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Abstract

We describe variational approximation methods for e�cient probabilistic

reasoning, applying these methods to the problem of diagnostic inference in

the QMR-DT database. The QMR-DT database is a large-scale belief network

based on statistical and expert knowledge in internal medicine. The size and

complexity of this network render exact probabilistic diagnosis infeasible for

all but a small set of cases. This has hindered the development of the QMR-

DT network as a practical diagnostic tool and has hindered researchers from

exploring and critiquing the diagnostic behavior of QMR. In this paper we

describe how variational approximation methods can be applied to the QMR

network, resulting in fast diagnostic inference. We evaluate the accuracy of

our methods on a set of standard diagnostic cases and compare to stochastic

sampling methods.

1 Introduction

Bayesian belief networks provide an elegant unifying formalism for probabilistic
modeling (see, e.g., Pearl 1988, Jensen 1996). Given a set of random variables rep-
resented as nodes in a directed acyclic graph, and given a conditional probability
distribution for each node, the formalism de�nes the joint probability distribution of
the variables as the product of the node probabilities. General algorithms have been
developed that calculate arbitrary conditional probabilities under this joint distribu-
tion; these algorithms can be used to perform a wide variety of inferential calculations.

For large-scale problems, however, the exact algorithms can be infeasible com-
putationally. The algorithms must essentially sum over all combinations of values
of nodes that are not in the conditioning set, and, roughly speaking, the number
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of terms in these sums scales exponentially with the number of variables that are
stochastically dependent. Even e�cient methods for performing these sums become
infeasible in large, dense networks. Consider, for example, the Quick Medical Refer-
ence (QMR) knowledge base, compiled for internal medicine. The QMR knowledge
base consists of a combination of statistical and expert knowledge for approximately
600 signi�cant diseases and their associated �ndings (about 4000). In the proba-
bilistic formulation of the database (QMR-DT; Shwe et al. 1991), the diseases and
�ndings are arranged in a bi-partite graph, and the diagnosis problem is to infer a
probability distribution for the diseases given a subset of �ndings. Given that each
�nding is generally relevant to a wide variety of diseases, the graph underlying the
QMR-DT is dense, reecting high-order stochastic dependencies. These dependencies
are infeasible to handle exactly; indeed, for the more di�cult diagnosis problems that
we consider below we estimate that exact algorithms would require approximately 50
years to run on current computers.

An alternative to exact methods is provided by stochastic sampling methods (see,
e.g., Gelfand & Smith 1990). These methods are readily implemented for general
belief networks and provide theoretical assurance of convergence to exact answers. It
can be di�cult in practice, however, to diagnose convergence and to assess the reli-
ability of results obtained over �nite sampling intervals. Sampling methods can also
be slow, and for problem such as medical diagnosis in which on-line, interactive use
of the inference system is envisaged, the convergence rate of the inference algorithm
is a serious consideration.

In this paper we present variational methods for performing approximate infer-
ence. We apply these methods to the problem of diagnosis in the QMR-DT setting.
Variational methods have a long history as approximation techniques in physics and
applied mathematics. Unlike sampling methods, variational techniques yield deter-
ministic approximations that are adapted to each case separately. Moreover, these
techniques can readily be merged with exact techniques|we show this explicitly in
the QMR-DT setting. This fact allows us to develop \anytime" algorithms in which
available computational resources determine the extent to which approximations are
introduced. Moreover, the variational methods yield explicit expressions for the pos-
terior probabilities of the diseases; these expressions can be subjected to analysis
concerning the accuracy and sensitivity to the various aspects of each case under
consideration.

We begin by de�ning the QMR-DT belief network and the diagnostic inference
problem. We then introduce and develop the variational techniques used in the paper.
Finally, we report numerical results.
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2 The QMR-DT belief network

The QMR-DT belief network is a two-level or bi-partite network (see �gure 1).
The diseases and �ndings occupy the nodes on the two levels of the network, re-
spectively, and the conditional probabilities specifying the dependencies between the
levels are assumed to be noisy-OR gates (cf. Pearl 1988). The bi-partite network
structure encodes the assumption that, in the absence of �ndings, the diseases appear
independently from each other with their respective prior probabilities (i.e. marginal
independence). (Note that diseases are not assumed to be mutually exclusive; a pa-
tient can have multiple diseases). Also evident from the structure is that conditional
on the states of the diseases the �ndings are independent of each other (conditional
independence). For a discussion regarding the medical validity of these and other
assumptions embedded into the QMR-DT belief network, see Shwe et al. (1991).

...

...

Diseases

Findings

d 1 d n

f 1 f2

Figure 1: The QMR belief network is a two-level network where the dependencies
between the diseases and their associated �ndings have been modeled via noisy-OR
gates.

To state more precisely the probability model implied by the QMR-DT belief
network, we write the joint probability of diseases and �ndings as

P (f; d) = P (f jd)P (d) =

"Y
i

P (fijd)

# 24Y
j

P (dj)

3
5 (1)

where d and f are binary (1/0) vectors refering to presence/absence states of the
diseases and the positive/negative states or outcomes of the �ndings, respectively.
The conditional probabilities P (fijd) for the �ndings given the states of the diseases,
are assumed to be a noisy-OR models:

P (fi = 0jd) = P (fi = 0jL)
Y
j2pai

P (fi = 0jdj) (2)
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= (1 � qi0)
Y
j2pai

(1� qij)
dj = e

��i0�
P

j2pai
�ijdj ; (3)

where pai (\parents" of i) is the set of diseases pertaining to �nding fi, qij = P (fi =
0jdj = 1) is the probability that the disease j, if present, could alone cause the �nding
to have a positive outcome, and qi0 = P (fi = 0jL) is the \leak" probability, i.e., the
probability that the �nding is caused by means other than the diseases included
in the belief network model. The noisy-OR probability model encodes the causal
independence assumption (Shwe et al. 1991); that is, the diseases act independently
to cause the outcome of the �ndings. The exponentiated notation with �ij = � log(1�
qij) will be used later in the paper for reasons of clarity.

3 Inference

Carrying out diagnostic inferences in the QMR belief network involves computing
posterior marginal probabilities for the diseases given a set of observed positive (fi =
1) and negative (fi0 = 0) �ndings. Note that these sets are considerably smaller than
the set of possible �ndings; the posterior probabilities for the diseases are a�ected
only by �ndings whose states we have observed. For brevity we adopt the notation
where f+i corresponds to the event fi = 1, and similarly f�i refers to fi = 0 (positive
and negative �ndings respectively). Thus the posterior probabilities of interest are
P (dj jf+; f�), where f+ and f� are the vectors of positive and negative �ndings. The
computation of these posterior probabilities exactly is in the worst case exponentially
costly in the number of positive �ndings (Heckerman 1988, D'Ambrosio 1994); the
negative �ndings f�, on the other hand, can be incorporated in linear time (in the
number of associated diseases and in the number of negative �ndings). In practical
diagnostic situations, however, the number of positive �ndings often exceeds the
feasible limit for exact calculations.

Let us consider the inference calculations more speci�cally. To �nd the posterior
probability P (djf+; f�), we �rst absorb the evidence from negative �ndings, i.e.,
compute P (djf�). This is just P (f�jd)P (d) with normalization. Since both P (f�jd)
and P (d) factorize over the diseases (see Eq. (2) and Eq. (1) above), the posterior
P (djf�) must factorize as well. The normalization of P (f�jd)P (d) therefore reduces
to independent normalizations over each disease and can be carried out in time linear
in the number of diseases (or negative �ndings). In the remainder, we will concentrate
solely on the positive �ndings as they pose the real computational challenge. Unless
otherwise stated, we will assume that the prior distribution over the diseases already
contains the evidence from the negative �ndings. In other words, we presume that
the updates P (dj) P (dj jf�) have already been made.

We now turn to the question about how to compute P (djjf+), the posterior
marginal probability based on the positive �ndings. Formally, to obtain such a pos-
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terior involves marginalizing P (f+jd)P (d) over all the remaining diseases, i.e.

P (dj jf
+) /

X
dndj

P (f+jd)P (d) (4)

In the QMR belief network P (f+jd)P (d) has the form

P (f+jd)P (d) =

"Y
i

P (f+i jd)

# 2
4Y

j

P (dj)

3
5 =

"Y
i

�
1� e��i0�

P
j
�ijdj

�# 24Y
j

P (dj)

3
5 (5)

which follows from the notation in Eq. (3) and the fact that P (f+i jd) = 1�P (f�jd).
To perform the summation in Eq. (4) over the diseases, we would have to multiply
out the terms 1� ef�g corresponding to the conditional probabilities for each positive
�nding. The number of resulting termswould be exponential in the number of positive
�ndings and this calculation is not feasible.

4 Variational methods

4.1 A brief introduction

The objective of variational methods is to simplify a complicated joint distribution
such as the one in eq. (5) through variational transformations of the node proba-
bilities. The transformations rerepresent the conditional node probabilities in terms
of optimization problems. Such representations are turned into approximations by
relaxing the optimizations involved. The fact that these approximations come from
optimization problems implies that they have an inherent error metric associated
with them, which is quite uncharacteristic of other deterministic or stochastic ap-
proximation methods. The use of this metric is to allow the approximation to be
readjusted once the variational transformations have been introduced.

How do we �nd appropriate transformations? The variational methods we con-
sider here come from convex duality. Let us �rst consider methods for obtaining
upper bounds. It is well-known in convex analysis that any concave (i.e. convex
down) function can be rerepresented in terms of its dual or conjugate function (see
Appendix A):

f(x) = min
�
f �Tx� f�(�) g (6)

where f�(�) is the conjugate function of f(x). The roles of f and f� are inter-
changeable in this transformation (hence the duality). This representation of f as an
optimization problem over a family of linear functions is a variational transformation.
The additional parameter � parameterizing this family is known as the variational
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parameter. If we relax the minimization above and �x the the variational parameter,
we obtain a bound

f(x) � �Tx� f�(�) (7)

which holds for each value of the variational parameter.
For convex functions the dual representation is expressed in terms of a maximiza-

tion; relaxing the maximization yields lower bounds.

4.2 Variational methods for QMR

Let us now return to the problem of computing the posterior probabilities in the
QMR belief network. Recall that it is the conditional probabilities corresponding to
the positive �ndings that need to be simpli�ed. To this end, we write

P (f+i jd) = 1 � e
��i0�

P
j
�ijdj = e log(1�e�x) (8)

where x = �i0 +
P

j �ijdj. Consider the exponent f(x) = log(1 � e�x). For noisy-
OR, as well as for many other conditional models involving compact representations
(e.g. logistic regression), the exponent f(x) is a concave function of x. Based on the
discussion in the previous section, we know that there must exist a variational upper
bound for this function that is linear in x:

f(x) � �x � f�(�) (9)

The conjugate function f�(�) for noisy-OR is given by

f�(�) = �� log � + (� + 1) log(� + 1) (10)

The desired bound or simpli�cation of the noisy-OR conditional probabilities is found
by putting the bound back into the exponent (and recalling the de�nition x = �i0 +P

j �ijdj):

P (f+i jd) = e f(x) (11)

� e
�i(�i0+

P
j
�ijdj)�f�(�i) (12)

= e �i�i0�f
�(�i)

Y
j

h
e �i�ij

idj
(13)

� P (f+i jd; �i) (14)

where we have rewritten the bound as a product over the associated diseases to
make explicit the fact that it factorizes over such diseases. Importantly, any evidence
possessing this factorization can be absorbed e�ciently (in time and space) just as
with negative �ndings. Thus unlike the correct evidence P (f+i jd) from the positive
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�ndings, the \variational" evidence P (f+i jd; �i) can be incorporated e�ciently into
the posterior.

We are now ready to outline the variational approximation framework for obtain-
ing e�cient estimates of the posterior marginal probabilities for the diseases. The
�rst step is to reduce the complexity of handling the positive �ndings by introducing
the transformations

P (f+i jd)! P (f+i jd; �i) (15)

Not all the positive �ndings need to be transformed, however, and we use these
transformations only to the extent that is necessary to reduce the computational load
to a manageable (or practical) level. The posterior estimates can be subsequently
obtained from the transformed probability model.

Two issues need to be clari�ed within this framework. The posterior estimates
will depend on the variational parameters � which we need to set and adjust to the
current diagnostic context. This issue is resolved in Appendix B; the adjustment
of the variational parameters reduces to a convex optimization problem that can be
carried out e�ciently and reliably (there are no local minima). The second issue
is the question of which conditional probabilities (or positive �ndings) should be
transformed and which left unchanged. This will be considered next.

4.2.1 The order of transformations

The decision to transform or treat exactly any of the conditional probabilities
P (f+i jd) corresponding to the positive �ndings must be based on a trade-o� between
e�ciency and accuracy. To maintain a maximal level of accuracy while not sacri�c-
ing e�ciency, we introduce the transformations by starting from the conditional for
which the variational form is the most accurate and proceed towards less accurate
transformations. When it is manageable to treat the remaining conditionals exactly
we stop introducing any further transformations. How then do we measure the accu-
racy of the transformations? The metric for assessing this accuracy comes from the
fact that the transformations are bounds.

Each transformation introduces an upper bound on the exact conditional prob-
ability. Thus the likelihood of the observed (positive) �ndings P (f+) is also upper
bounded by its variational counterpart P (f+j�):

P (f+) =
X
d

P (f+jd)P (d) �
X
d

P (f+jd; �)P (d) = P (f+j�) (16)

The better the variational approximations are, the tighter this bound is. We can as-
sess the accuracy of each variational transformation as follows. First we introduce and
optimize the variational transformations for all the positive �ndings. Then for each
positive �nding we replace the variational transformation with the exact conditional
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and compute the di�erence between the corresponding bounds on the likelihood of
the observations:

�i = P (f+j�) � P (f+j� n �i) (17)

where P (f+j� n �i) is computed without transforming the ith positive �nding. The
larger the di�erence � is, the worse the ith transformation is. We should therefore
introduce the transformations in the ascending order of �s. Put another way, we
should treat exactly those �ndings for which � is large.

Figure 2 illustrates the signi�cance of using the proposed ordering for introducing
the variational transformations as opposed to a random ordering. The two plots
correspond to representative diagnostic cases, and show the log-likelihoods for the
observed �ndings as a function of the number of positive �ndings that were treated
exactly. We emphasize that the plots are on a log-scale and therefore the observed
di�erences are quite large. We also note that the curves for the proposed ordering
are convex; thus the bound improves less the more �ndings have already been treated
exactly. This is because the exact conditionals �rst replace the worst transformations
and the di�erences among the better transformations are smaller. For this reason
we might expect the variational posterior estimates to become reasonably accurate
after a reasonably small fraction of the positive �ndings have been treated exactly.
We note �nally that the � measure for determining the ordering favors variational
transformations for conditional probabilities that are diagnostically the least relevant.
This is because the variational transformations are more accurate for positive �ndings
that are not suprising, i.e., are likely to occur, or when there is less impetus for
explaining them (the leak probability is large).
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Figure 2: The log-likelihood of the observed �ndings as a function of the number of
positive �ndings treated exactly. The solid line corresponds to the proposed ordering
and the dashed line is for a random ordering.
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5 Results

The diagnostic cases that we used in evaluating the performance of the variational
techniques were cases abstracted from clinocopathologic conference (\CPC") cases.
These cases involve multiple diseases underlying the observed �ndings and are con-
sidered clinically di�cult cases. These are also cases in which Middleton et al. (1991)
did not �nd their importance sampling method to work satisfactorily. Four of the 48
CPC cases included in our evaluation turned out to have a su�ciently small number
of positive �ndings (� 20) to allow an exact computation of the posterior marginals
for the purposes of comparison1. We begin by assessing the quality of the variational
estimates from these cases. For the remaining cases, we don't have an exact reference
posterior distribution to compare against; alternative measures of accuracy will be
considered.

5.1 Comparison to exact posterior marginals

In this section we discuss the CPC cases that have 20 or fewer positive �ndings.
Table 1 contains a description of these \tractable" cases.

case # of pos. �ndings # of neg. �ndings
1 20 14
2 10 21
3 19 19
4 19 33

Table 1: Description of the cases for which we evaluated the correct posterior
marginals.

Figures 3 and 4 illustrate the correlation between the true posterior marginals
and the approximate marginals calculated under the variational distribution. If the
approximate marginals were in fact correct then the points in the �gures should align
along the diagonals as shown by the dotted lines. The plots are obtained by �rst
extracting the 10 highest posterior marginals from each case and then computing the
approximate posterior marginals for the corresponding diseases. In the approximate
solutions we varied the number of positive �ndings that were treated exactly in order
to elucidate the rate by which the approximate marginals approach the correct ones.
Figure 5 reveals quantitatively the rate of convergence of the posterior marginals. The
plots show the fraction of all posterior marginal estimates (10 largest from each case)

1One of the cases with � 20 positive �ndings had to be excluded due to vanishing numerical

precision in the exact evaluation of the corresponding posterior marginals.

9



whose error exceeds the speci�ed threshold as a function of the number of positive
�ndings that were treated exactly. We may loosely interprete these level curves as
probabilities that, in a hyphothetical case, the error in a posterior marginal estimate
would exceed the speci�ed limit. Figure 5a is in terms of the relative error in the
posterior marginals; �gure 5b on the other hand uses the absolute error.
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Figure 3: Correlation between the variational posterior estimates and the correct
marginals. In a) 4 and in b) 8 positive �ndings were treated exactly.
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Figure 4: Correlation between the variational posterior estimates and the correct
marginals. In a) 12 and in b) 16 positive �ndings were treated exactly.

5.2 Comparison to Gibbs' sampling

In this section we compare the accuracy and computation time associated with the
variational posterior estimates to those obtained through stochastic sampling. We
have implemented a simple Gibbs' sampler as a representative stochastic sampling
technique. Our goal is not to present a conclusive comparison of variational methods
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Figure 5: The fraction of posterior marginal estimates exceeding the speci�ed error
limits as a function of the number of positive �ndings that were treated exactly. The
error measures used were a) the relative error, and b) the absolute error.

and sampling methods, but rather to present experiments that indicate the kinds of
results that can be achieved with o�-the-shelf techniques. (For more sophisticated
variational methods, see Jaakkola & Jordan, 1996b; for more sophisticated sampling
methods, see, e.g., Neal, 1993; and, in the context of QMR-DT, Shwe & Cooper,
1991).

In our Gibbs' sampling implementation the posterior disease marginals were ob-
tained from

P̂ (di) =
1

T

X
t

P ( di j f; d
t n dti ) (18)

where each new disease con�guration dt was computed from the previous con�gura-
tion dt�1 by sequentially resampling the disease states with replacement. The order
for the updates was chosen randomly at each stage. Every �fth such dt con�guration
was included in the sum; intervening samples were dropped. The initial con�guration
d0 was drawn from the prior distribution over the diseases2. While discarding early
samples is generally pro�table in sampling implementations, such a maneuver only
seemed to deteriorate the results in our case. In particular the accuracy gained from
including only later samples was o�set by the loss in computation time spent dis-
carding early samples (cf. the time/accuracy plot of �gure 6 below). Consequently
no early samples were excluded.

To be able to assess the accuracy of the posterior estimates we restricted ourselves
to the four tractable cases described in the previous section. Figure 6 plots the mean
correlations (across the tractable cases) between the approximate estimates and the
correct posterior marginals as a function of the computation time needed for obtaining

2The most likely initial con�guration was therefore the one with all the diseases absent.
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the estimates. The correlation measures for the stochastic method were averaged
across 20 independent runs for each tractable case, and across these cases for the
�nal measure. The error bars in the �gure were obtained by averaging the standard
deviations computed for each tractable case from the 20 di�erent runs; the error bars
therefore reect how much the correlations would be expected to vary over several
runs on the same case, i.e., they capture the repeatability of the stochastic estimates.
Note that the variational estimates are deterministic and vary only across cases. The
�gure shows that to achieve roughly equivalent levels of accuracy, the Gibbs' sampler
requires signi�cantly more computation time than the variational method.
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Figure 6: The mean correlation between the approximate and exact posterior
marginals as a function of the execution time (seconds). Solid line: variational esti-
mates; dashed line: Gibbs' sampling. The dotted line indicates the average time for
the exact calculation of the posterior marginals in the tractable cases.

5.3 Posterior accuracy across cases

We now discuss our results for the cases with more than 20 positive �ndings. For
these cases it is infeasible to compute the exact posterior marginals. In the absence
of the exact reference values, we have to �nd a surrogate to assess the accuracy of
the estimated marginals. We obtain such a surrogate via a measure of variability
of these marginals. Recall �rst that in the variational approximation some of the
conditional probabilities for the positive �ndings are treated exactly while the re-
maining conditionals are replaced with their variational counterparts. The posterior
marginals will generally depend on which conditionals received exact treatment and
which were approximated. A lack of such dependence suggests that we have the
correct posterior marginals. We can therefore use this dependence as a surrogate to
assess the validity of the current posterior estimates. Let P̂i(di = 1) be the ith largest
posterior marginal probability based on the variational method, and let P̂+k

i (di = 1)
be a re�ned estimate of the same marginal, where the re�nement comes from treating
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the kth positive �nding exactly. As a measure of accuracy of the posterior estimates
we use the variability of P̂+k

i (di = 1) around P̂i(di = 1), where k varies in the set of
positive �ndings whose conditional probabilities have been transformed in obtaining
P̂i(di = 1). Several de�nitions can be given for this variability and we consider two
of them below.

5.3.1 Mean squared variability

For each disease we de�ne the variability of its posterior probability estimate
according to

�̂i
2 =

1

K

X
k

�
P̂i(di = 1)� P̂+k

i (di = 1)
�2

(19)

which is the mean squared di�erence between P̂i(di = 1) and its possible re�nements
P̂+k
i (di = 1). The sum goes over the positive �ndings for which we have introduced

a variational transformation in computing P̂i(di = 1). As an overall measure of
variability for any particular diagnostic case, we use

�̂ = max
i�10

�̂i (20)

The decision to include only 10 largest posterior marginals is inconsequential but
convenient. We note that the �̂ measure is scale dependent, i.e., it assigns a higher
variability to the same relative di�erence when the probabilities involved are larger.
The measure therefore puts more emphasis on the posterior marginals that are likely
to be diagnostically most relevant.

Before adopting the variability measure �̂ for further analysis we provide some
empirical justi�cation for it. We do this by using the tractable CPC cases considered
in section 5.1 for which the exact posterior disease marginals can be computed. We
would expect the variability measure to reect the true mean squared error between
the variational posterior estimates and the correct posterior marginals. As shown in
�gure 7, the correlation between these measures is indeed quite good, suggesting that
the variability measure is a reasonable surrogate. indicative.

Figure 8 illustrates how the variability �̂ of the posterior estimates depends on
the number of positive and negative �ndings across all of the CPC cases. Eight
conditional probabilities were treated exactly in each of the CPC cases. Figure 9 is
analogous except that the number of �ndings treated exactly was 12. As expected, the
variational approximation is less accurate for larger numbers of positive �ndings (see
the regression lines in the �gures). Since the number of �ndings treated exactly was
�xed, the more positive �ndings a case has, the more variational transformations need
to be introduced. This obviously deteriorates the posterior accuracy and this is seen
in the �gures. The �gures also seem to indicate that the variational approximations
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Figure 7: The correlation between �̂ and �, where �̂ is the variability measure and
� is the true mean squared error between the variational estimates and the correct
marginals. 10 most likely posterior marginals were included from each tractable case.
The number of exactly treated �ndings was 8 in �gure a) and 12 in b).

become better as the number of negative �ndings increases. This e�ect, however,
has to do with the scale dependent measure of accuracy. To see why, note �rst that
the negative �ndings generally reduce the prior probabilities for the diseases. Smaller
prior probabilities decrease the posteriors marginals. The scale dependent �̂ therefore
decreases without any real improvement in the variational accuracy. The �gure 9 is
included in comparison to indicate that indeed the error measure is consistently lower
when more �ndings have been treated exactly. We note �nally that the squared error
measure for the posterior marginals is generally quite small; large deviations from
the true marginals are rare.

5.3.2 Min/Max variability across cases

While the squared error captures the mean variability in the posterior estimates,
it is also important to ascertain how much the true posterior marginals can deviate
from our estimates. We use the bounds mink P̂

+k
i (di = 1) and maxk P̂

+k
i (di = 1) as

indicators of this deviation. While these variability bounds do not provide rigorous
bounds on the posterior disease marginals they nevertheless come close to doing so in
practice. To substantiate this claim, we used the four CPC cases considered in section
5.1. Figure 10 illustrates the accuracy of these bounds for 10 most likely posterior
marginals from each of the four cases. Although a few of the posterior marginals
fall outside of these bounds, the discrepancies are quite minor. Moreover, when the
bounds are tight, the correct posterior marginals appear within or very close to the
bounds.

While the bounds provide a measure of accuracy for individual posterior estimates,
we employ a correlation measure to indicate the overall accuracy. In other words,
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Figure 8: a) The variability �̂ of the posterior marginals as a function of the number
positive �ndings in the CPC cases. b) The same variability measure �̂ but now as a
function of the number of negative �ndings. 8 positive �ndings were treated exactly
for this �gure.
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Figure 9: a) The variability �̂ of the posterior marginals as a function of the number
positive �ndings in the CPC cases. b) The same variability measure �̂ but now as a
function of the number of negative �ndings. Now 12 positive �ndings were handled
exactly.

we use the correlation between the variational posterior estimates and the min/max
bounds of the re�ned marginals as the overall measure. A high degree of correlation
indicates that the posterior probabilities are very accurate; otherwise, at least one of
the positive �ndings should inuence the re�ned posterior marginals and consequently
the bounds thereby deteriorating the correlation. Recall that each positive �nding is
treated exactly in one of the re�ned marginals.

Figure 11a illustrates the correlation between the variational posterior marginals
and the min/max bounds of the re�ned marginals for the CPC cases. The cor-
relation coe�cients when 8 �ndings were treated exactly for each diagnostic case
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Figure 10: The correlation between the min/max bounds and the true posterior
marginals. 10 most likely posterior marginals were included from each tractable case.
In a) 8 �ndings were treated exactly and in b) 12.

were 0:953=0:879 between the approximate marginals and those of the min/max
bounds, respectively. When 12 �ndings were included exactly these coe�cients rose
to 0:965=0:948 (see �gure 11b). The dependence of the correlation coe�cients on
the number of exactly treated positive �ndings is illustrated in �gure 12a. The high
monotonic increase in the correlation is mainly due to the proper ordering of the
�ndings to be treated exactly (see section 4.2.1). In comparison, �gure 12b shows
the development of the correlations for a random ordering.
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Figure 11: a) Correlation between the estimated posterior marginals and the
min/max re�ned marginals. There were 8 positive �ndings considered exactly. b) as
before but now the number of �ndings treated exactly was 12.
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Figure 12: Mean correlation between the approximate posterior marginals and the
min/max bounds as a function of the number of positive �ndings that were treated
exactly. Solid line: correlation with the max- bound; dashed line: correlation with
the min- bound. Figure a) is for the case where a proper ordering was used to select
the �ndings to be treated exactly and in b) a random ordering was used.

5.4 Computation time

In this section we provide additional details on the computation time required to
run the variational algorithms. The times that we report are obtained from runs on
a Sun Sparc 10 workstation.

The execution times are overwhelmingly dominated by the number of positive
�ndings treated exactly. (The time required for the variational optimization, using
the shortcut discussed at the end of Appendix B, is insigni�cant). When 12 or fewer
�ndings were treated exactly, the maximum time across the CPC cases was less than
2 seconds. Thus the variational posterior estimates can be obtained in real time.

In a practical setting it would be important to carry out the verifying analyses
described in the previous sections. Thus the total time for obtaining the variational
estimates and verifying them is the relevant timing �gure for practical implementa-
tion. Figure 13 plots the mean and the maximum execution times for veri�cation
across the CPC cases, as a function of the number of positive �ndings that were
treated exactly. The mean time when 12 �ndings were treated exactly was about 1
minute and the maximum about 2 minutes.

6 Discussion

Our work is preliminary in several respects. Note in particular that all of the anal-
yses that we report here are based on upper bounds on the likelihood. The optimizing
variational distribution that we obtain does indeed provide an upper bound on the
probability of the �ndings, but the distribution does not necessarily provide upper
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Figure 13: Mean (solid line) and maximum (dashed line) execution times in seconds
for the analyses of section 5.3 across the CPC cases as a function of the number of
exactly treated positive �ndings.

bounds on the posterior marginals. To obtain upper bounds on the latter quantities
would require that we also obtain lower bounds on the likelihood. Although vari-
ational machinery naturally provides lower bounds as well as upper bounds on the
likelihood (cf. Jaakkola & Jordan 1996a), in our preliminary work on the QMR-DT
database, however, the bounds that we have obtained are not su�ciently tight. We
are currently exploring alternative variational transformations for the node probabil-
ities in order to tighten these bounds.

Our work also has not yet exploited the power of variational methods to study the
sensitivity of the calculations. The fact that the variational methodology yields ex-
plicit expressions for the posterior probabilities of the diseases provides us with a tool
to perform such sensitivity analyses, and we are currently exploring this possibility.
Finally, note that we have utilized only the simplest variational transformations in
the current paper, in particular those based on linear convexity bounds. It is worth
exploring the speed/accuracy tradeo�s obtained by using more sophisticated bounds
(cf. Jaakkola & Jordan 1996b).

Our results are nonetheless quite promising. We have presented an algorithm
which runs in real time on a large-scale belief network for which exact algorithms
are entirely infeasible. While further work is required to verify the accuracy of the
results obtained by this algorithm, our comparisons with exact algorithms on the
tractable cases, and our surrogates on the intractable cases, suggest that the results
are quite accurate. We also showed that our variational method is signi�cantly faster
than simple sampling methods, although further work is required to esh out this
comparison.
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A Duality

We discuss here the dual or conjugate representations for convex functions. We
refer the reader to Rockafellar (1970) for a more extensive treatment of convex duality.

Let f(x) be a real valued and convex function de�ned on some convex set X
(for example, X = Rn). For simplicity, we assume that f is a well-behaving (dif-
ferentiable) function. Consider the graph of f , i.e., the points (x; f(x)) in an n + 1
dimensional space. The fact that the function f is convex translates into convexity of
the set f(x; y) : y � f(x)g called the epigraph of f and denoted by epi(f) (see �gure
14). Now, it is an elementary property of convex sets that they can be represented as
the intersection of all the half-spaces that contain them (see �gure 14). Through pa-
rameterizing these half-spaces we obtain the dual representations of convex functions.
To this end, we de�ne a half-space by the condition:

all (x; y) such that xT � � y � � � 0 (21)

where � and � parameterize all (non-vertical) half-spaces. We are interested in char-
acterizing the half-spaces that contain the epigraph of f . We require therefore that
the points in the epigraph must satisfy the half-space condition: for (x; y) 2 epi(f),
we must have xT� � y � � � 0. This holds whenever xT � � f(x) � � � 0 as the
points in the epigraph have the property that y � f(x). Since the condition must be
satis�ed by all x 2 X, it follows that

max
x2X
f xT� � f(x)� � g � 0; (22)

as well. Equivalently,

� � max
x2X
f xT � � f(x) g � f�(�) (23)

where f�(�) is now the dual or conjugate function of f . The conjugate function, which
is also a convex function, de�nes the critical half-spaces (those that are needed) for
the intersection representation of epi(f) (see �gure 14). To clarify the duality, let us
drop the maximum and rewrite the inequality as

xT� � f(x) + f�(�) (24)

The roles of the two functions are interchangeable and we may suspect that also

f(x) = max
�2�
f xT � � f�(�) g (25)
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Figure 14: Half-spaces containing the convex set epi(f). The conjugate function
f�(�) de�nes the critical half-spaces whose intersection is epi(f), or, equivalently, it
de�nes the tangent planes of f(x).

which is indeed the case. This equality states that the dual of the dual gives back
the original function.

We note as a �nal remark that for concave (convex down) functions the results are
exactly analogous; we replace max with min, and lower bounds with upper bounds.

B Optimization of the variational parameters

The metric for optimizing the variational parameters comes from the bounding
properties of the individual variational transformations introduced for the conditional
probabilities. Each transformation is an upper bound on the corresponding condi-
tional and therefore also the resulting joint distribution is an upper bound on the
true joint; similarly all marginals such as the likelihood of the positive �ndings that
are computed from the new joint will be upper bounds on the true marginals. Thus

P (f+) =
X
d

P (f+jd)P (d) �
X
d

P (f+jd; �)P (d) = P (f+j�) (26)

and we may take the accuracy of P (f+j�), the variational likelihood of observations,
as a metric. To simplify the ensuing notation we assume that the �rst m of the pos-
itive �ndings have been transformed (and therefore need to be optimized) while the
remaining conditional probabilities will be treated exactly. In this notation P (f+j�)
is given by

P (f+j�) =
X
d

2
4Y
i�m

P (f+i jd; �i)

3
5 "Y

i>m

P (f+i jd)

#Y
j

P (dj) (27)

/ E

8<
:
Y
i�m

P (f+i jd; �i)

9=
; (28)
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where the expectation is over the posterior distribution for the diseases given those
positive �ndings that we plan to treat exactly. Note that the propotionality constant
does not depend on the variational parameters; it is the likelihood of the exactly
treated positive �ndings. We now insert the explicit forms of the transformed condi-
tional probabilities (see Eq. (12)) into Eq. (28) and �nd

P (f+j�) / E

8<
:
Y
i�m

e
�i(�i0+

P
j
�ijdj)�f

�(�i)

9=
; (29)

= e
P

i�m
(�i�i0�f

�(�i))E
�
e
P

j; i�m
�i�ijdj

�
(30)

where we have simply the products over i into sums in the exponent and pulled out
the terms that are independent of the expectation. On a log-scale, the propotionality
becomes an equivalence up to a constant:

logP (f+j�) = C +
X
i�m

(�i�i0 � f�(�i)) + logE
�
e
P

j;i�m
�i�ijdj

�
(31)

Several observations are in order. Recall that f�(�i) is the conjugate of the concave
function f (the exponent), and is therefore also concave; for this reason �f�(�i) is
convex. We claim that the remaining term

logE
�
e
P

j;i�m
�i�ijdj

�
(32)

is also a convex function of the variational parameters. Appendix C below provides
the necessary justi�cation for this claim. Now, since any sum of convex functions
stays convex, we conclude that log P (f+j�) is a convex function of the variational
parameters. Importantly, this means that there are no local minima and the op-
timal or minimizing � can be always found. We may safely employ the standard
Newton-Raphson procedure to solve r logP (f+j�) = 0. For simplicity, we may
equivalently iteratively optimize the individual variational parameters, i.e., for each
�k solve @=@�k log P (f+j�) = 0. In this case, the relevant derivatives consists of
(algebra omitted):

@

@�k
logP (f+j�) = �k0 + log

�k
1 + �k

+ E

8<
:
X
j

�kjdj

9=
; (33)

@2

@2�k
logP (f+j�) =

1

�k
�

1

1 + �k
+ V ar

8<
:
X
j

�kjdj

9=
; (34)

Here the expectation and the variance are with respect to the same posterior distri-
bution as before, and both derivatives can be computed in time linear in the number
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of associated diseases for the �nding. We note that the benign scaling of the variance
calculations comes from exploiting the special properties of the noisy-OR dependence
and the marginal independence of the diseases.

To further simplify the optimization procedure, we can simply set the variational
parameters to values optimized in the context where all the positive �ndings have
been transformed. While such setting is naturally suboptimal for cases where there
are exactly treated positive �ndings, the incurred loss in accuracy is typically quite
small. The gain in computation time can, however, be considerable especially when
a large number of positive �ndings are treated exactly; the expectations above can
be exponentially costly in the number of such positive �ndings (see Eq. (5)). The
simulation results reported in this paper have been obtained using this shortcut unless
otherwise stated.

C Convexity

We note �rst that a�ne transformations do not change convexity properties. Thus
convexity in X =

P
j;i�m �i�ijdj implies convexity in the variational parameters �. It

remains to show that

logE
n
eX
o
= log

X
i

pi e
Xi = f( ~X) (35)

is a convex function of the vector ~X = fX1 : : :Xng
T ; here we have indicated the

di�erent discrete the values that the random variable X can take by Xi and denoted
the probability measure on such values by pi. Taking the gradient of f with respect
to Xk gives

@

@Xk

f( ~X) =
pke

XkP
i pi eXi

= Pk (36)

where Pk de�nes a probability distribution. The convexity is revealed by a positive
semi-de�nite Hessian H, whose components in this case are

Hkl =
@2

@Xk@Xl

f( ~X) = �klPk � PkPl (37)

To see that H is positive semi-de�nite, consider

~ZTH~Z =
X
k

PkZ
2
k � (

X
k

PkZk)(
X
l

PlZl) = V arfZg � 0 (38)

where V arfZg is the variance of the discrete random variable Z assuming the values
Zi with probability Pi.
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