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ABSTRACT
We consider models for bargaining in social networks, in
which players are represented by vertices and edges repre-
sent bilateral opportunities for deals between pairs of play-
ers. Each deal yields some fixed wealth if its two players
can agree on how to divide it; otherwise it yields no wealth.
In such a setting, Chakraborty and Kearns [5] introduced a
simple axiomatic model that stipulates an equilibrium con-
cept in which all players are rationally satisfied with their
shares. We further explore that equilibrium concept here. In
particular, we give an FPTAS to compute approximate equi-
librium in bipartite graphs. We also show that equilibrium
is not unique, and give conditions that ensure uniqueness
on regular graphs. Finally, we explore the effect of network
structure on solutions given by our model, using simulation
methods and statistical analysis.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Social and Behavioral Sci-
ences]: Economics

General Terms
Algorithms, Economics, Experimentation, Theory

Keywords
Bargaining, Social Networks, Equilibrium, Approximation
Algorithms

1. INTRODUCTION
Bargaining has been studied extensively in economics and

sociology, both theoretically and experimentally. One set-
ting that appears extensively in the literature is when there
are only two parties negotiating a single deal. The deal
yields a fixed total wealth if the two parties can agree on
how to share or divide it; otherwise both parties receive
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nothing. Bargaining solution concepts provide predictions
about how the wealth will be shared, or what division is
“fair”, which may depend on the player utility functions.

There are several bargaining solutions in economic theory,
and here we shall focus on two of them: the Nash Bargaining
Solution (NBS) and the Proportional Bargaining Solution
(PBS). Both of these solution concepts (and most others)
predict that the division of wealth is a function of the ad-
ditional utility (compared to some fixed “outside option”
or alternative) each player receives by accepting the deal,
which we shall refer to as differential utility (a formal def-
inition is given shortly). NBS states that the division of
wealth should maximize the product of the differential util-
ities of the two players, while PBS states that the division
should maximize their minimum. When the players have
increasing and continuous (in accrued wealth) utility func-
tions, PBS simply states that the two players should have
equal differential utility from the deal. We choose to focus
on these two concepts because they are representatives of
two broad classes of these solution concepts: NBS repre-
sents those solutions that do not allow direct comparison of
utility across players, and are thus impervious to scaling of
utility functions; whereas PBS represents those that permit
such comparisons [3].

In this paper, we consider multiparty, networked gener-
alizations of these classical bargaining frameworks and so-
lution concepts. In our setting, players are represented by
vertices and edges represent bilateral opportunities for deals
between pairs of players. As in the two-player models, each
deal yields some fixed wealth if its two players can agree on
how to divide it; otherwise it yields no wealth. The yield
of an edge is independent of that of other deals — however,
network effects may arise due to the fact that the “outside
option” of each player in considering one deal or edge is de-
termined by the wealth they accrue from their other deals.
Thus, for instance, a player with a concave utility for wealth
and very high degree might have stronger bargaining power
under certain solution concepts than a lower-degree neigh-
bor.

A simple, intuitively justifiable, axiomatic model was in-
troduced by Chakraborty and Kearns in [5] that states what
division of wealth on every edge of the network rational play-
ers will consider acceptable. The proposed model is based on
the assumption that the players are myopic, and act based
on local information (about their network neighbors) only.
Each player is rationally satisfied when she feels that she
cannot get a greater share on any of her deals or edges if
the deals between all other players remain unchanged. The



model stipulates that both endpoints of an edge are satisfied
with the current division if and only if it satisfies a chosen
two-player bargaining solution (e.g. NBS or PBS). The con-
dition that all edges in the network are stable in this sense,
when fixing the outcome of all other bilateral deals, gives rise
to a network equilibrium concept for any given two-player
bargaining solution.

Chakraborty and Kearns [5] showed that a PBS equilib-
rium exists on all networks if the players have increasing
and continuous utility functions, and an NBS equilibrium
exists on all networks if the utility functions are increasing,
continuous and concave. Further, they showed some basic
structural results about NBS equilibrium, and gave a poly-
nomial time algorithm to compute approximate equilibrium
on trees whose maximum degree is bounded by a constant.

1.1 Summary of Results
We first present a fully polynomial time approximation

scheme (FPTAS) to compute approximate network bargain-
ing equilibria in bipartite networks when the utility func-
tions and the solution concept satisfy a natural condition
that we call the bargain monotonicity condition. Bipartite
networks are natural in many settings in which there are two
distinct “types” of players — for instance, buyers and sellers
of a good. The bargain monotonicity condition is satisfied
by all concave utility functions in the PBS concept, and by
natural utility function classes such as xp, 0 < p < 1 and
log(a + bx), a > 0, b > 0 in the NBS concept. The algo-
rithm can be viewed as iterating best-response dynamics on
each edge under a particular schedule of updates; we show
that for this schedule, the algorithm converges to (additive)
ǫ-approximate equilibrium in time polynomial in ǫ−1 and
the size of the input, if the values of wealth on the edges are
polynomially bounded (for multiplicative approximation, we
can handle arbitrary edge values). Whether the particular
schedule for which we can prove fast convergence can be
generalized is an interesting open problem.

We also perform simulation and statistical analyses of the
effects of network structure on the wealth distribution at
equilibrium for the two solution concepts, on networks ran-
domly chosen from well-studied formation models (such as
preferential attachment and Erdos-Renyi), and for a range
of utility functions. Empirically we find that wealth of a ver-
tex is highly correlated with degree, but degree alone doesn’t
determine wealth. We also find that bargaining power of a
vertex, measured as the average share received by the vertex
on all its edges, appears to increase with degree. Finally, we
find stark differences between wealth distribution in PBS
and NBS equilibrium. We find that the network effect is
more pronounced in PBS equilibrium than in NBS equilib-
rium, which is manifested in two ways: first, the variation
of bargaining power is larger in a PBS equilibrium than in
an NBS equilibrium; and second, a higher number of edges
have a highly skewed split in PBS than in NBS equilibrium.
We also observe how network effects decrease as the utility
functions approach linearity.

Finally, we show that neither PBS nor NBS equilibrium
is unique on bargaining networks in general. Uniqueness
is an important and preferred property, since it can serve
as a prediction of how the wealth will be divided, as well
as a measure of fair division. However, we unfortunately
show non-uniqueness for the class of regular graphs with
unit wealth on all edges, and the same utility function for

all vertices. This class is interesting because every network
in this class has one state which is both an NBS as well as
a PBS equilibrium: the state where every edge is divided
fifty-fifty. This state is also superficially fair, given the sym-
metry of the opportunities that the players have, as well as
their behavior. Further, this state is the unique equilibrium
when utility is linear, so it is natural to ask if the network
has any “unfair” equilibrium for concave utility functions.
On a positive note, we recognize conditions on utility U that
makes PBS and NBS equilibrium in this class unique, and
show that natural concave functions such as U(x) = xp for
any 0 < p < 1 satisfies these conditions.

1.2 Related Work
The network setting that we consider falls under the heav-

ily studied field of network exchange theory. In this area,
many models consider the added restriction that every player
has a limit on the number of deals she can get into, which is
less than or equal to her degree in the network. Note that
our setting corresponds exactly to this limited exchange set-
ting when the limit for every player is equal to her degree.
Several models have been proposed to predict what agree-
ments the players will get into, and how will the wealth on
these deals get shared (eg. [6, 16, 10, 2, 4]). Skvoretz and
Willer [17] conducted human subject experiments to practi-
cally verify these theoretical predictions. Most of the focus
has, in fact, been on unique exchanges, where every player
can get into only one deal. Recently, Kleinberg and Tardos
[15] analyzed the model given by Cook and Yamagishi [6] in
the unique exchange setting, and found an elegant theoreti-
cal characterization, connecting the bargaining solutions to
the theory of graph matchings.

All these models assume that all the players have the same
behavior, and focus on the differences in bargaining power
caused by network structure only. They also agree that these
differences arise from the threat of exclusion, that is, a vertex
can get into only a few deals and so has to ignore the offers of
some of her neighbors; so she can ask for a better offer from
her neighbor by threatening to get into a deal with some
other neighbor instead. In the scenario where the limit on
the number of deals is equal to degree for every vertex, there
is no threat of exclusion, and all the models predict that
there will be no network effect, and the wealth is divided
into two equal shares on every edge.

However, it is important to note here that all these models
implicitly or explicitly assume linear utility functions. Our
model takes into account that players may have non-linear
utility. In particular, we focus on increasing concave utility
functions, that is, those with diminishing marginal utility.
Diminishing marginal utility is a well-known phenomenon,
and is also often used in financial theory to capture risk aver-
sion. Our model agrees with these previous models when the
utility functions are linear. In fact, when the utility func-
tions are linear, the concept of PBS equilibrium is identical
to the equi-dependence theory of Cook and Yamagishi [6].
However, interesting network effects appear when the play-
ers have concave utility functions, even if all players have
the same utility function.

Another group of concepts related to our setting arise in
coalitional games, such as Shapley value, core, kernel, nu-
cleolus and bargaining sets. These concepts often involve
the ability of players to form arbitrary coalitions, which im-



plicitly assumes that the players have information about the
entire network, and are not acting myopically based on lo-
cal information. Thus, these concepts assume that play-
ers can solve problems that are computationally difficult.
In fact, Deng and Papadimitriou [8] showed that many of
these concepts are computationally hard, and suggested that
a solution concept is appropriate only if it is efficiently com-
putable. In strong contrast, our model only expects simple
selfish behavior from the players. Perhaps not unrelated to
this aspect of our model, we shall show that equilibria in
our concept is computable in polynomial time on bipartite
graphs, and natural heuristics perform well in our simula-
tions on random graphs.

The rest of the paper is organized as follows: In Section 2,
we define our model and all the basic concepts, along with
some basic lemmas. In Section 3, we present our algorithm
and its analysis. In Section 4, we report our simulations and
statistical analysis. In Section 5, we present our results on
uniqueness of equilibria. In Section 6, we point out that our
model can be extended to general forms of utility functions,
and our algorithm applies in this extended model as well.
We conclude with some open problems in Section 7.

2. PRELIMINARIES
A bargaining network is an undirected graph G(V, E) with

a set V of n vertices and a set E of m edges, where vertices
represent player and edges represent possible bilateral trade
deals. There is a positive value c(e) associated with each
edge e ∈ E, which is the wealth on that edge. There is also
a utility function Uv for each player v. The utility func-
tions are all represented succinctly and are computable in
polynomial time.

Let e1, e2 . . . em be an arbitrary ordering of the edges in E,
where ei has endpoints ui and vi, ∀i = 1, 2 . . . m. A state of
the bargaining network is described by the division of wealth
on each edge of the graph. Let x(ui, ei) and x(vi, ei) denote
the wealth ui and vi receive from the agreement on the edge
ei, respectively. Note that x(vi, ei) = c(ei) − x(ui, ei). We
shall represent a state of the bargaining network as a vector
s = (s1, s2 . . . sm) ∈ R

m such that si = x(ui, ei). Note that
s uniquely determines the division of wealth on all edges.

Let s ∈ R
m be a state of the bargaining network G. For

any vertex u and any edge e incident on u, let γs(u) denote
the total wealth of a vertex u from all its deals with its
neighbors. Let xs(u, e) denote the wealth u gets from the
agreement on edge e. Let αs(u, e) = γs(u) − xs(u, e) be the
wealth u receives from all its deals except that on e. We
say that αs(u, e) and αs(v, e) are the outside options with
respect to the edge e for u and v respectively, that is, the
amount each of them receives if no agreement is reached on
the deal on e.

Definition 2.1 (Differential Utility) Let s be any state
of the bargaining network. Let x be the wealth of u from the
deal on e = (u, v). Then, the differential utility of u from
this deal is ∆u(x) = Uu(αs(u, e) + x) − Uu(αs(u, e)), and
the differential utility of v from this deal is ∆v(c(e) − x) =
Uv(αs(v, e) + c(e) − x) − Uv(αs(v, e)).

We shall drop the subscript s if the state is clear from the
context.

Definition 2.2 Let s be any state of the bargaining net-

work. Define ys(u, e) to be the wealth u would get on the edge
e = (u, v) if it is renegotiated (according to some two-party
solution), the wealth divisions on all other edges remaining
unchanged. Also define change(s, e) = |xs(u, e) − ys(u, e)|.

2.1 Proportional Bargaining Solution (PBS)
We say that the allocation on an edge e = (u, v) with value

c satisfies the Proportional Bargaining Solution (PBS) condi-
tion if it maximizes the function WP (x) = min{∆u(x), ∆v(c(e)−
x)} where x denotes the allocation to u. Thus if an edge
e is renegotiated according to the Proportional Bargaining
Solution (PBS), then ys(u, e) = arg max0≤x≤c WP (x) and
ys(v, e) = c(e) − ys(u, e). Note that ys(u, e) is simply a
function of the two values αs(u, e) and αs(v, e), along with
the utility functions of u and v.

The following lemma gives a simpler equivalent condition
for PBS when the utility functions are increasing and con-
tinuous, and is applicable to the two-party setting as well.

Lemma 2.1 If the utility functions of all vertices are in-
creasing and continuous, then for any edge e = (u, v), the
PBS condition reduces to the condition ∆u(x) = ∆v(c(e) −
x), that is, the condition of equal differential utility, and
there is a unique solution x satisfying this condition.

2.2 Nash Bargaining Solution (NBS)
We say that the allocation on an edge e = (u, v) satisfies

the Proportional Bargaining Solution (PBS) condition if it
maximizes the function WN (x) = ∆u(x)∆v(c(e)−x) where x
denotes the allocation to u. Thus if an edge e is renegotiated
according to PBS, then ys(u, e) = arg max0≤x≤c WN (x) and
ys(v, e) = c(e) − ys(u, e). Note that ys(u, e) is simply a
function of the two values αs(u, e) and αs(v, e), along with
the utility functions of u and v.

If e is renegotiated according to the Nash Bargaining So-
lution (NBS), then ys(u, e) is a value 0 ≤ x ≤ c such
that the NBS condition is satisfied, that is, the function
WN(x) = ∆u(x)∆v(c(e) − x) is maximized.

The following lemma gives a simpler equivalent condition
for NBS when the utility functions are increasing, concave
and twice differentiable, and is applicable to the two-party
setting as well.

Lemma 2.2 If the utility functions of all vertices are in-
creasing, concave and twice differentiable, then for any edge

e = (u, v), the NBS condition reduces to the condition ∆u(x)
∆′

u(x)
=

−∆v(c(e)−x)
∆′

v(c(e)−x)
, that is, the condition of equal differential util-

ity, and there is a unique solution x satisfying this con-

dition. Moreover, let Qu(x) = ∆u(x)
∆′

u(x)
, and let Rv(x) =

−∆v(c(e)−x)
∆′

v(c(e)−x)
. Then Qu(x) is increasing, Rv(x) is decreas-

ing, and Qu(x) − Rv(x) has a unique zero in [0, c(e)].

2.3 Stability and Equilibrium

Definition 2.3 (Exact Stability and Equilibirum) We
say that an edge e is stable in a state s if renegotiating e does
not change the division of wealth on e, that is, change(s, e) =
0. We say that a state s is an equilibrium if all edges are
stable.

We also study two notions of approximation, namely, ad-
ditive and multiplicative approximations, as defined below.



Definition 2.4 (Additive ǫ-Stability and Equilibrium)
We say that an edge e is ǫ-stable in the additive sense in a
state s if change(s, e) < ǫ. We say that s is an additive
ǫ-approximate equilibrium if all edges are additive ǫ-stable.

Definition 2.5 (Multiplicative ǫ-Stability and Equi-
librium) We say that an edge e is ǫ-stable in the multiplica-
tive sense in a state s if |ys(u, e) − xs(u, e)| < ǫxs(u, e) and
|ys(v, e)−xs(v, e)| < ǫxs(v, e). We say that s is a multiplica-
tive ǫ-approximate equilibrium if all edges are multiplicative
ǫ-stable.

In this paper, an approximate equilibrium will refer to
additive approximation, unless specified otherwise.

We refer to an equilibrium as an NBS equilibrium if the
renegotiations satisfy the NBS condition. We refer to the
equilibrium as a PBS equilibrium if the renegotiations satisfy
the PBS condition.

2.4 Bargaining Concepts as Nash Equilibria
The bargaining solutions may also be viewed as pure Nash

equilibria of certain games. Each edge is a player, and
an edge e has a strategy space [0, c(e)]. Strategy of an
edge corresponds to the division of wealth on it. Let e =
(u, v) be an edge playing strategy x. If the payoff of e is
∆u(x)∆v(c(e) − x), and each edge wishes to maximize its
own payoff, then the pure Nash equilibria of this game are
exactly the NBS equilibria of the network. Similarly, if the
payoff is instead defined to be min{∆u(x),∆v(c(e) − x)},
then the pure Nash equilibria of the game coincides with
PBS equilibria.

Thus, updating an edge corresponds to an edge playing
a best response move in the corresponding game. As with
all pure Nash equilibria concepts, we thus have a natural
heuristic that gives an equilibrium if it terminates: start
from an arbitrary state, and then update unstable edges
repeatedly till all edges are stable. This heuristic is called
best response dynamics. It is worth noting that approximate
equilibria of this game does not necessarily coincide with
approximate equilibria of the bargaining network with the
same approximation factor.

3. COMPUTING EQUILIBRIA
We will now design a fully-polynomial time approximate

scheme for computing approximate additive and multiplica-
tive equilibria in bipartite networks, provided the bargain
monotonicity condition below is satisfied.

3.1 The Bargain Monotonicity Condition

Condition 3.1 (Bargain Monotonicity Condition) An
instance of the bargaining problem satisfies the bargain mono-
tonicity condition with respect to a solution concept (PBS,
NBS) if for any edge e = (u, v) and a pair of states s and s′

of the bargaining network such that e is stable in both s and
s′ with respect to the solution concept, whenever αs′(u, e) ≥
αs(u, e) and αs′(v, e) ≤ αs(v, e), then xs′(u, e) ≥ xs(u, e).

The above condition states that on any edge (u, v), if the
outside options of u increases while that of v decreases, then
u claims a higher share of wealth on this edge when it is rene-
gotiated. Note that Condition 3.1 is essentially a two-player

condition that has no dependence on the network itself and
merely depends on the outside options of the players.

The bargain monotonicity condition seems like a natural
condition that a negotiation between two selfish players can
be expected to satisfy. It is a condition that depends on
the bargaining network as well as the solution concept. The
condition is indeed satisfied by the PBS solution concept on
all networks whenever the utility functions are concave and
increasing. For NBS, however, concavity and monotonicity
of utility functions is not sufficient for satisfying this con-
dition. We will instead identify a stronger property of util-
ity functions that is necessary and sufficient for satisfying
the bargain monotonicity condition on all networks. This
stronger property is satisfied by several natural classes of
utility functions including xp, 0 < p < 1 and log(a + bx)
where a, b > 0.

Lemma 3.1 PBS solutions satisfy Condition 3.1 on all net-
works where the utility functions of all the players are con-
cave and increasing.

Proof. Let p = xs(u, e) and q = xs(v, e). Consider the
state s′′ derived from s with the sole modification that u
gets p and v gets q on e. Then, the differential utility of u
from e in s is at most that in s′′, since the function U(z+p)−
U(z) is decreasing in z when U is concave (this is precisely
equivalent to diminishing marginal utility). By a symmetric
argument, the differential utility of v from e in s is at least
that in s′. Thus, the differential utility of e to u is at most
that of e to v in s′′. So by Lemma 2.1, u must get at least
p on the edge e in s′ to ensure that e is stable.

We now focus on identifying utility functions where the
NBS concept will satisfy Condition 3.1 on all networks. Let
U be the utility function of any vertex u. In light of Lemma

2.2, it is clear that R(α, x) = U(α+x)−U(α)
U′(α+x)

must be a non-

increasing function of α. If not, then there exists some
positive α1 and α2 > α1, such that R(α1, x) < R(α2, x).
It is easy to create a network with two states s and s′

where u have outside options α1 and α2 respectively, while
one of its neighbor v have the same outside option in both
states. Then, the balanced outcome on the edge (u, v) gives
a greater share to u in s than in s′, thus contradicting Condi-
tion 3.1. The utility functions of all players must satisfy this
property, and it is sufficient as well. The above discussion
is captured in the following lemma.

Lemma 3.2 Let χ be the family of all concave, increasing,
and twice differentiable utility functions U ∈ χ, such that

R(α, x) = U(α+x)−U(α)
U′(α+x)

is a non-increasing function of α

for all α > 0 and x > 0. Then every network, where all
players have utility functions from χ, satisfies the bargain
monotonicity condition for the NBS concept.

Now, suppose that U is concave, increasing and twice dif-
ferentiable at all positive values. Simplifying the equation,
we have

d

dα

U(α + x) − U(α)

U ′(α + x)
≤ 0

⇔U(α + x) − U(α)

U ′(α + x)
≤ U ′(α + x) − U ′(α)

U ′′(α + x)

(since U ′(α + x) > 0, and U ′′(α + x) ≤ 0)



It can be easily verified that natural utility functions such
as xp, 0 < p < 1 and f + log(a + bx), a > 0, b > 0, f ≥ 0
belong to χ, and so Lemma 3.2 applies.

Not all concave utility functions satisfy the equation above.
In particular, we construct a concave, increasing and twice
differentiable function U that violates the equation. The
key is to construct a sharp change in marginal utility. We
achieve this by making |U ′′(α + x)| very large compared to
the other expressions in the equation. We describe the util-
ity function by defining U ′. Let U ′(x) = 1 for 0 < x < 1,
and U ′(x) = 1/2 for x > 1.01. For 1 ≤ x ≤ 1.01, U ′(x) de-
creases from 1 to 1/2 smoothly, so that U ′ is differentiable
everywhere, and we can also ensure that U ′′(1.005) < −50,
which is the average slope of U ′ in the range [1, 1.01].

Now, in the above equation, let α = 0.5 and x = 0.505.
Note that the left-hand-side of the equation is more than
xU′(α+x)
U′(α+x)

= x > 0.5, while the right hand side is less than

1/|U ′′(α + x)| < 1/50, thus violating the equation. So we
conclude that if the marginal utility of a player changes
abruptly, Condition 3.1 may be violated. The above dis-
cussion is summarized in the following lemma.

Lemma 3.3 There exists a bargaining network where all the
players have concave utility functions, such that Condition
3.1 is not satisfied in the NBS concept.

3.2 Algorithmic Results
To be used as a subroutine in our algorithm, we define an

Update oracle, that takes an edge e = (u, v) of the network
as input. The oracle is called when our algorithm shall have
a current state s of the bargaining network, and the oracle
shall renegotiate the edge e according to the 2-player bar-
gaining solution we use, and modify the division of wealth
on e only, to change the state to s′, so that e becomes stable.
The computation of the Update oracle depends solely on the
outside options of u and v with respect to e, that is, αs(u, e)
and αs(v, e), and the utility functions of the u and v. We
assume that the oracle also knows the input to the problem,
that is, the social network and the utility functions of the
players, as well as whether the goal is to compute an NBS
or a PBS equilibrium.

The Update oracle essentially performs an improvement
step of the best response dynamics in the game played by
edges that was described in Section 2.4. Since the bargaining
equilibrium concepts are pure Nash equilibria of this game,
it is natural to wonder if a sequence of updates starting
from a random state of the bargaining network converges
to equilibrium. We do not know if all sequences converge,
though our simulations suggest that random sequences con-
verge to approximate equilibrium on random networks. As
we shall show, there exists a sequence that converges to ad-
ditive ǫ-approximate equilibrium in number of steps that
is polynomial in ǫ−1 and the number of edges, in bipartite
graphs. The property of graphs that is critically used is that
it has no odd cycles, which is an equivalent characterization
of bipartite graphs.

Theorem 1 If the bargaining network and the solution con-
cept satisfies the bargain monotonicity condition, then from
any start state s, there is a polynomial-time computable se-
quence of at most O(m2cmax/ǫ) edge updates that converge
to an additive ǫ-approximate bargaining equilibrium, where

Input: Edge e

Modify current state s to a new state s′ such that
xs′(u, e) = ys(u, e) and xs′(v, e) = ys(v, e), and s′

matches s on all edges except e;

Function: Oracle Update(e)

m is the number of edges. Thus we have an FPTAS if the
Update oracle runs in polynomial time.

To get an FPTAS for computing a multiplicative approx-
imate equilibrium (which is an algorithm almost identical
to that for the additive approximation), we shall need the
Update oracle to further satisfy a basic condition, which is
essentially that whenever an edge is updated, none of its
endpoints get too small a share.

Condition 3.2 (Polynomially Bounded Updates Con-
dition) There exists a constant r > 0 such that if the outside
options of the endpoints of an edge e = (u, v) are at most α,
then ys(u, e) ≥ 1

αr and ys(v, e) ≥ 1
αr for all α ≥ 0.

Theorem 2 If the bargaining network (and the solution con-
cept) satisfies the bargain monotonicity condition and the
polynomially bounded updates condition, then from any start
state s, there is a polynomial-time computable sequence of at
most O(m2 log ncmax/ǫ) edge updates that converge to a mul-
tiplicative (1+ǫ)-approximate equilibrium, where cmax is the
maximum value of any edge in the network, n is the number
of vertices and m is the number of edges. Thus we have an
FPTAS if the Update oracle runs in polynomial time.

Before describing the algorithm, we shortly dwell on when
and how is the response of the Update oracle computable in
polynomial time. It is true for all increasing and continu-
ous utility function in the PBS concept, and also true for
all increasing concave functions in the NBS setting. This is
because by an application of Lemma 2.1 and Lemma 2.2 re-
spectively, the problem reduces to being given two functions
of the same variable, one increasing and the other decreas-
ing, and being asked to find a value of the variable where
the two functions are equal. This can be done with expo-
nential accuracy in polynomial time using a binary search
process. It is easy to absorb this exponentially small error
in the update oracle into the approximation factor of the
equilibrium, so we will neglect it.

We now proceed to describe our algorithm.

3.3 The Algorithm
Let s be the current bargaining state, describing division

of wealth on each edge. Algorithm 1 describes our algo-
rithm to compute an ǫ-approximate equilibrium. For either
additive or multiplicative approximation, note that the cor-
responding definition for approximate stability of an edge
should be used in the algorithm to decide if an edge is ǫ-
stable.

It is fairly easy to see that when Algorithm 1 terminates,
the final state of the bargaining network is an ǫ-approximate
equilibrium. The outer while loop implies that algorithm
can terminate only when all edges are colored black. More-
over, the inner while loop can terminate only when all
black edges become ǫ-stable. Thus in the last repetition



Input: Bargaining network G and an oracle access to
the Update function

Output: An ǫ-approximate equilibrium

Initialize to an arbitrary state s;
Color all edges WHITE;
while there exists a WHITE edge e do

Color e BLACK;
while there exists a BLACK edge e′ that is not
ǫ-stable in the current state do

Update (e′);

Output current state;

Algorithm 1: An FPTAS for computing an ǫ-
approximate equilibrium

of the outer loop, the last white edge gets colored black,
and then the inner while loop ensures that the algorithm
terminates only when all the black edges (which is the entire
network now) are ǫ-stable, and thus the current state is an
ǫ-equilibrium. So we only need to argue the termination and
running time of the algorithm.

Since the inner loop of the algorithm terminates only when
all the black edges are ǫ-stable, so at the beginning of the
next inner loop, only the new black edge e may not be ǫ-
stable. If it is not, the loop terminates without a single call
to the oracle. However, if e is unstable, then it is the first
edge to be relaxed in this execution of the loop, and the
influence of this update now travels along the black edges.

Let e = (u, v), and suppose updating e caused u to receive
more wealth from the deal on e, than it was receiving just
before the update. In such a case, we say that the update
favors u. Noting that G is a bipartite graph, we label every
vertex in the same partition as u as +, and the vertices in
the other partition as −. This labeling is only for the sake
of analysis, and may be different for distinct executions of
the inner loop. Note that every edge is between a vertex
labeled + and a vertex labeled −. Lemma 3.4 is crucial,
and Theorem 1 follows from it. The proof of 3.4 depends on
Condition 3.1 being satisfied.

Lemma 3.4 If Bargaining Monotonicity Condition holds,
then during the execution of the inner loop, whenever an
edge e′ = (u′, v′) is updated, such that u′ is labeled +, the
update favors u′.

Proof. We shall prove this statement by induction. By
definition, the statement holds for the first step, that of up-
dating e. For the inductive step, suppose that the statement
has been true for the first i−1 update steps, i ≥ 2. Consider
the ith update step, where the edge updated is e′ = (u′, v′).
Since the beginning of the loop, whenever an edge incident
on u′ has been updated, by the induction hypothesis, u′

was favored as it is labeled +. Note that since e′ is a black
edge, it was ǫ-stable at the beginning of this loop. So, since
the last time that e′ was ǫ-stable, all the updates have only
increased the outside option of u′ with respect to e′. By
a similar argument, the outside option has gone down or
stayed the same for v′. Thus Condition 3.1 implies that u′

is favored in this update step, and the inductive proof is
complete.

Proof of Theorem 1. If we only update edges that are
not ǫ-stable in the additive sense, then since every update

increases the wealth of the favored vertex by at least ǫ, and
since the wealth from an edge e′ to any of its endpoint cannot
exceed cmax, the edge shall not be updated more than cmax/ǫ
times in one iteration of the inner loop. Finally, in each
repetition of the inner while loop, at most m distinct edges
are updated, and the loop itself is repeated m times. This
completes the proof of Theorem 1. 2

Proof of Theorem 2. Now, suppose we only update edges
that are not ǫ-stable in the multiplicative sense. Assume
that the Polynomially Bounded Updates Condition is true.
Then, whenever an edge has been updated at least once
before, both of its endpoints receive a share whose inverse
is polynomially bounded in ncmax, which is an upper bound
on all outside options. Either of these shares can at most
go up to cmax within a single iteration of the outer loop,
and on every update it goes up (or down) by a factor of at
least (1+ ǫ) (or (1− ǫ)) so the edge cannot be updated more
than O(ǫ−1 log(ncmax)) times. Again, in each repetition of
the inner while loop, at most m distinct edges are updated,
and the loop itself is repeated m times. This completes the
proof of Theorem 2. 2

4. SIMULATION STUDIES
In this section we undertake simulation studies of the ef-

fects of network structure on bargaining equilibria. Previ-
ous theoretical work [5] has shed partial light on how struc-
ture influences wealth in NBS equilibrium. In particular, for
concave utilities such as

√
x, an edge between two vertices

of high degree (both degrees exceeding d) is shared almost
equally, with both parties getting a fraction 1

2
± 1

d
of the deal.

While a number of works have strived to quantify relation-
ships between network structure and various game-theoretic
equilibria [15, 11, 7, 4], precise characterizations are rare.
We thus turn to an alternative approach, which is that of em-
pirically investigating the structure-equilibrium relationship
in networks randomly generated from well-studied stochas-
tic formation models [13, 12, 14, 17]. we are particularly
interested in how a player’s position in the network influ-
ences her “bargaining power” [15, 4, 13, 17].

4.1 Methodology
The broad methodology we followed was to (a) gener-

ate many random networks from specific stochastic forma-
tion models (namely, preferential attachment [1] and Erdos-
Renyi [9]), (b) compute bargaining equilibria on these net-
works by running best-response dynamics until convergence,
and (c) perform statistical analyses relating structural prop-
erties of the network to equilibrium properties.

For the best response dynamics, we start from a random
state, and then repeatedly pick any edge that is not ǫ-stable
and update it, until all edges are ǫ-stable, for ǫ = 0.001.
In all our simulations, all edges in the network have unit
wealth. Also, in all our simulations, we imposed the same
utility function U on all vertices, so that the sole difference
between the players is their positions in the network. Unless
mentioned otherwise, U =

√
x in our simulations; on some

simulations we chose U = xp for various values for 0 < p < 1.
Specifying the parameters of a model define a particular

distribution on networks, and
We examined the properties of equilibria on 100 graphs

sampled from each formation model. The distributions we
studied in the preferential attachment model are PA(50, 1)



and PA(50, k), for all integers k from 1 to 5, where PA(n, k)
denotes a preferential attachment model with 50 vertices and
k new links being added per vertex. The distributions we
studied in the Erdos-Renyi model are ER(50, 4k/100), for
all integers k from 1 to 5, where ER(n, p) denotes a random
graph with 50 vertices where the probability that an edge
exists is p. Note that ER(50, 4k/100) and PA(n, k) have
comparable number of edges in expectation. Unless spec-
ified otherwise, all the data presented below uses a utility
function of

√
x for all vertices.

On every network that was included in the sample, we
ran random best response dynamics 20 times, for both PBS
and NBS, each time starting from a random initial state and
then updating unstable edges at random. In every network,
this randomized algorithm converged to states that were all
within a radius of 0.01 in l∞ norm. Further, this radius
had a decreasing trend whenever ǫ was reduced. This it
seems plausible that on all these networks, every run of the
algorithm converges to a small neighborhood of a unique
equilibrium. This event occurred for both the PBS and NBS
concepts. Since the approximate PBS equilibria computed
are almost the same, we shall subsequently only consider one
PBS equilibrium and one NBS equilibrium when analysing
the wealth distribution on the vertices.

4.2 Correlation Between Degree and Wealth
Echoing earlier results found in a rather different (non-

bargaining) model [13], we found that in both formation
models there is a very high correlation between vertex degree
and wealth at equilibrium — on average (over networks),
correlations in excess of 0.95. Given such high correlations,
it is natural to attempt to model the wealth of each vertex in
a given network by a linear function of its degree — that is,
in a given network we approximate the equilibrium wealth
wv of a vertex v of degree dv by αdv − β, and minimize the
mean squared error (MSE)

1

n

X

v∈V

(wv − (αdv − β))2

where n = |V |. We find that such fits are indeed quite accu-
rate (low MSE). We do note that the correlation is generally
higher, and the MSE generally lower, in NBS equilibrium
compared to PBS equilibrium, so linear functions of degree
are better models of wealth in NBS than PBS.

5 that minimize the squared error in each graph. The
tables also report

Note that since the sum of the wealth of all vertices is
equal to the number of edges m, we have

X

v∈V

αdv − β ≈ m ⇒ α(2m) − βn ≈ m ⇒ β ≈ m

n
(2α − 1)

Thus, β̃ = m
n

(2α − 1) is an estimate of β that is almost
accurate when the mean squared error is as small as we
have found. β̃ is positive if α > 0.5, and negative if α < 0.5.
In essence, therefore, the wealth distribution on the vertices
of a specific network is succinctly really expressed by just
a single real value – the degree coefficient α. Note that α
itself is a function of the network, and as we shall see, is also
dependent on the equilibrium concept.

4.3 Regression Coefficients
For each graph, we have two coefficient values α, one for

the PBS equilibrium and the other for the NBS equilibrium.
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Figure 1: PBS and NBS regression coefficients versus
edge density in PA
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Figure 2: PBS and NBS regression coefficients versus
edge density in ER

Thus each distribution of graphs gives two distributions of α,
one for PBS equilibrium and the other for NBS equilibrium.
A standard t-test reveals that for both network formation
models, these distributions of coefficients have rather means
at a high level of statistical significance. On all networks, the
coefficient in the PBS equilibrium was higher than that in
the NBS equilibrium, and both numbers were greater than
0.5.

Figure 1 shows the values of α for PBS and NBS equi-
libria in the 5 different distributions, which vary in their
edge density, from the preferential attachment model. The
horizontal axis shows the number of new links added per ver-
tex in the random generation, while the vertical axis shows
the regression coefficients from 100 trials. Figure 2 shows
the analogous plot for distributions from the Erdos-Renyi
model, with the horizontal axis representing the edge proba-
bility. The plots clearly demonstrate that the dependence of
wealth on degree is stronger in PBS than in NBS. In prefer-
ential attachment networks, both equilibrium concepts seem
to have diminished coefficients with increased edge density,
but this effect is absent or muted in Erdos-Renyi.

4.4 Division of Wealth on Edges
So far we have examined the total wealth of players in

equilibrium states; we can also examine how the wealth on
individual edges is divided at equilibrium. Figures 3 and 4
show histograms of the division of wealth on edges in the dis-
tribution PA(50, 2) for PBS and NBS equilibrium, respec-
tively. The horizontal axis shows the amount of the smaller
share of an edge, and the vertical axis shows the number of
edges whose smaller share is within the given range. The
number of edges is summed over 100 graphs from each dis-
tribution. In NBS, the wealth on most edges are split quite
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Figure 3: A histogram of PBS for division on each
edge, for PA(50, 2)
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Figure 4: A histogram of NBS for division on each
edge, for PA(50, 2)

evenly, while in PBS, the split is heavily skewed, yet an-
other indication that network structure plays a greater role
in PBS equilibrium than in NBS equilibrium.

A more refined view of this phenomenon is provided in
Figures 5 and Figure 6. Here we show the average edge
divisions as a function of the degrees of the two endpoints
d1 and d2 for the two equilibrium notions in the distribution
PA(50, 3). We note that while both surfaces are smooth and
have similar trends, the slope of the surface is much gentler
in NBS equilibrium than in PBS equilibrium, demonstrating
that even neighbors with rather different degrees tend to
split deals approximately evenly at NBS equilibrium.

4.5 Other Utility Functions
All experiments described so far examined the utility func-

tion
√

x. We also performed experiments examining equilib-
ria varied with a change of utility functions. We examined
U = xp for p = i/10 ∀1 ≤ i ≤ 10 on each graph distri-
bution, and found that for each of them, the correlation of
wealth and degree was still very high and linear fits still pro-
vide excellent approximations. We know theoretically that
for i = 10, that is, U(x) = x, we have α = 0.5. Figure
7 illustrates how the degree coefficient for PBS equilibrium
decreases smoothly in PA(50, 3), from an average value of
almost 1 to 0.5, as p goes from 0.1 to 1.0, while that for
NBS equilibrium starts barely above 0.5 and also goes down
to 0.5, albeit with a far gentler slope. Figure 8 shows the
same plot for the distribution ER(50, 0.12), which, in ex-
pectation, has approximately the same number of edges as
in PA(50, 3). Thus, again viewing a higher value of α as
a higher variance in bargaining power and thus greater ef-
fects of network structure, with α = 0.5 implying the ab-
sence of network effect, we conclude from the figures that
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Figure 5: Edge division versus edge endpoint degrees
in PBS for PA(50, 3)
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Figure 6: Edge division versus edge endpoint degrees
in NBS for PA(50, 3)

network effects gradually diminish when the utility function
approaches linearity.

5. UNIQUENESS OF EQUILIBRIUM
The simulations suggested that equilibrium may be unique

in the networks we ran our simulations on, or at least that
the random best response dynamics converges to a unique
one. In this section we address the question of whether
equilibrium is unique. Unfortunately, the answer to this
question is no.

In this section, we focus on regular graphs with unit wealth
on all edges, and the same utility function U , which is in-
creasing, continuous and concave, for all vertices. This class
has one state that is both PBS and NBS equilibrium: the
state where the value on every edge is divided into two equal
parts. We investigate if there is any other equilibrium. We
show that one can choose U such that there are multiple
equilibria, both for PBS and for NBS.

However, we give a simple condition of the update process
that will ensure uniqueness in this class of networks. We
show that many natural concave utility functions such as
xp, 0 < p < 1 satisfy this condition in both PBS and NBS
concepts, and thus ensure unique PBS and NBS equilibrium,
respectively.

5.1 PBS Equilibrium is Not Unique
Consider any d-regular bipartite graph (d ≥ 2) with edges

of unit wealth, and every player with the same utility func-
tion U , which is defined as U(x) = 100x for 0 ≤ x ≤ 0.01,
and U(x) = log x−log 0.01+1 for x > 0.01. Then, U(x) = 0,
U is differentiable, and U ′ is a decreasing positive function,
so U is concave and increasing. This bargaining network has
uncountably many PBS equilibria.
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Let the vertices in the bipartite graph be X ∪ Y , where
X and Y are independent sets. Consider a state s where
on every edge, the endpoint in X receives 1/2 − ǫ, while
the endpoint in Y receives 1/2 + ǫ, for any 0 < ǫ < 0.49.
Then, for any edge, the outside options of its two endpoints
are (d− 1)(1/2 − ǫ) and (d− 1)(1/2 + ǫ) respectively, and s
is a PBS equilibrium if and only if U(d(1/2 − ǫ)) − U((d −
1)(1/2− ǫ)) = U(d(1/2+ ǫ))−U((d−1)(1/2+ ǫ)). It is easy
to check that both sides evaluate to log d/(d − 1). Since the
result holds for any 0 < ǫ < 0.49, we have a continuum of
PBS equilibria.

5.2 NBS Equilibrium is Not Unique
We again consider d-regular bipartite graph (d ≥ 2) with

edges of unit wealth, and every player with the same utility
function U . However, we need to choose U more carefully,
and we shall only get multiple NBS equilibrium, instead of
uncountably many.

Let the vertices in the bipartite graph be X ∪ Y , where
X and Y are independent sets. Consider a state s where
on every edge, the endpoint in X receives 1/4, while the
endpoint in Y receives 3/4. Then, for any edge, the outside
options of its two endpoints are (d − 1)/4 and 3(d − 1)/4
respectively, and s is an NBS equilibrium if and only if

U(d/4) − U((d − 1)/4)

U ′(d/4)
=

U(3d/4) − U(3(d − 1)/4)

U ′(3d/4)

Note that 3(d − 1)/4 > d/4 when d ≥ 2, so the above
equation is easy to satisfy. We can define an increasing,
continuous and concave function U such that U ′(d/4) = 1,
U ′(3d/4) = 1/2 and (U(d/4)−U((d− 1)/4)) = 2(U(3d/4)−
U(3(d − 1)/4)). In particular, we can choose U such that
U = 8x ∀x ≤ (d − 1)/4, so that U((d − 1)/4) = 2(d − 1),

and then decrease the slope gradually such that U(d/4) =
U((d − 1)/4) + 1 = 2d − 1 and U ′(d/4) = 1, and then
U ′(3(d−1)/4) = 1, and finally U(3d/4) = U(3(d−1)/4)+1/2
and U ′(3d/4) = 1/2.

5.3 Uniqueness in Regular Graphs
The following condition, which is dependent on the util-

ity function U of the players as well as the concept we are
considering, PBS or NBS, is sufficient to ensure uniqueness
on regular graphs with unit wealth on edges and identical
utility functions for the players. We call it a rallying condi-
tion, because it allows the player with less outside options
to bargain a greater share than what the disbalance in the
outside options suggest, even though she gets the smaller
portion.

Condition 5.1 (Bargain Rallying Condition) Let s be
any state of a bargaining network and e = (u, v) be any edge
of wealth c. Without loss of generality, suppose αs(u, e) ≤
αs(v, e). Then, our condition is that c/2 ≥ ys(u, e)

> cαs(u,e)
αs(u,e)+αs(v,e)

.

This condition is satisfied by common concave utility func-
tions such as U(x) = xp where 0 < p < 1, and also U(x) =
f + log(a + bx) where a > 0, b > 0. A detailed discussion is
deferred to the full version.

We shall now present and prove our main uniqueness re-
sult.

Theorem 3 If Condition 5.1 is satisfied in the PBS (or
NBS) concept on a regular graph with unit wealth on every
edge and identical utility function for all players, which is
increasing, continuous and concave, then there is a unique
PBS (or NBS, respectively) equilibrium, where the wealth on
every edge is shared equally between its endpoints.

Proof. Proof by contradiction. Clearly, the state, where
wealth on every edge is equally divided, is an equilibrium.
Suppose there exists another equilibrium s. There exists
an edge where xs(u, e) < 1/2 or xs(v, e) < 1/2. Consider
the edge e = (u, v) which has the most lopsided division,
that is, find e such that min (xs(u, e), xs(v, e)) is minimized.
Without loss of generality, suppose that u gets the smaller
share 1/2 − ǫ on e, for some ǫ > 0. Since Condition 5.1 is
satisfied, so αs(u, e) ≤ αs(v, e). Note that u gets at least
1/2 − ǫ from each edge incident on it, and so αs(u, e) ≥
(d − 1)(1/2 − ǫ). Similarly, v gets at most 1/2 + ǫ from
each incident edge, so αs(v, e) ≤ (d − 1)(1/2 + ǫ). Thus

αs(v, e)/αs(u, e) ≤ 1/2+ǫ
1/2−ǫ

. Now using Condition 5.1, we get

that ys(u, e) > 1

1+
1/2+ǫ
1/2−ǫ

= 1/2 − ǫ which is a contradiction

to our assumption that s is an equilibrium.

6. GENERALIZED UTILITY FUNCTIONS
In all the results in this paper, as well as the definitions in

the Preliminary section, utility function was assumed to be
a function of the sum of the wealth received by the player
on all edges incident upon it, that is the function was of the
form U(x1 + x2 . . . + xd), where x1, x2 . . . xd are the differ-
ent shares she receives from her d edges. We can, instead,
define a more general concept of a utility function, one that
is multi-dimensional, and is an arbitrary function of the val-
ues of the wealth she receives from her edges, that is, of



the form U(x1, x2 . . . xd). The concepts of PBS and NBS
equilibrium can be easily extended to this setting, by sim-
ply redefining differential utility, which is still the additional
utility a player receives from the deal, given what she is
getting from her other deals. In particular, her differential
utility from the first incident edge is U(x1, x2, x3 . . . xd) −
U(0, x2, x3 . . . xd). Note that the outside option for this
first edge should also be redefined as a sequence of d values
(0, x2, x3 . . . xd) where the value corresponding to the first
edge is zero, while the rest reflects the wealth the player
receives from her other (d − 1) deals.

We think it is worth noting that even under this general-
ized model, the existence results of [5] hold, that is,

• PBS equilibrium exists on all networks if the utility
functions are increasing and continuous.

• NBS equilibrium exists on all networks if the utility
functions are increasing, continuous and concave.

These results follow from the fact that analogous versions
of Lemmas 2.1 and 2.2 hold in this model too, using the
fact that an increasing, continuous and/or concave multi-
dimensional function has the same property along each di-
mension.

Further, it is easy to verify that the bargaining mono-
tonicity condition is satisfied by concave utility functions in
the PBS concept. Again, the condition needs to be mod-
ified to take care of the fact that outside options are now
a sequence: we say that αs(u, e) ≥ αs′(u, e) if the former
dominates the latter in every dimension. This condition is
sufficient to show that the same FPTAS algorithm works
even in this generalized model.

7. CONCLUSION
Our model is an addition to the extensive literature on

network exchange theory, and it differs from previous mod-
els in that network effects are caused by the non-linearity of
utility functions of the players. When players can enter into
as many deals as their degree our model allows the possibil-
ity that not all edges will be split equally. Effects of network
structure may be felt throughout the network when utility
functions are concave.

The most prominent theoretical question left unanswered
in our model is that of computing approximate or exact
equilibria in general graphs.
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