challenging, and requires a new technique: we must
actually solve the linear program corresponding to ŝ, and output to each player
the strategy they should play in equilibrium. The output strategy profile must
satisfy joint differential privacy. To do this, we give a general method for solving
a class of linear programs (containing in particular, LPs of the form (2)) under
joint differential privacy, which may be of independent interest. This algorithm,
which we call DistMW (described in the full version), is a distributed version
of the classic multiplicative weights (MW) technique for solving LPs [1]. The
algorithm can be analyzed by viewing each agent as controlling the variables
corresponding to their own mixed strategies, and performing their multiplica-
tive weights updates in isolation (and ensuring that their mixed strategies always
fall within their best response set ξ-BAi(ŝ)). At every round, the algorithm ag-
gregates the current solution maintained by each player, and then identifies a
coordinate in which the constraints are far from being satisfied. The algorithm
uses the exponential mechanism EXP (described in the full version) to pick such
a coordinate while maintaining the privacy of the players’ actions. The identi-
fication of such a coordinate is sufficient for each player to update their own
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variables. Privacy then follows by combining the privacy guarantee of the expo-
nential mechanism with a bound on the convergence time of the multiplicative
weights update rule. The fact that we can solve this LP in a distributed man-
ner to get joint differential privacy (rather than standard differential privacy)
crucially depends on the fact that the sensitivity γ of the aggregator is small.
The algorithm DistMW will find a set of strategies that approximately satisfy
the linear program – the violation on each coordinate is bounded by

E = O

(
nγ2

ε
polylog

(
n,m, d,

1

β
,

1

δ

))1/2

.

The algorithm PRESL has the following guarantee:

Theorem 4. Let ζ ≥ γ
√

8n log(2mn), ε, δ, β ∈ (0, 1). PRESL(t, ζ, L, ε, δ, β) sat-
isfies (2ε, δ)-joint differential privacy, and, with probability at least 1− β, com-
putes a (ζ + 12α)-approximate pure strategy equilibrium x such that L(x) <
OPT(ζ) + 5α, where

α = O

(
(
√
nε+ d) γ

ε
polylog (n,m, d, 1/β, 1/δ)

)
.

We defer the full proof and technical details to the full version.

Remark 2. The running time of this algorithm is exponential in d, the dimension
of the aggregative game. For games of fixed dimension (where d is constant),
this yields a polynomial time algorithm. This exponential dependence on the
dimension matches the best known running time for (non-privately) computing
equilibrium in anonymous games by [10], which is a sub-class of aggregative
games.

Theorem 3 follows by instantiating Theorem 2 with PRESL
(
t, ζ, L, n1/3γ2/3d1/2, 1

n ,
1
n

)
– i.e. by setting ε = n1/3γ2/3d1/2 and δ = β = 1

n .
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