
Approximate Planning in Large POMDPs

via Reusable Trajectories

Michael Kearns �

AT&T Labs

Yishay Mansour y

AT&T Labs

Andrew Y. Ng

UC Berkeley

January 27, 1999

keywords: Reinforcement Learning, POMDPs, Planning, VC Dimension

Abstract

We consider the problem of choosing a near-best strategy from a
restricted class of strategies � in a partially observable Markov decision
process (POMDP). We assume we are given the ability to simulate
the behavior of the POMDP, and we provide methods for generating
simulated experience su�cient to accurately approximate the expected
return of any strategy in the class �. We prove upper bounds on the
amount of simulated experience our methods must generate in order to
achieve such uniform approximation. These bounds have no dependence
on the size or complexity of the underlying POMDP, but depend only
on the complexity of the restricted strategy class �. The main challenge
is in generating trajectories in the POMDP that can be reused , in the
sense that they simultaneously provide estimates of the return of many
strategies in the class.

Our measure of strategy class complexity generalizes the classical
notion of VC dimension, and our methods develop connections between
problems of current interest in reinforcement learning and well-studied
issues in the theory of supervised learning. We also discuss a number of
practical planning algorithms for POMDPs that arise from our reusable
trajectories.

�Contact author. Address: AT&T Labs, Room A235, 180 Park Avenue, Florham Park,
New Jersey, 07932. E-mail: mkearns@research.att.com.

yOn sabbatical from Tel Aviv University.

1

1 Introduction

Markov decision processes (MDPs) and reinforcement learning have become
a standard framework for planning and learning in uncertain environments.
The desire to attack problems of increasing complexity with this formalism
has recently led researchers to focus particular attention on MDPs with (ex-
ponentially or even in�nitely) large state spaces, and on partially observable
MDPs (POMDPs). A number of interesting and basic issues arise when de-
signing planning and learning algorithms for large POMDPs.

First, as the state space becomes large, the classical representation of a
POMDP by explicit tables of transition probabilities, rewards and observations
clearly becomes infeasible. To intelligently discuss the problem of planning
| that is, computing a good strategy in a given POMDP | compact or
implicit representations of POMDPs (such as representations in which the
next-state distributions can be factored [BDH99, BK98]) must be developed.
Second, even a compact representation of a POMDP is no guarantee that
a good strategy in that POMDP has a compact representation. Thus, we
must also be prepared to consider compact representations for strategies (such
as those typically considered when using function approximation in standard
MDPs [SB98]).

Motivated by these issues, in this paper we address the following question:
given a description of a POMDP M and a class of strategies �, how can we
choose a � 2 � whose expected return is close to the best possible within
the class �? Here we are imagining that � is a restricted class of strategies,
perhaps given by some compact representation, or perhaps de�ned by some
natural limitation on strategies (such as having bounded memory).

Our notion of the manner in which the given POMDP M is \described" is
simulative rather than representational. That is, rather than assume thatM is
speci�ed in some particular representation, we consider a setting in which we
are given access to a generative model , or simulator, for M . Informally, this is
a \black box" that allows us to generate many trajectories of experience in the
POMDP, from di�erent states and under di�erent strategies. Generative mod-
els are a natural way in which a large POMDPmight be speci�ed, and are more
general than most compact, structured representations, in the sense that such
representations usually provide an e�cient way of implementing a generative
model. Our generative models provides less information than explicit tables of
probabilities, rewards, and observations, but are more powerful than a single

2

continuous, irreversible trajectory of experience generated according to some
�xed strategy. Thus, results obtained via a generative model blur the distinc-
tion between what is typically called \planning" and \learning" in POMDPs.
However, we will continue to refer to our problem as one of (approximate)
planning to emphasize that we are given a simulator for the POMDP that is
more powerful that what one typically has in the \pure learning" scenario.

The question of how many calls to a generative model are required to
choose a near-best strategy in a given class is analogous to the classical ques-
tion of sample complexity in supervised learning | but harder. The added
di�culty lies in the reuse of data. In the supervised learning setting, every

random example hx; f(x)i provides feedback about every hypothesis function
h(x) (namely, how close h(x) is to f(x)). If h(x) is restricted to lie in some
\hypothesis class" H, this reuse permits bounds on the number of random
examples required that are far smaller than the number of functions in H. For
instance, if H contains only a �nite number n of functions, O(log(n)) bounds
(ignoring parameters of the problem other than n for now) are obtained on
the sample size required to choose a near-best approximation to f(x) lying in
H. In the case that H is in�nite, sample sizes are obtained that depend only
on some measure of the complexity of H (such as VC dimension). Note that
these bounds have no dependence on the complexity of the target function f
or the size of the input domain.

In the POMDP setting, however, we must decide how to use the generative
model | that is, which states and actions to feed to the generative model |
in order to recover this same desirable reuse of experience across multiple
strategies in our class. To see the issue more clearly, consider the \straw man"
algorithm that, starting with some initial strategy � 2 �, uses the generative
model to generate many Monte Carlo trials of � from the start state s0, and
thus form an accurate empirical estimate of V �(s0). It is not clear that these
trajectories under � are of much use in evaluating a di�erent �0 2 �, as � and
�0 may quickly disagree on which actions to take. Thus, the naive method of
generating Monte Carlo trials would result in O(n) bounds on the number of
calls to the generative model, rather than O(log(n)), for the �nite case j�j = n.

In contrast, in the ensuing sections, we shall present two di�erent ways
of generating \reusable" trajectories. Both methods yield similar theoreti-
cal bounds. The �rst method, which we call trajectory trees, has an easier
and more intuitive analysis, and also directly suggests some rather practical
algorithms for approximate planning using a generative model. The second

3

method, which we call random trajectories, requires a more di�cult analy-
sis, but uses a considerably weaker form of generative model. Both methods
generate a (relatively) small number of trajectories | a number that is inde-
pendent of the state-space size of the POMDP, and depends only linearly on a
general measure of the complexity of the strategy class �. We prove that these
generated trajectories are enough to give us accurate estimates of the expected
return of any strategy in �. Our measure of strategy class complexity is in-
spired by and generalizes the notion of VC dimension in supervised learning,
and we give bounds that recover for our setting the most powerful analogous
results in supervised learning | bounds for arbitrary, in�nite strategy classes
that depend only on the dimension of the class.

Our main contributions are:

� Giving speci�c methods for generating \resuable" trajectories from gen-
erative models;

� Proving that these methods allow the generation of a small number of
trajectories su�cient to evaluate an entire class of strategies;

� Giving practical algorithms for approximate planning in POMDPs based
on resuable trajectories;

� Establishing connections between natural problems in supervised learn-
ing and reinforcement learning via generalizations of the VC dimension.

2 Preliminaries

We begin with the de�nition of a (partially observable) Markov decision pro-
cess, explicitly allowing the possibility of an in�nite number of states.

De�nition 1 AMarkovDecision Process (MDP) consists of a set of states
S and with actions fa1; : : : ; akg consists of:

� Next-State Distributions: For each state-action pair (s; a), a next-state
distribution P (s0js; a) that speci�es the probability of transition to each state
s0 upon execution of action a from state s. Note that

P
s0 P (s0js; a) = 1

(
R
S P (s

0js; a)ds0 = 1 in the case of in�nite S).

4

� Rewards: For each state-action pair (s; a), a real-valued reward 1 R(s; a) for
executing action a from state s. We assume rewards are bounded in absolute
value by Rmax.

A Partially Observable Markov Decision Process (POMDP) consists of an
underlying MDP and observation distributions Q(ojs) for each state s. Here o
is a random variable called the observation made at state s.

An agent wandering in a POMDP takes actions and receives rewards, as
in an MDP, but the agent never directly sees the identity of the current state.
Rather, the agent has access only to the current observation. This step towards
realism greatly complicates the problems of both planning and learning. Intu-
itively, the agent may never know the true state, but must attempt to track the
current belief state | that is, the likelihood that it is in each of the possible
states of the underlying MDP. In general, this belief state may be arbitrarily
complex, depending strongly on both the initial state of the underlying MDP
(or an initial distribution of states), as well as on the entire history of actions
and observations. This is a sharp contrast to the fully observable case, where
the optimal policy depends only on the current state.

We will primarily be interested in POMDPs with a a large or in�nite num-
ber of states, thus precluding approaches that require access to explicit tables
describing the next-state and observation distributions and the rewards. In-
stead, we assume that our algorithms are \given" a POMDP M in the form
of the ability to sample the behavior of M . Thus, the model given is simula-
tive rather than explicit. We call this ability to sample the behavior of M a
generative model .

De�nition 2 A generative model for a POMDP M is randomized algorithm
that, given as input a state-action pair (s; a), outputs a state s0 that is distributed
according to the next-state distribution P (�js; a), an observation o that is distributed
according to the distribution Q(�js), and the reward R(s; a).

Thus, a generative model for a POMDP simply consists of a generative
model for the underlying MDP, along with a random observation at each state.
At �rst blush, this de�nition may seem unreasonably generous | we are es-
sentially assuming that we are provided with a fully observable simulation of

1Note that for simplicity, we have assumed that all rewards are in fact deterministic.
However, all of our results have easy generalizations for the case of stochastic rewards (with
an appropriate and necessary dependence on the variance of the reward distributions).

5

a partially observable process. However, the key point is that algorithms pro-
vided with this generative model must still �nd a strategy that performs well
in the partially observable setting. For instance, although we could simply use
the generative model to �nd a near-optimal policy (state-to-action mapping)
for the underlying MDP [KMN99], this policy will be useless in the POMDP,
where the state is unknown. We can really only use the generative model
to �nd a strategy that maps from (histories of) observables to actions. As
a concrete example, in designing an elevator control system [CB96], we may
have access to a simulator that generates random rider arrival times, and keeps
track of the waiting time of each rider, the number of riders waiting at every

oor at every time of day, and so on. However helpful this information might
be in designing the controller, this controller must only use information about
which
oors currently have had their call button pushed (the observables).
In any case, readers uncomfortable with the power provided by our POMDP
generative models are referred to the results of Section 4, where they are re-
placed by an extremely weak form of simulation | namely, a subroutine for
generating only the observable history along truly random trajectories.

We now move on to de�ne strategies and strategy classes in a POMDP. In
general, an agent will, at any time t, have seen some sequence of observables
o0; : : : ; ot, and will have chosen actions and received rewards for each of the t
time steps prior to the current one. Thus, we may write its observable history

as a list of triples of observations, actions and rewards:

h(o0; a0; r0); : : : ; (ot�1; at�1; rt�1); (ot; ;)i

where the last entry indicates that observable histories always conclude with
the observation made at the �nal state reached. Such observable histories are
the inputs to strategies:

De�nition 3 A strategy � in a POMDP is any (stochastic) mapping from
�nite observable histories h(o0; a0; r0); : : : ; (ot�1; at�1; rt�1); (ot; ;)i to actions. A
strategy class � is any class of strategies.

Of course, this de�nition includes the special case in which the MDP is fully
observable (the observations are the states), and � is simply a class of policies.
As we have already remarked, we can think of � as representing a constraint

or bias on strategies adopted with the hope of avoiding the intractability of full
belief-state planning, while still permitting good, if suboptimal, performance.

6

We will restrict our attention to the case of discounted return 2, so we
assume we are given the discount factor 0 �
 < 1, which then determines
the value function V � for any strategy �:

V �(s) = E

"
1X
i=1

i�1ri

����� s; �
#

(1)

where ri is the reward received on the ith step when executing � starting from
state s, and the expectation is over the transition and observation probabilities
(and any randomization in �). Note that for any s and any �, V �(s) � V

max
,

where we de�ne Vmax = Rmax=(1 �
). We de�ne the �-horizon time H� =
log
(�=(2Vmax)). Note that ignoring all the rewards after the �-horizon time
can decrease the discounted cumulative reward by at most �.

Once we limit the class of strategies we will entertain, there may not be a
single \best" strategy in the class, unless we explicitly induce a metric of some
kind. One strategy might be better from certain states, and another strategy
better from other states, and so pairs of strategy may now be incomparable.
We thus adopt the common assumption of a �xed start state s0 in the under-
lying MDP. (This is also equivalent to assuming a �xed distribution D over
start states, since s0 can be a \dummy" state whose next-state distribution
under any action is D.) This permits the following de�nition.

De�nition 4 Let M be a POMDP with start state s0, and let � be a class of
strategies. Then

opt(M;�) = sup
�2�

V �(s0) (2)

where V �(s0) is the expected discounted return of � from s0. (Dependence of opt(M;�)
on s0 is suppressed for notational brevity.)

With these de�nitions, we can now state our problems more precisely. We
are given a generative model for a POMDP M and a strategy class �. How
many calls to the generative model must we make in order to have enough
data to choose a � 2 � whose performance V �(s0) approaches opt(M;�)?
And more importantly, which calls (that is, from which state-action pairs)
should we make to the generative model in order to minimize the number of
calls required?

2However, most of our results have straightforward generalizations to the undiscounted
�nite-horizon case for any �xed horizon H.

7

3 The Trajectory Tree Method

We now describe the �rst of our two methods for creating \reusable" trajec-
tories from a generative model. Recall that we are given a generative model
for a POMDP M with distinguished start state s0. For ease of exposition,
we assume there are only two actions in M , action a1 and action a2, but our
results easily generalize to any �nite number of actions.

A trajectory tree is simply a binary tree in which each node is labeled by
both a state in M and an observation, and has a single child for action a1 and
a single child for action a2. Additionally, each link from a parent to a child
will have a reward labeling that link. The depth of the tree will always be H�,
the �-horizon time, so the total size (number of nodes) in each trajectory tree
will be 2H�.

a1 a2 a1 a2 a1 a2 a1 a2a1 a2 a1 a2

a1 a1a2 a2

a1 a2

a1 a2

 H
Depth

a1 a2

a1 a1a2 a2

a1 a2

a1 a2
...

ε

 (s0,o0)

 (s2’,o2’) (s1’,o1’)

(a2,r2’)(a1,r1’)

Figure 1: The structure of a typical trajectory tree. (Shown here with
actions a1 and a2, and with observation, state, and reward labels omitted
below the second level.)

A trajectory tree is built in a straightforward manner from the generative
model. The root will always be labeled by the start state s0 and the observation
o0. To generate the two children of the root, we call the generative model
on (s0; a1) and (s0; a2), and the generative model returns the two next states
reached (say s01 and s

0
2, respectively), the two observations made (say o01 and o

0
2,

respectively), and the two rewards received (r01 = R(s0; a1) and r02 = R(s0; a2)).

8

Then (s01; o
0
1) and (s

0
2; o

0
2) will label the a1-child and a2-child of the root, and the

links from the root to these children will have rewards r01 and r02. Recursively,
for any node s of depth less than H�, we generate two children and rewards in
the same way with the generative model. (See Figure 1.)

Now for any deterministic strategy �, and for any trajectory tree T , �
accumulates a well-de�ned return on T . Strategy � de�nes a path through the
tree T | we start � at the root, where it sees whatever observation is stored
there (that is, the observable history so far consists only of this observation).
Strategy � then decides to either take action a1 or action a2, which selects a
child of the root. Inductively, if � has reached some internal node in T , we can
feed to � the entire observable history generated along the path to this node,
and discover which child of the current node � selects. In this way, we \run" �
on T to reach some leaf node of T , and we de�ne the return R(�; T) to be the
discounted sum of rewards along the path taken by �. In the general case that
� is stochastic, � de�nes a distribution on paths in T , and R(�; T) becomes
the expected discounted sum of rewards according to this distribution. If we
have created trajectory trees T1; : : : ; Tm, a natural estimate for V �(s0) is then

V̂ �(s0) = (1=m)
mX
i=1

R(�; Ti): (3)

The main goal of this section is to establish a nontrivial relationship be-
tween the quality of this estimate and the \sample size" m. As is typical
of analogous results in supervised learning, we will actually prove a uniform

convergence theorems.

3.1 The Case of Finite �

To convey the intuition via the simplest analysis, we begin with the case where
� is a �nite class of n strategies.

Theorem 3.1 Let � be any class of n (stochastic) strategies in an arbitrary
POMDP M . Let m trajectory trees be created using a generative model for M , and
let V̂ �(s0) be the resulting estimates. If

m = O((Vmax=�)
2 log(n=�)) (4)

then with probability at least 1 � �, jV �(s0)� V̂ �(s0)j � � holds simultaneously for
all � 2 �. The total number of calls made to the generative model will thus be at
most 2H�m = O(2H�(Vmax=�)

2 log(n=�)).

9

Proof:(Sketch) Let us �x a strategy � 2 �. Then each trajectory tree is
used to generate a run (or distribution on runs) of the strategy �, and our
estimate V̂ �(s0) for the return of strategy � is the average return of its m
runs (distributions on runs). The crucial observation is that for this �xed �,
the values R(�; Ti) that are generated by the di�erent trajectory trees Ti are
independent. This is easily seen if we imagine that each trajectory tree is con-
structed by �rst constructing the path (or distribution on paths) determined
by �, and then afterwards constructing the rest of the tree. The resulting
distribution on trees is identical to the distribution generated by our original
description.

This independence implies that we can apply the Cherno� bound for the
deviation of the estimate from the value of V �(s0). Since the maximum return
is bounded by Vmax , we have that the probability that the deviation is more
than �=2 is bounded by e��

2m=(4Vmax2).

So far we have restricted our attention to a �xed policy �. By appealing
to the so-called union bound , we have that the probability that some � 2 �
deviates by more than �=2 is bounded by ne��

2m=(4Vmax2) = �. Note that if all
of the estimates are within �=2 from the true value, then the policy with the
highest estimate can be at most � from the optimal value. 2

The crucial point to note about this result is the dependence on n: it is only
logarithmic in n, as opposed to the linear bound expected for the straw-man
Monte Carlo approach described earlier. Thus, the trajectory tree approach
is achieving considerable reuse of the generated experience: with only on the
order of log(n) data, we can get an excellent estimate of the value of all n
strategies.

3.2 The Case of In�nite �

Let us now move on to consider the general case of in�nite strategy classes.
We do not have space to provide details of the analysis; here we simply sketch
some of the highlights, draw the connections with supervised learning, and
state the resulting uniform convergence theorem.

When addressing the sample complexity of supervised learning, perhaps
the most important observation is that even though a class H may be in�nite,
the number of possible behaviors of H on a �nite set of points is often not
exhaustive for natural classes. More precisely, in the case of a class of boolean
functions, we say that the set x1; : : : ; xd is shattered by H if every of the 2d

10

possible labelings of these points is realized by some h 2 H. The VC dimension
of H is then de�ned as the size of the largest shattered set. It is known that
if the VC dimension of H is d, then the number �d(m) of possible labelings
induced by H on a set of m points is bounded by (em=d)d, which is much less
than 2d for m > d. This nontrivial bound provides the key leverage exploited
by the classical VC dimension results, so we will concentrate on replicating
this leverage in our setting.

For real-valued classes H, the notions of \shattering" or \exhaustive" be-
havior on a �nite set of points must already be generalized in a way that is
beyond the scope of this paper [Hau92]. But by analogy, in the full paper we
de�ne a notion of a set T1; : : : ; Td of trajectory trees being \shattered" by the
strategy class �. Intuitively, this is a measure of how complex or exhaustive
the set of \labelings" fhR(�; T1); : : : ; R(�; Td)i : � 2 �g is. From this, we can
de�ne the dimension dim(�) to be the largest shattered set of trajectory trees.
For most natural in�nite parametric classes, dim(�) be will polynomially re-
lated to the number of parameters. Once this machinery is developed, we
can prove a result generalizing Theorem 3.1 for in�nite classes, with dim(�)
playing the role of log(n).

In the interests of concreteness, we will now sketch the ideas behind a
simple version of this general theorem, for in�nite, two-action, deterministic
strategy classes, which can be done by appealing only to the familiar VC di-
mension of boolean functions. Generalizations to multiple actions or stochas-
tic strategies require the machinery of combinatorial dimension or pseudo-

dimension [Hau92].

Suppose � is an in�nite class of deterministic strategies in a two-action
POMDP. Then each strategy � 2 � is simply a deterministic function map-
ping from the set of all observable histories to the set fa1; a2g, and thus can
be viewed as a boolean function on observable histories. We can thus write
dim(�) to denote the VC dimension of the set of binary functions �.

We now show intuitively why a strategy class � of bounded VC dimen-
sion d cannot have induce exhaustive behavior on a set T1; : : : ; Tm of tra-
jectory trees for m >> d. Note that if �1; �2 2 � are such that their la-
belings hR(�1; T1); : : : ; R(�1; Tm)i and hR(�2; T1); : : : ; R(�2; Tm)i di�er, then
R(�1; Ti) 6= R(�2; Ti) for some 1 � i � m. But if �1 and �2 give di�er-
ent returns on Ti, then they must choose di�erent actions at some node in
Ti. Thus, if h is the observable history leading to that node, �1(h) 6= �2(h).
In other words, every di�erent labeling of the set of m trees yields a di�er-
ent labeling of the set of m � 2H� observable histories that are given by the

11

trees. This means that the number of di�erent tree labelings can be at most
�d(m � 2H�) � (m � 2H�=d)d. By developing this argument carefully, and ap-
pealing to classical uniform convergence techniques, we obtain the following
theorem.

Theorem 3.2 Let � be any class of deterministic strategies for an arbitrary
two-action POMDP, and let dim(�) be the VC dimension of �. Let m trajectory
trees be created using a generative model for M , and let V̂ �(s0) be the resulting
estimates. If

m = O
�
(Vmax=�)

2(H�dim(�) + log(1=�))
�

(5)

then with probability at least 1 � �, jV �(s0)� V̂ �(s0)j � � holds simultaneously for
all � 2 �.

3.3 Practical Algorithms for Approximate Planning

Given a generative model for a POMDP M , the uniform convergence results
of the preceding sections immediately suggest a class of algorithms for ap-
proximate planning, parameterized by the strategy class �: we generate m
trajectory trees T1; : : : ; Tm, and search for a � 2 � that maximizes V̂ �(s0) =
(1=m)

P
R(�; Ti). The following simple corollary to the uniform convergence

results establishes the soundness of this approach.

Corollary 3.3 Let � be a class of strategies in a POMDP M , and let the num-
ber m of trajectory trees be as given in Theorem 3.1 (�nite �) or Theorem 3.2
(in�nite �). Let

�̂ = argmax
�2�

fV̂ �(s0)g (6)

be the policy in � with the highest empirical return on the m trajectory trees. Then
with probability at least 1� �, �̂ is near-optimal within �:

V �̂(s0) � opt(M;�)� 2�: (7)

If it is computationally infeasible to perform the suggested maximization, one
can search for a local maximum � instead, and uniform convergence again
assures us that V̂ �(s0) is a trusted estimate of our true performance. Of course,
even lowering our ambitions to a local maximum of the surface V̂ �(s0) remains
an expensive proposition, since each trajectory tree is of size exponential in H�.
However, in practice it may be possible to signi�cantly reduce the cost of the
search, by means of a simple observation. In particular, suppose we perform a

12

greedy local search over a class � of deterministic strategies. Then at any time
in the search, to evaluate the policy we are currently considering, we really
need to look at only a single path of length H� in each tree, corresponding to
the path taken by the strategy our local search is currently considering. Thus,
we should build the trajectory trees lazily | that is, incrementally build each
node of each tree only as it is needed to evaluate R(�; Ti) for the current
strategy �. If there are parts of a tree that are reached only by poor policies,
then a good search algorithm may never even build these parts of the tree. In
any case, each step of the local search now takes time only linear in H�.

Avoiding the exponential dependence on H� via lazy trajectory tree con-
struction would appear to apply only to the case of deterministic strategies,
since stochastic strategies de�ne a distribution over all the paths in a trajec-
tory tree, and thus evaluation of the current � requires examining entire trees.
However, suppose � = f�� : � 2 <dg is a smoothly parameterized family of
stochastic strategies. It turns out that there is a practical implementation of
stochastic gradient ascent on V̂ ��(s0) that again has only linear dependence on
H�. This stochastic gradient ascent algorithm works by only subsampling the
trajectory trees, again permitting lazy construction. The update made to the
current position �0 at each step will be an unbiased estimate of the gradient
(d=d�)V̂ ��(s0) evaluated at �0. (Details in the full paper.)

Having come this far, there is also a simple further modi�cation to the
subsampling algorithm that leads us close to a line of research pursued by
Kimura, Yamamura and Kobayashi [KYK95], and which gives a procedure also
bearing some similarity to William's reinforce algorithm [Wil92]. Rather
than doing stochastic gradient ascent on V̂ ��(s0), it is possible to perform
stochastic gradient ascent directly on the true value function V ��(s0). In the
full paper, we give an algorithm that, given a generative model for the POMDP
and a setting of the parameters �0, enjoys the following properties:

� (E�ciency) Has expected running time O(1=(1 �
));

� (Unbiasedness) Outputs an unbiased estimate of (d=d�)V ��(s0);

� (Bounded Variance) The estimate has bounded variance (for �xed
;Rmax ,
and given a bound on the gradient j(d=d�)Pr[��(s) = a]j of the param-
eterized family itself).

It should be clear that the three conditions above are exactly what we need
to do stochastic gradient ascent directly on the surface V ��(s0). The main

13

di�erences between our approach and Kimura et al. and Williams are the
following. First, we �nd an unbiased estimate of the gradient in �nite time,
whereas they only converge to such an estimate asymptotically. Second, we
explicitly bound the variance of our estimator, whereas if we assume only a
bound on the derivative of Pr[��(s) = a] as we did above, either of the previous
algorithms can still have arbitrarily large variance. Details, including discus-
sion of exploration and of gradient ascent methods for learning deterministic
policies, are in the long version of this paper.

4 The Random Trajectory Method

We now move on to present the second of our two methods for generating
only a small number of trajectories su�cient to evaluate all the strategies in
a large class. We call this second approach the random trajectory method,
and one advantage it enjoys over the trajectory tree method is that it does
not need the full power of a generative model for the POMDP. In fact, the
random trajectory method requires only the observable histories generated by
truly random trajectories from the start state. Resets to states other than
the start state are unnecessary, as is the ability to see the underlying states
along the trajectory. We begin with a de�nition capturing this weaker form
of simulation.

De�nition 5 A random trajectory generator for a POMDP M , with des-
ignated start state s0, generates an observable history of a given length t starting
from s0 by following the truly random policy (at each state each action is equally
likely). Thus, the generator outputs only the observable history

h(o0; a0; r0); : : : ; (ot�1; at�1; rt�1); (ot; ;)i (8)

generated from s0 by choosing each ai uniformly from the set of actions.

As was the case for the depth of our trajectory trees in Section 3, we will
choose the length of our random trajectories to be the �-horizon time H�.

In the method of trajectory trees, we used a (stronger) generative model to
create a �nite set of trajectory trees, and proved that this set gave uniformly
good estimates of expected return within �. Here the proposal is even simpler,
but its analysis is more challenging: we will simply take m truly random
histories, derive from these histories an estimate of V �(s0) for every � 2 �,

14

and show that a relatively small value for m again yields uniformly good
estimates.

We again restrict our attention to the case of deterministic strategies, solely
for expository purposes. Recall that in this case, each trajectory tree T allowed
us to get an evaluation of any strategy �, since any � always de�nes some
path in T . But if h is just a single random history, how can we evaluate an
arbitrary � on h, given that � may diverge from t? The answer is that we
cannot. Instead let us de�ne the variable acc�(h) to be 1 if � \accepts" the
history h and 0 otherwise. More precisely, given a history h, if for any pre�x
of h the strategy � would have generated the same action then acc�(h) = 1.

We can now de�ne the estimate of V �(s0) we derive from a set of random
trajectories. Let T = fh1; : : : ; hmg be a set of histories from the random
trajectory generator. For each strategy � 2 �, de�ne V̂ �(s0) as follows. Let
S�(T) � T include all the histories h for which acc�(h) = 1; thus,

S�(T) = fhjh 2 T and acc�(h) = 1g: (9)

Then V̂ �(s0) is the average return of the histories in S�(T):

V̂ �(s0) = 1=jS�(T)j
X

h2S�(T)

R(h) (10)

where R(h) is the discounted sum of rewards along h. We note that the
generalization of this estimate to the case of stochastic strategies can be viewed
as a form of importance sampling [SB98].

Thus, in analogy with Section 3, we now have a method of generating
a set of m random observable histories T = fh1; : : : ; hmg (as opposed to
m trajectory trees), and for any strategy �, there is a well-de�ned estimate

V̂ �(s0) based on the set T . As in Section 3, we wish to establish a nontrivial

relationship between the \sample size" m and the deviations jV �(s0)� V̂ �(s0)j
for all � 2 �. Of course, now the concern is that unless m is very large, some
set S�(T) may be too small to obtain a good estimate. The following theorem,
which is the analogue of Theorem 3.2, asserts that this is not the case.

Theorem 4.1 Let � be any class of deterministic strategies in a two-action
POMDP M , and let dim(�) be the VC dimension of �. Let m observable histories
be generated from the random trajectory generator for M , and let V̂ �(s0) be the
resulting estimates. If

m = O

0
@ 2H�Vmax

�

!2
(dim(�) log(H�)(H� + log(Vmax=�)) + log(1=�)))

1
A (11)

15

then with probability at least 1� �, jV �i(s0)� V̂ �(s0)j � � holds simultaneously for
all � 2 �.

If we compare Theorem 4.1 to Theorem 3.2, we see that the total amount
of experience that must be generated in the POMDP is quite similar. The
main di�erences are in how that experienced is organized | in one case into
trajectory trees, and in the current case a
at list of random histories | and
in how it is generated , in the current case from a much weaker simulative
model than is required to build trajectory trees. As with the trajectory tree
methods, a class of algorithms for approximate planning based on the random
trajectory method can now be formulated.

References

[BDH99] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Struc-
tural assumptions and computational leverage. Journal of Arti�cial In-
telligence Research, 1999. To appear.

[BK98] X. Boyen and D. Koller. Tractable inference for complex stochastic pro-
cesses. In Proc. UAI, pages 33{42, 1998.

[CB96] R. Crites and A. Barto. Improving elevator performance using reinforce-
ment learning. In Advances in Neural Information Processing Systems 8,
pages 1017{1023, 1996.

[Hau92] David Haussler. Decision-theoretic generalizations of the PAC model for
neural networks and other applications. Information and Computation,
100:78{150, 1992.

[KMN99] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. 1999. Unpublished
manuscript.

[KYK95] H. Kimura, M. Yamamura, and S. Kobayashi. Reinforcement learning by
stochastic hill climbing on discounted reward. In Proceedings of the 12th
International Conference on Machine Learning, pages 295{303, 1995.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT
Press, 1998.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229{256, 1992.

16

