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ABSTRACT

We report on a series of highly controlled human subject
experiments in networked bargaining. The basic interaction
between two players is the decision of how to share a mutual
payment; we extend this to situate the players in a network.
Various theories predict, to different levels of uniqueness,
what the shares will be. We analyze our experimental results
from three points of view: social efficiency, nodal differences,
and human differences; and contrast our behavioral results
with the theories.
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1. INTRODUCTION

In recent years there has been much research on network-
based models in game theory, in both the computer science
and economics communities. Topics of attention include the
effects of network topology on equilibrium properties, the
price of anarchy in networking problems like selfish rout-
ing, game-theoretic models of network formation, equilib-
rium computation in networked settings, and many others.
This large and growing literature has been almost exclusively
theoretical, with few accompanying empirical or behavioral
studies examining the relevance of the mathematical models
to actual behavior.

In this paper, we report on a series of highly controlled
human subject experiments in networked bargaining. Net-
worked bargaining is modelled as follows: players are the
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nodes of the networks, and each edge in the network repre-
sents some fixed amount of money that can be realized by
its endpoints if they agree on how to split the amount. This
agreement shall be referred to as closing a deal. In addition,
there is a deal limit on each node, which is the maximum
number of deals a player at that node is allowed to close,
which could be less than its degree.

We were partly inspired by a long line of previous theoret-
ical work which tried to relate wealth to network topology
in bargaining settings [8, 9, 2, 14, 4, 13, 1, 5]. A notable
feature of these theories is the prediction that there may
be significant local variation in splits purely as a result of
the imposed deal limits and structural asymmetries in the
network. One can view our experiments as a test of hu-
man subjects’ actual behavior at this game in a distributed
setting using only local information. Our experiments are
among the first and largest behavioral experiments on net-
work effects in bargaining conducted to date.

We adopt many of the practices of behavioral game theory,
which has tended to focus on two-player or small-population
games rather than larger networked settings. In each of
our experiments, three dozen human subjects simultane-
ously engage in one-to-one bargaining with partners defined
by an exogenously imposed network. Our work continues
a broader line of research in behavioral games on networks
at the University of Pennsylvania[12, 10, 11]. Closest in
spirit to the current work is that investigating networked
exchange economies [10], but the experiments here and the
theories underlying networked bargaining differ significantly
from networked trading models.

In an extensive and diverse series of behavioral experi-
ments, and the analysis of the resulting data, we address
a wide range of fundamental questions, including: the re-
lationships between degree, deal limits, and wealth; the ef-
fects of network topology on collective and individual per-
formance; the effects of degree and deal limits on various
notions of “bargaining power”; notions of “fairness” in deal
splits; and many other topics.

The networks used are inspired from common models in

social network theory, including preferential attachment graphs,

and some specifically-tailored structures.

In all our experiments, the number of deals that were
closed was above 85% of the maximum possible number.
This is high enough to demonstrate real engagement, and
low enough to demonstrate real tension in the designs.

Most of the deeper findings can be related to existing net-
work bargaining theory. Although deals are often struck
with unequal shares, more than one-third of the deals are



equally shared, thus indicating that people, while behaving

as self-interested actors, also have an aversion towards in-

equality.

Network topologies have enough of an effect that they can
be distinguished statistically via individual wealth levels and
other measures. Higher degree, for example, tends to raise
bargaining power while higher deal limits tend to decrease
it. But while local topology affects bargains, invisible com-
petition also affects it, even when the local topologies are
indistinguishable. We find the expected effects of higher
deal limits in the first neighborhood and higher degrees in
the first and second neighborhoods, but neither degree dis-
tribution nor deal limit distribution is sufficient to determine
the inequality of splits. In sum, there is a rich interaction
between network and wealth that needs more study.

Other findings that speak to no existing theories but might
provoke some new ones are the following:

e There is a positive correlation between inequality and so-
cial efficiency.

e Failures to agree on a split (as opposed to failures to find
the best global trade configuration) form the greater part
of missing efficiency.

e Social efficiency was higher when some uncertainty existed
about a partner’s costs.

Finally, there are two curios that seem more about psy-
chological dynamics than economics: People who are patient
bargainers tend to make more money; and an incidental
asymmetry in our protocol for closing a deal is correlated
with a bias in the split.

In the ensuing sections, we review relevant networked bar-
gaining theories, describe our experimental design and sys-
tem, and present our results.

2. BACKGROUND

Networked bargaining with deal limits on the nodes, also
known in the sociology literature as networked exchange
with substitutable or negatively connected relations (eg. [4]),
has been studied for decades. Several theoretical models
have been designed to predict or propose how wealth should
be divided [9, 14, 8, 16], and human subject experiments
have been conducted on a few small graphs (up to 6 nodes)
[6, 7, 16], albeit with different interfaces and mechanisms
than ours. Some of the theoretical models are based on lim-
ited experimentation, along with simulated human behavior
on slightly larger graphs [7]. A few models are based strongly
on notions of game-theoretic rationality and are natural ex-
tensions of standard economic literature to social networks.
Two models that belong to this class were introduced by
Cook and Yamagishi [8] and by Braun and Gautschi [4]. We
shall mainly focus on these two models.

The model given by Cook and Yamagishi, sometimes re-
ferred to as equidependence theory, is the most recognized
theoretical model, and has received a lot of recent focus
from the theoretical computer science community [13, 1].
Though Cook and Yamagishi[8] considered only unique ex-
change networks (that is, where each vertex may close only a
single deal), the model is easily extendable to networks with
varying deal limits. Every node is assumed to play strate-
gically with selfish game-theoretic rationality. An outcome
describes the division of wealth on various edges of the net-
work. The outside option of a node is the highest offer it can
rationally receive from any of its neighbors, such that closing
that deal would benefit both parties, compared to the given

state. An outcome is said to be stable if every player’s earn-
ing is more than its outside option. Game-theoretic rationale
suggests that an outcome should be stable if the players act
in a myopically selfish manner. Cook and Yamagishi pro-
pose that the achieved outcome must be stable; moreover,
they propose that the achieved outcome should be balanced,
that is, two parties that close a deal should have equal ad-
ditional benefit from this edge, where additional benefit is
measured as the amount by which the earning of a player ex-
ceeds its outside option. Kleinberg and Tardos [13] showed
that a stable and balanced outcome exists on all bipartite
networks, but may not exist in all networks, and if it does,
the closed deals in a stable outcome form a maximum match-
ing. This equal division of surplus is stipulated by standard
two-player bargaining solutions such as the Nash Bargaining
Solution and Proportional Bargaining Solution, for players
with linear utilities [15, 3].

Though a balanced outcome seems to be the most robust
theoretical model, it has several drawbacks, first and fore-
most that it does not exist on even simple networks such as
a triangle; and when it exists, there is a balanced outcome
for every maximum matching in the network. This makes
it computationally hard to even enumerate all the balanced
outcomes in a network, and non-uniqueness reduces the pre-
dictive value of such a model. Another drawback is that the
model often suggests that some edges will be shared so that
one party gets an infinitesimal share, and the other party
gets practically the entire amount. For example, a node
that has at least two leaves (nodes of degree 1) as neigh-
bors always ends up with maximum possible profit, due to
competition between the leaves. However, even previous
small-scale experiments [16] have suggested that such a phe-
nomenon does not happen, and in our experiments, players
rarely close a deal that extremely favors one of the play-
ers. Thus, when human subjects are involved, perfect local
rationality seems to be an incorrect assumption.

The model given by Braun and Gautschi [4] defines a
“bargaining power function” on nodes that depends only on
the degree of the node and degrees of its neighbors. This
function increases with increase in degree of the node, and
decreases with increase in degrees of its neighbors, and is
independent of all other network aspects. On each edge,
the division of wealth, if a deal is made, is stipulated to be
proportional to the bargaining power of the adjacent nodes.
The bargaining power functions do not distinguish between
different limits on nodes, and generally assume that rela-
tions are negatively connected: that is, for any given player,
closing one deal reduces the maximum value that can be ob-
tained from other edges deals. This makes the model quite
inadequate as a predictor for our experiments. The other
feature of this model is that network effects are quite local
in nature, since even slightly distant properties such as the
degrees of neighbors of neighbors do not have an effect on the
bargaining power function. However, the model attempts to
capture the notion that the earning of a player depends pos-
itively on its own degree and negatively on the degree of its
neighbors. We test this notion on fairly large graphs for the
first time, and we also show that the degrees of neighbors
of neighbors do affect a node positively. Such alternating
effects were predicted in previous theoretical models such as
that by Markovsky et. al. [14], which said that odd length
paths from a node enhance its earning, while even length
paths reduce it.



The most significant set of previous experiments were done
by Skvoretz and Willer [16], who conducted experiments on
6 small networks (each has at most 6 nodes), with only unit
deal limits in 4 of them. They found that some common
intuitions held true in those networks. For example, players
who have deal limit one and multiple leaves as neighbors
gets the bigger fraction of a closed deal, and that this frac-
tion reduces if the limit of the player is raised. Among other
results, we test such hypotheses extensively on much larger
graphs with much more variance in their degree and limit
distributions, and establish these hypotheses with very high
statistical significance. Larger graphs also allow us to study
the effects of network topology aspects that are more in-
volved than the degree or limit of the player.

Recently, Chakraborty et. al. [5] designed an extension of
the Cook-Yamagishi model, in the setting where there are
no limits on the number of deals. In this case, the model pre-
dicts that all deals should be closed, and if players have lin-
ear utility (which is assumed in the Cook-Yamagishi model),
all deals should be shared equally. Unequal splits may occur
only if players have non-linear utility.

3. EXPERIMENTAL DESIGN

We designed 18 different experimental scenarios (consist-
ing of specific choices of networks and arrangement of deal
limits; each such scenario received 3 trials, for a total of 54
short experiments). These scenarios were based on 8 differ-
ent graphs with a wide variety of details that is exemplified
in Figure 1. The sole property they share is that they all
have 36 nodes. We are thus casting our experimental nets
wide here regarding network topology, as in much of our
previous behavioral work. This section describes all the sce-
narios, at least at a high level.

The networks fall into 2 categories: regular graphs (to iso-
late and explore the effects of variations in deal limits), and
irregular graphs (which contain an assortment of different
degrees).

3.1 Irregular Graphs

We were interested in how bargaining behavior changes
with changes in local network structure, and especially with
differences in degree. Out of the huge space of such net-
works, we chose four. The first three we describe all had a
common degree sequence, but differed in the way that nodes
of each degree connected to nodes of other degrees. We gen-
erated a single degree sequence with a distribution that ap-
proximately follows a power law, and used it to build three
graphs with different patterns of degree-to-degree profiles.
We refer to these graphs as PL (for Power Law) graphs.

3.1.1 Power Law Graphs

Since we suspected that degree might have a large influ-
ence on bargaining power (to be confirmed below), it mat-
ters to the success of any node what the degrees are of other
nodes they need to bargain with. Hence it was important to
manipulate the degrees of neighbors as well.

By connecting nodes in different ways, we generated 3
graphs that differ in this manner but have the same basic
degree distribution. In PLP (for Power Law Positive, in-
dicating locally positive degree correlation) the high degree
nodes are connected to other high-degree nodes. It models
a world where nodes of different degrees are segregated from
each other. In PLN (for Power Law Negative) the high de-

gree nodes are connected to the low-degree ones; it models
a world where the connection-poor are likely to be ‘capti-
vated’ by the connection-rich. And PL0 has them all mixed
together to disperse such phenomena. It models a world
where nodes mingle freely with other types.

With each of the PL graphs above, we used each of the
following 3 deal limit schemes to obtain 3 x 3 = 9 differ-
ent scenarios. The first is the well-studied unique exchange
situation (uniq): all nodes have deal limit 1. The other 2
are neither unique exchange nor unlimited, but represent
two points in another large space of possibilities in between
those notions. They are best thought of as having random
deal limits drawn uniformly between 1 and the degree of the
node. We call them limA and limB, and the difference is
just that they are different randomizations.

3.1.2 Identical First Neighborhoods

The final irregular graph was designed specifically to test
if structure outside the immediate neighborhood of a node
would affect its behavior. The network used for this test has
two sets of three identical nodes, which are colored blue and
red in Figure 1d. Both sets have degree 6, and each of their
neighbors have degree 7, so the local neighborhoods are in-
distinguishable in our GUI views. Any differences in behav-
ior must be due to the second neighborhood or aspects even
more distant. The second neighborhood of these two sets of
nodes are drastically different; the second neighbors of the
red nodes includes the 20 leaves while the second neighbors
of the blues does not. This graph helped us identify the ef-
fects of second neighborhood when the first neighborhoods
of two nodes were identical. We used it only with all nodes
having deal limit 1. We refer to this scenario as 2ndHood.

3.2 Regular Graphs

The 8 remaining scenarios were all based on regular graphs.
This allowed us to test effects other than degree, like differ-
ing deal limits or large-scale market imbalances. One graph
is the cycle shown in Figure 1. Four of them are identical
tori with different deal limit schemes. Finally, three other
graphs were used to observe the effects of a global supply
imbalance, and are described in section 3.2.2.

3.2.1 Tori

The 4 tori are topologically the same as the 6 x 6 torus in
Figure 1b, and are differentiated only through deal limits:
e Uniform Torus (torUniq): all nodes have deal limit 1.

e Checkerboard Torus (torChkb): all white nodes have deal
limit 1, the others have deal limit 3.

e Torus Rows (torRows): alternating rows have deal limit 1
and deal limit 3.

e Torus Diamond (torDiamnd): Some vertices have deal
limit 1 and some have deal limit 3. See Figure 8.

3.2.2 Imbalanced Supply Networks

The supply networks are 3 regular graphs which were de-
signed to study the effect of a capacity issue which is not
apparent at the node, but becomes apparent when contrast-
ing the deal limits of two groups of nodes. Let the external
demand of a group be the sum of deal limits of the nodes in
the group minus the maximum number of deals that can be
closed within the group.

In the supply networks, we defined the groups as the left
group and right group as shown in Figure 2. All nodes have
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Figure 1: Representatives of all the networks used. (a) the PA graph with positive homophily. (b) a torus;
the edges running off the top and bottom denote wrap-around connections, as do those off the sides. (c) a
simple cycle. (d) the 2ndHood graph for testing second neighborhood effects.

degree 4. All vertices in the left group have deal limit 2,
and all vertices in the right group have deal limit 3. In each
network, the right group has two different types of neighbors:
those that belong to the right group, and those that belong
to the left group. It is their differential treatment of the
two types that was of interest. Nodes on the left have only
one kind of neighbor; they exist just to set up the market
conditions for those on the right.

(degree imity | Xdeals:Xdeals [ (degree,limit)
inter-edges

15 21
30:39
e
60
Undersupplied

internal edges internal edges

12 24
24:24 (4,3)
48 48
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10 26
20:14
e
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Figure 2: Metadesigns for graphs studying differen-
tial treatment of nodes under three global market
conditions. The top line is a template for interpret-
ing the others. Xdeals means external demand. The
“supply” in the 3 names refers to the number deals
that the right side wants versus the number avail-
able.

The three graphs share the fact that all deal limits are
either 2 or 3, and the ones on the right have both types
of neighbours. They are different in the ratios of external
demands between the left and right groups; in the Under-
supplied case the right nodes are somewhat starved for deals
(seeking 39 when only 30 could be forthcoming), in Equisup-
plied they are just balanced, and in Oversupplied they have
more offers than they can use.

4. SYSTEM OVERVIEW

Experiments were conducted using a distributed networked
software system we have designed and built over the past
several years for performing a series of behavioral network
experiments on different games. This section briefly de-
scribes the user’s view of that system in our bargaining ex-
periments.

Like most microeconomic exchange models, the model de-
scribed in Section 2 does not specify an actual temporal
mechanism by which bargaining occurs, but of course any
behavioral study must choose and implement one. At each
moment of our experimental system, and on each edge of
the network, each human subject is able to express an offer
that is visible to the subject’s neighbor on the other end of
the edge. See Figure 3. The offer expresses the percentage
of the benefit that a player is asking for. When the portions
on either end of an edge add up to exactly 100%, one of the
players is able to close the deal by pressing a special button.
Individuals can always see the offers made to them by their
neighbors, as well as some additional information (including
the degrees and limits of their neighbors, and the current
best offers available to their neighbors). When a deal is
closed, or when one of the partners has used up his limit of
deals, the relevant edge mechanisms are frozen and no fur-
ther action is allowed on them. Every game is stopped after
60 seconds. Any money riding on deals not closed within
that time is simply “left on the table”, i.e. the players never
get it.

All communication takes place exclusively through this
bargaining mechanism. Actions of a user are communicated
to the central server, where information relevant to that ac-
tion is recorded and communicated to the terminals of other
users.

4.1 Human Subject Methodology

Our IRB-approved human subject methodology was sim-
ilar to that of our previous experiments [12, 10, 11].

4.2 Session Overview

The main experimental session we shall study, which em-
ployed the network structure and deal limit scenarios de-
scribed above, consisted of 3 trials each of the 18 scenarios
described above, making 54 experiments in all. Each edge
had a payment of $2 available, and in the end approximately
$2500 was spent on subject payments. Unless mentioned



Figure 3: Screenshot of player’s interface for bargaining.

otherwise, this paper shall always be describing this session
of experiments.

Prior to this main session, we ran a preliminary set of
experiments that employed many but not all of the same
network structures, but without any deal limits imposed.
Some of these experiments also imposed “transaction costs”
on vertices for closed deals. We will mention results from
this earlier session and contrast them with those of our main
session in a couple of places.

S. RESULTS

Our results come under three broad categories. The first
is about collective performance and social efficiency. The
second category examines questions about the differential
fates of nodes, depending on their position in the networks
and the deal limits they each had. The third category is
about the general performance of humans summarizing be-
havior across all the games they played. This is an area that
no economic theory attempts to cover.

5.1 Social Welfare

Humans were quite effective at playing these games, but
they paid a surprising price for their refusal to close some
deals.

To quantify how well humans did on this problem, we
implemented a greedy algorithm for comparison. Given a
graph and deal limits, it repeatedly draws (uniformly at ran-
dom) an unclosed deal, both of whose endpoints have not
already saturated their deal limit, and closes it, until there

are none left. To normalize both the human and greedy sys-
tems we divide by the Mazimum Social Welfare, which is
the maximum number of deals that can close in each net-
work, subject to both topology and deal limits. The social
welfare is the number actually closed, and the ratio between
this and the max is the social efficiency.

The observed efficiencies are rendered by blue dots in Fig-
ure 4. In 6 of the networks (those below the diagonal), the
humans did worse than the greedy algorithm. Full efficiency
is rare in both systems. One might view this as the behav-
ioral price of anarchy due to selfish players operating with
only local information. The greedy algorithm obtained an
average of 92.14% of the maximum welfare in our networks.
In comparison, human subjects achieved an average social
welfare of 92.10% of the maximum welfare when averaged
over all 3 trials, a surprisingly similar figure.
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Figure 4: Scatterplot of greedy algorithm efficiency
versus humans, one dot for each of the 18 scenar-
ios (averaged over trials). Blue dots are what the
humans actually achieved. Orange dots are the re-
sult of applying the greedy algorithm to the final
state of human play, which is what the humans could
have achieved without obstinacy. Vertical lines thus
show the price of obstinacy. The dotted line indi-
cates equality of the two scales. The open circles
represent the average values over all scenarios.

There are two parts to this story, though, because solv-
ing these problems involves both selecting edges and closing
deals on them. The greedy algorithm does not address the
deal-closing issue and per force never leaves a potential deal
unclosed; the humans often did. In 36 of the 54 exper-
iments, the solution found by the human subjects was not
even maximal — there were adjacent vertices that both could
have closed another deal. Presumably this was because they
simply could not agree on a split. However, the humans left
the system in a state that could be improved post facto. We
started the greedy algorithm in the final state the humans
reached and allowed it to attempt to find more deals, thus
producing a new state with no further unclosed deals. In
all cases, this new state had a higher social efficiency than
the greedy algorithm achieved alone. This is shown in the



orange dots of Figure 4. A line connects the human perfor-
mance to the potential human performance, and we might
dub this difference the price of obstinacy. In total, 7.9%
of the money was “left on the table”, but 4.5% was due to
obstinacy (more than half the lost value).

We conclude that the humans found better matchings in
the graph, and hence their behavioral price of anarchy is
lower (better) than the greedy algorithm. But due to their
additional obstinacy, their overall performance was no bet-
ter.

5.2 Nodal Differences

There was much evidence that nodal income depends on
its deal limit, its degree, and properties of the non-local
neighborhood.

5.2.1 Unequal Splits

Most theoretical models (for example, the Yamagishi-Cook
model) that apply game-theoretic rationality to bargaining
suggest that deals in some networks will be split in an un-
equal fashion. We will report the splits using their inequality
value (Ineq), defined as the absolute difference between the
two fractional shares. It ranges from 0 (equal sharing) to 1
(one player gets everything).

A total of 1271 deals were closed in all the 54 experiments,
and 423 of them were split equally (inequality=0). But most
were not split equally, every possible granular division was
used for some splits, and 6 edges even had inequality=1
(which is surprising in itself since one partner gains noth-
ing by signing the deal). The histogram in Figure 5 shows
the inequality values. For comparison, we also show the
histogram (in orange) from our preliminary session, which
had no deal limits and produced an overwhelming portion
of deals that split 50:50. The average inequality value over
all games in our main session was 0.2097, which is a ratio of
about 60:40, It thus seems clear that deal limits are invoking
a significant increase in imbalanced splits.
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Figure 5: Histogram of deal splits in all games. The
orange distribution was from our preliminary ses-
sion, and the bar at 0 (equal shares) goes to 82%.
The blue bars are from our main session, where we
obtained a much greater spread of unequal splits.
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Figure 6: Average inequality value vs. Social Effi-
ciency. The 9 PL networks are plotted in orange,
and the 8 regular networks are plotted in blue.

5.2.2 Inequality and Efficiency

There is a significant correlation between average inequal-
ity value and the social efficiency achieved in each scenario
— that is, when the subjects collectively tolerate greater in-
equality of splits, social welfare improves. These data are
plotted in Fig. 6. The correlation coefficient is 0.52 with a
confidence level of p = .027.

Interestingly, in an earlier session of experiments without
deal limits, the same correlation is highly negative.

5.2.3 Degree Distribution and Equality

How well does degree distribution predict wealth distri-
bution? We examined the PL networks to answer this. The
average inequality value in closed deals is 0.23 over the 3
PLPuniq games (where nodes tend to be adjacent to nodes
of similar degree), while it is 0.36 for both PLNuniq (where
nodes tend to be adjacent to nodes of very different degree)
and PLOuniq (where nodes tend to be adjacent to nodes of
various degrees).

The inequality values of the PLPuniq experiments are less
than the joint PLOuniq and PLNuniq outcomes with a one-
sided p < 0.02. This indicates that nodes that have an op-
portunity to bargain with at least one other of similar degree
have more power than one that is forced to bargain only with
higher-degree nodes. (These are all unique-exchange games,
so deal limit is not playing any distinguishing role.)

These three networks all have the same degree distribu-
tion. Hence, degree distribution is not sufficient to predict
inequality of wealth, even in unique-exchange networks.

5.2.4 Deal Limit Distribution and Equality

A similar story holds for deal limit distribution. Even if
the distribution of deal limits for two networks are identical,
the experimental results can differ widely based on whether
a node bargains with nodes of similar deal limits or differing
deal limits.

In Torus-Uniform, all vertices have the same deal limit. In
Torus-Rows, all vertices have two neighbors with the same
deal limit (1 or 3) and two neighbors with a different deal



limit (3 or 1). In Torus-Checker, all nodes are bargaining
with nodes of a different deal limit.

The average inequality values are 0.086, 0.13, and 0.36
for Torus-Uniform, Torus-Rows and Torus-Checker respec-
tively. A means test shows these are all pairwise distinct
with p < .03. These networks all have identical topologies.
Thus, when network topology is not playing any distinguish-
ing role, if vertices bargain with vertices of similar deal lim-
its, the deals are on more equal terms compared to when
vertices with differing deal limits bargain.

5.2.5 High Degree Confers Power

Over all closed deals in the PL graphs, the fractional take
per closed deal of each node has a correlation of 0.47 with
the degree of that node. If, to reduce the confound of dif-
fering deal limits, the study is confined to just the PL*uniq
graphs, then the correlation coefficient is 0.59. Both these
correlations are highly statistically significant. Thus, bar-
gaining power increases with the size of the local market, at
least in the setting where deal limits constrain behavior.

5.2.6 High Deal Limit Undermines Power

While higher degree confers bargaining power, higher deal
limits had the opposite effect.

The Torus-Rows graph was designed specifically for test-
ing the effect of deal limit on a node’s bargaining power. In
this graph, all nodes are identical up to relabeling, but half
of them have deal limit 1 and half have deal limit 3. So if
there is any systematic difference between two nodes’ bar-
gaining power, the difference in their limits can be the only
explanation.

In the deals closed by limit-1 nodes, their mean fraction
of the deal is 0.57. The limit-3 nodes obtained an average
of 0.48. The difference was highly significant. (The two
fractions do not add to unity because not all deals were
between the two groups.) If only those deals between the
two groups are considered, the fractions are 0.57 vs 0.43
and the difference is even more significant. The summary is
that a higher deal limit confers less bargaining power.

5.2.7 Effect of Global External Demand

The supply networks were designed to study the effect of
external demand. This property is not apparent at the node,
but becomes apparent when contrasting the deal limits of
two groups of nodes. In each supply network, the supply of
deals from the left group (recall Figure 2) was manipulated
to starve or overfeed the right group. How does the split of
a deal depend on that relative supply?

In the Undersupplied case the right nodes must compete
among themselves for the attention of nodes in the left side,
so we might expect their shares to be smaller than the
left side’s. In the Equisupplied case, the external demands
are equal, so we might expect no differential in bargaining
power. In the Oversupplied case, the left nodes must com-
pete for deals from the right side, so we might expect their
share of the deals to be smaller than the right.

Table 1 shows the results. There is a correlation of -0.19
(p = 0.01) between the external demand ratio and the deal
share of the left nodes. The divisions favor the limit-2 nodes
in all cases, consistent with the results of the previous sec-
tion. However, that local property of relative limits is mod-
ulated by the global supply and demand ratio.

external demand | avg shares
left right left  right

Undersupplied | 30 39 0.57 0.43
Equisupplied 24 24 0.55 0.45
Oversupplied 20 14 0.52 0.48

Table 1: External demand imbalances shape bar-
gaining results. The average splits shown are for
edges between left and right nodes. Edges between
right nodes have an average share of 0.5 by defini-
tion.

5.2.8 First Neighborhood Effects

We examined the three PL*uniq scenarios to find effects
attributable to the degrees of first (one-hop) neighbors. For
both nodes in all deals in the PL*uniq games, compute the
fraction of the node’s take and the average of the degrees
of its neighbors. The correlation between these quantities is
-0.60 and is highly significant. Similar results occur when
the data are restricted to just those nodes with some fixed
degree.

The clear and consistent story in unique-exchange games
is that the share obtained decreases as the average degree of
the neighboring nodes increases.

The opposite story holds when the first neighbors have
higher deal limits. We compared the 4-regular networks tor-
Rows and torChkb. In torRows, a vertex of deal limit 1 has
two neighbors of deal limit 1 and two neighbors of deal limit
3, while in torChkb, a vertex of deal limit 1 has all four
neighbors with deal limit 3. The mean share of the former
was 0.57 while the latter obtained 0.68. The difference is sta-
tistically significant with p = .0001. The bargaining power of
a vertex is enhanced when neighboring vertices have higher
deal limits.

5.2.9 Second Neighborhood Effects

How does the network effect propagate beyond the imme-
diate neighborhood? The 2ndHood structure has two sets of
3 nodes, each of which have identical degree and first neigh-
borhood degrees. The results of the previous section will be
mute about how these nodes fare.

However, the second (two-hop) neighborhood of these nodes
are drastically different: the neighbors’ neighbors are leaves
for 3 of them, and part of a clique for the other 3. The
mean share of the first group was 0.347, the mean share
of the second was 0.571, and the 2-sided p value was 0.027.
The bargaining power of a vertex is enhanced if its neighbors’
neighbors have higher degree.

5.3 Comparison with Theoretical Models

We shall now point out some structural differences in solu-
tions given by theoretical models and those found by human
subjects. For our main session, where nodes have limits,
we narrow our attention to the PL*uniq networks, since the
Cook-Yamagishi model [8] was originally designed for unique
exchange networks, and fails to make a stable prediction on
the 2ndHood network. The model predicts that maximum
social welfare (maximum matching) will be achieved on all
the PL*uniq networks, which is rare in the experiments, as
reported in Section 5.1.

Further, the model predicts that a node with at least two
leaves (nodes of degree 1) as neighbors always ends up with



1 — e fraction of a deal. This is due to myopic, rational com-
petition between the leaves, where € is the smallest non-zero
amount that can be received by a node by signing a deal (this
is the granularity of offers available in the GUI, and we let
€ = 0.02). Accordingly, the model predicts that there should
be at least 30 such skewed deals in our experiments with the
PL*uniq networks. In contrast, we find that there is 1 deal
where one node gets 100%, 5 deals where one node gets
98%, and only 10 deals where one node gets more than 90%.
Further, all but one of these deals are between a leaf node
and a node of degree 5 or 6. This indicates that extremely
skewed deals are much rarer than what game-theoretic ratio-
nale suggests, and is more likely when the degree differences
are larger.

In our preliminary session, where nodes have no limits,
unequal splits are rare, as reported in Figure 5. Chakraborty
et. al. [5] designed a model for this setting. It predicts that
all deals will be shared equally if the players ate the nodes
have linear utility functions, and network effects may arise
only due to non-linearity of player’s utility. So the results of
the experiments can be explained in this model if we assume
that in our range of payoffs, the players have near-linear
utility functions. This is not very surprising, since a player
can make only a few dollars in each experiment.

5.4 Human Subject Differences

Humans were randomly assigned to nodes in each exper-
iment and randomly reassigned in each replication of a sce-
nario. Hence none of the results above could be ascribed to
human differences. However behavioral literature is replete
with examples of how human subjects leave their stamp, and
some traits emerge in our data too.

5.4.1 Patience

The correlation between the average time for each human
to close a deal and the average gain from closed deals, ag-
gregated over all deals in all games, is 0.6664 (p = 0.00).
See data in Figure 7. Apparently, patience pays off.
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Figure 7: People with patience win bigger splits.
There are 36 dots here, corresponding to the 36 hu-
man players.

5.4.2 Proposer vs. Acceptor

The user interface mechanism involved the following pro-
tocol for completing a deal: one player (proposer) makes

an offer, the other player (acceptor) accepts that offer by
matching it, and then the proposer closes the deal. This was
not designed to provoke any asymmetry, but was intended
to avoid unintended closed deals due to accidental mouse-
clicks. Nevertheless, by looking only at what the shares of
the two parties were, can we say which party is more likely
to have been the proposer? We find that indeed we can, and
the party which gets the higher share is more likely to be
the proposer. The mean proposer share across all experi-
ments was 53.6%, and the acceptor share was 46.4%. The
Kolmogorov-Smirnov test rejects the hypothesis that these
shares come from identical distributions with p < 1074,
Some psychological effect is clearly being expressed by this
subtle asymmetry in protocol.

All possible split ratios in closed deals were at least once
proposed by someone (and accepted by someone), with the
sole exception of 0:100%. The six cases where all the money
went to one player were all proposed by the high-share side.
It may be “irrational” for someone to agree to get 0, but it
would have been even odder to see someone propose that he
get 0.

5.4.3 The Effect of Uncertainty in Costs

This last section is strictly about our preliminary experi-
mental session, in which there were no deal limits imposed—
so the limit on each node was effectively its degree. Here
we found that social efficiency was higher when the players
were simply wuncertain about a particular detail regarding
their neighbors.

In the latter half of the preliminary session, we imposed
varying transaction costs on nodes, which a node must pay
for every deal it closes. The first half of the experiments
had no costs. Occasionally during the latter half, we quietly
imposed zero cost on every vertex. This allows us to compare
those games to the setting without costs.

This cost was specific to each vertex. Only the player
at that vertex, but not its bargaining partners, knew how
much this cost was. We varied the costs significantly, from
0 up to 40% of the value of the deal. This generated enough
uncertainty that in the few instances where every vertex had
zero cost, no one could infer the costs of his partner. This
0-cost setting can be directly compared to the basic non-
costed setting where every player knows that there are no
costs involved. Hence the two situations were distinguished
only by a lack of certainty.

Players closed more deals in the (uncertain) 0-cost case
than in the (known) no-cost case. The efficiency columns
of table 5.4.3 show the fraction of possible deals that were
closed in the two cases. The fraction went up in all 5 net-
works; the difference is significant with p = .004. Evidently,
the level of obstinacy rises when people know for certain that
their partner has no costs.

The average inequality values of the deals and the stan-
dard deviations are also shown in the table. We expected
the splits to be more uneven in the zero-cost case, but no
consistent story was found.

6. CONCLUSIONS

The background theory is not yet prepared to describe
all the phenomena we have observed here. Some bargain-
ing theory suggests one party to a deal might get an in-
finitesimally small share, but our mechanism does not allow
this. Hence our results cannot be exactly matched, but the



efficiency average std. dev. of
inequality inequality
non zero | non ZE€TOo non ZE€TO

PLP 0.85 0.96 | 0.012 0.01 | 0.033 0.037
PLO 0.84 0.93 | 0.009 0.009 | 0.025 0.029
PLN 0.72 093 | 0.027 0.012 [ 0.057 0.051
cwce 0.84 0.95 | 0.015 0.023 | 0.035 0.076
2ndHood | 0.84 0.97 | 0.014 0.009 | 0.040 0.044

Table 2: Social Efficiency and Inequality Values
compared between the non-costed case and the zero-
cost case. The cwc graph was a cycle with chords,
shown in Appendix Figure 8. The others were as
described for our main session.

scarcity of splits that are 98% or above seems to hint that
the notion of “rationality” used by these theories needs to
be adjusted. Other aspects of our results support theoreti-
cal models, notably the finding that phenomena at odd and
even-length distances from a node alternately enhance and
detract from the node’s earnings.

The findings peculiar to people —namely the prevalence
of obstinacy, the value of patience, the effect of protocol
in the closing of a deal, and the state of knowledge about
the partners— are all in need of theoretical development. It
seems these findings argue for the further need to integrate
the fields of economics, game theory, sociology, psychology,
and computer science.

7. REFERENCES

[1] Y. Azar, B. E. Birnbaum, L. E. Celis, N. R. Devanur,
and Y. Peres. Convergence of local dynamics to
balanced outcomes in exchange networks. In FOCS,
pages 293-302, 2009.

[2] E. J. Bienenstock and P. Bonacich. The core as a
solution to exclusionary networks. Social Networks,
14:231-44, 1992.

[3] K. Binmore. Game Theory and the Social Contract,
Volume 2: Just Playing. The MIT Press, 1998.

[4] N. Braun and T. Gautschi. A nash bargaining model
for simple exchange networks. Social Networks,
28(1):1-23, 2006.

[5] T. Chakraborty, M. Kearns, and S. Khanna. Network
bargaining: algorithms and structural results. In ACM
Conference on Electronic Commerce, pages 159-168,
2009.

[6] K. S. Cook and R. M. Emerson. Power, equity, and
commitment in exchange networks. American
Sociological Review, 43 (5):721-739, 1978.

[7] K. S. Cook, R. M. Emerson, M. R. Gillmore, and
T. Yamagishi. The distribution of power in exchange
networks: Theory and experimental results. The
American Journal of Sociology, 89 (2):275-305, 1983.

[8] K. S. Cook and T. Yamagishi. Power in exchange
networks: A power-dependence formulation. Social
Networks, 14:245-265, 1992.

[9] N. Friedkin. An expected value model of social power:
Predictions for selected exchange networks. Social
Networks, 14:213-230, 1992.

[10] S. Judd and M. Kearns. Behavioral experiments in
networked trade. In ACM Conference on Electronic
Commerce (EC), pages 150-159, 2008.

[11] M. Kearns, S. Judd, J. Tan, and J. Wortman.
Behavioral experiments on biased voting in networks.
Proceedings of the National Academy of Sciences,
106(5):1347-1352, 2009.

[12] M. Kearns, S. Suri, and N. Montfort. An experimental
study of the coloring problem on human subject
networks. Science, 313(5788):824-827, 2006.

[13] J. Kleinberg and E. Tardos. Balanced outcomes in
social exchange networks. In Symposium on Theory of
Computing (STOC), pages 295-304, 2008.

[14] B. Markovsky, J. Skvoretz, D. Willer, M. Lovaglia,
and J. Erger. The seeds of weak power: An extension
of network exchange theory. American Sociological
Review, 58:197-209, 1993.

[15] J. Nash. The bargaining problem. Econometrica,
18:155-162, 1950.

[16] J. Skvoretz and D. Willer. Exclusion and power: a test
of four theories of power in exchange networks.
American Sociological Review, 58(6):801-818, 1993.

APPENDIX

b

Figure 8: (a) Diamond Torus, and (b) CWC (cycle
with chords). CWC was used only in preliminary
session.



