
Behavioral Experiments in Networked Trade

J. Stephen Judd ∗ Michael Kearns †

ABSTRACT
We report on an extensive series of highly controlled human
subject experiments in networked trade. Our point of depar-
ture is a simple and well-studied bipartite network exchange
model, for which previous work has established a detailed
equilibrium theory relating wealth to network topology. A
notable feature of this theory is its prediction that there
may be significant local variation in equilibrium wealths and
prices purely as a result of structural asymmetries in the
network.

Our experiments mix recent lines of thought from algorith-
mic game theory, behavioral economics and social network
theory, and are among the first and largest behavioral eco-
nomics experiments on network effects conducted to date.
They continue a line of human subject experiments on net-
worked games and optimization allowing only local interac-
tions.

Categories and Subject Descriptors: J.4 [Social and Behav-

ioral Sciences]: Economics

General Terms: Economics

Keywords: Network Economics, Behavioral Economics

1. INTRODUCTION
In recent years there has been much research on network-

based models in game theory, in both the computer science
and economics communities. Topics receiving considerable
attention include the effects of network topology on equilib-
rium properties [6, 9, 11, 7, 14], price of anarchy analyses
of selfish routing and other networking problems [16], game-
theoretic models of network formation (see [17] and citations
therein), equilibrium computation in networked settings (see
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[10, 15] and citations therein), and many others. This large
and growing literature has been almost [3, 5] exclusively
theoretical, with essentially no accompanying empirical or
behavioral studies examining the relevance of the mathe-
matical models to actual behavior.

In this paper, we report on an extensive series of highly
controlled human subject experiments in networked trade.
Our point of departure is a simple and well-studied bipar-
tite network exchange model, for which previous work has
established a detailed equilibrium theory relating wealth to
network topology [9]. A notable feature of this theory is its
prediction that there may be significant local variation in
equilibrium wealths and prices purely as a result of struc-
tural asymmetries in the network. A (centralized) efficient
algorithm for computing such equilibria in our model was
discovered only recently [4], and it uses linear programming
as a subroutine. One can view our experiments as a test of
human subjects’ ability to solve this challenging problem in
a distributed setting using only local information.

Our methodology and experiments mix recent lines of
thought from algorithmic game theory, behavioral economics
and social network theory, and are among the first and
largest behavioral experiments on network effects conducted
to date. We adopt many of the practices of behavioral
game theory [2], which has tended to focus on two-player
or small-population games rather than larger networked set-
tings. The work described here continues a broader line of
research in behavioral games on networks [12].

In each of our experiments, three dozen human subjects
simultaneously engage in trade over an exogenously imposed
bipartite network. Trade is permitted only between network
neighbors and takes place via a limit order mechanism; com-
munication thus occurs only through local price discovery
throughout the network. Subjects have real financial incen-
tives to trade their initial endowments for as much neigh-
boring commodity as possible.

Our results include a detailed examination of how net-
work structure influences collective and individual outcomes
(wealths), as well as a study of the behavioral relevance of
the equilibrium theory for the model. The networks imposed
are drawn from models common in social network theory,
including preferential attachment graphs, random (Erdos-
Renyi) networks, and some carefully designed structures.
Among our most striking findings are the following:

• The behavioral collective performance, as measured by
social welfare, is generally strong, with market effi-
ciency close to 90% across all experiments.

• Different network topologies can be strongly distin-



guished statistically by individual wealth levels across
experiments and other measures.

• When equilibrium theory predicts that greater dis-
parity in individual wealths is required to clear the
market, the collective performance (social welfare) of
the subjects degrades. However, greater equilibrium
wealth disparity does in fact lead to greater behavioral
wealth disparity.

• The equilibrium theory appears highly relevant to the
behavioral outcomes, outperforming plausible alterna-
tives in predicting individual wealth on an experiment-
by-experiment basis. However, our best predictor of
behavioral individual wealth nudges the equilibrium
theory towards equality (uniform wealth distribution);
this can be viewed as a networked form of inequality
aversion, a bias extensively documented and studied
in the behavioral game theory literature on two-player
games [2].

We also provide analyses of the behavioral dynamics within
the experiments, including the phenomenon of early trading
and the fragmentation of liquidity due to trading. All of
the above results and almost all others reported are highly
statistically significant.

2. THEORETICAL BACKGROUND
The behavioral experiments described in this paper are

directly based on a theoretical model for the networked ex-
change of goods. In this section we describe that model and
the detailed equilibrium theory that has been developed for
it in previous work; more background on this model and its
accompanying theory can be found in [9].

The networked exchange model consists of two equal-sized
populations of participants that we shall call the Milk play-
ers and the Wheat players, and a bipartite graph G between
them. Milk players begin with 1 fully divisible unit1 of an
abstract commodity that we shall naturally call milk; and
Wheat players begin with 1 fully divisible unit of an ab-
stract commodity that we shall naturally call wheat2. Mu-
tual interest in trade between Milk and Wheat players is
induced via the utility functions: Milk players have no util-
ity for milk, and linear utility for wheat; Wheat players have
no utility for wheat, and linear utility for milk. Thus each
player has a utility function incentivizing them to trade their
entire initial endowment for as much of the “other” good as
they can.

So far we have described a very special case of classical
general equilibrium exchange models such as those of Fisher
and Arrow-Debreu. Things get more interesting when we
consider the network constraints. The semantics of the bi-
partite graph G are that players may only exchange goods
with their immediate neighbors in the graph, with no resale
permitted. To connect our model to the more traditional
ones, note that the graph constraints can easily be encoded
in the utility functions by having the utilities to (say) a
Wheat player of milk bought from its neighbors in G be all
equal and linear, and having the utility of milk bought from

1
For cognitive purposes, in the actual experiments subjects were provided 10.0

fully divisible units each, but it is easier to describe the theory with 1-unit
endowments. The difference is entirely cosmetic.
2
We deliberately avoid the use of a good called “cash” and the terminology

“buyers” and “sellers” due to the confusion and unintended interpretations they
might introduce.

non-neighbors be zero [8]. This ensures that at equilibrium
trade takes place only over the edges of G.

In classical exchange models, all players are free to trade
with all other players (which in our setting corresponds to G
being the complete bipartite graph between the two popu-
lations), which results in all players charging the same (uni-
versal) price at equilibrium. The most interesting aspect of
our model is that now equilibrium prices may vary across
the population due to network asymmetries. To describe
equilibria, we need to define:

• A price, pi, for each player i. If i is a Wheat player,
pi is interpreted as the amount of milk that i demands
per unit of wheat, with a symmetric interpretation for
Milk players.

• A trading volume, xij , for each edge (i, j) in the bipar-
tite graph G, indicating what quantity of the “other”
good player i is receiving from its neighbor j. Obvi-
ously, at equilibrium xij and xji must be consistent
with the prices pi and pj .

With this notation, an equilibrium for our model obeys the
following standard properties:

• Market Clearing. For every player i,
P

j∈N(i) xji = 1,

where N(i) is the set of neighbors of i in G. Thus,
the demand from its neighbors exactly exhausts the
endowment of player i.

• Utility Maximization. For every player i and every
j ∈ N(i), xij > 0 implies that pj = minj′∈N(i){pj′}.
Thus, i receives a non-zero amount of the other good
from j only if j is offering the best price available to i
(for which there may be ties).

Previous work has established that such an equilibrium
always exists for any bipartite graph G [8]. Note that since
all endowments are equal to 1 unit, the equilibrium wealth
(amount of the other good) that any party i receives is ex-
actly equal to their price pi; more generally, wealths will
always be proportional to prices. Furthermore, if xij > 0
for any edge (i, j) in G, it must be the case that pi = 1/pj .
Note that market-clearing implies the average wealth must
be 1, or more generally equal to the average initial endow-
ment.

The main purpose of the model above is to examine the
simplest setting in which the only asymmetries in wealth
arise exclusively due to the network structure, since all util-
ity functions are symmetric and all endowments equal. In-
deed, the point of departure for this paper is a series of
results carefully quantifying how the equilibrium wealth dis-
tribution depends on the topology of G, the most basic being
the following:

Theorem 2.1. [9] In the bipartite exchange model de-
scribed above, the maximum wealth at equilibrium is equal
to maxS{|S|/|N(S)|}, where the maximum is taken over all
subsets S of players, and N(S) denotes the set of all neigh-
bors of S in G. The minimum wealth will be the reciprocal
quantity. In particular, there will be no variation in wealth
at equilibrium if and only if G contains a perfect matching
subgraph.

The theorem above can actually be iterated to obtain
an inefficient but intuitive algorithm for computing equi-
librium wealths. If the vertex set S∗ achieves the maxi-
mum, the vertices in N(S∗) will enjoy the highest wealth of



|S∗|/|N(S∗)| ≥ 1, while those in S∗ will suffer the reciprocal
wealth. It can be shown that we can now remove S∗ and
N(S∗) from G and repeat to find the remaining wealths in a
similar fashion. A considerably faster algorithm [4] is used
for the actual equilibrium computations discussed later.

More importantly, the theorem above has been applied to
a variety of common stochastic models for network forma-
tion in order to see the implications for wealth distribution.
For instance, it has been shown that bipartite Erdos-Renyi
graphs of N vertices yield essentially no variation in price
in the limit of large N , whereas models such as preferential
attachment yield max/min wealth ratios that are a root of
N and thus unbounded as N grows [9]. Such findings are
directly relevant to the networks we selected for our experi-
ments, as discussed in the next section.

3. NETWORK TOPOLOGIES
The bipartite graphs chosen for our behavioral experi-

ments were selected in order to provide direct tests of the
equilibrium theory just described, and also to sample the
diversity of stochastic network formation models that have
been proposed in recent years (see for instance [18]). We
begin by describing the network topologies, followed by dis-
cussion of their equilibrium properties.

The networks used in our 28 experiments were divided
into 10 different topological “families”, samples of which are
given in Figure 1, where color coding is used to distinguish
the two populations. The simplest of these, the pairs topol-
ogy, matches every Wheat player with a unique Milk player,
resulting in 18 disconnected pairs of players; here there is
thus no “network” in the usual sense. The topology cycle2 is
a simple cycle in which Milks and Wheats alternate around
the cycle. The topology cycle4 begins with a simple cycle
but then adds edges between all players 3 hops apart, giving
every party 4 trading partners rather than 2.

The clan topology is also highly structured. It consists
of four imbalanced “sub-economies” of 8 players each —
6 of one type, 2 of the other — in which all edges are
present. These four sub-economies have no direct connec-
tions; rather, they are all fully connected to four favored
“super-trader” players, two of each type, who can trade
with any party of the opposing type. The clanp5 topol-
ogy includes all edges of clan and adds each missing Milk-
Wheat edge in the clan topology with probability 0.05, while
clanp10 does so with probability 0.1. Both of these stochas-
tic families were sampled 3 times to yield 3 different clanp5
graphs and 3 different clanp10 graphs. For clarity we shall
refer to the original unaugmented clan topology as clanp0.

The clan families are inspired by the many recent network
formation models that begin with some regular underlying
“geographical” connectivity, but then add a variable amount
of random “long-distance” connectivity [13, 18]. In the clan
case, we have chosen to begin with an underlying structure
consisting of the four imbalanced local economies connected
through the super-traders, and then stochastically layer in
additional long-distance trading opportunities.

The final four topology families are closely related to more
“traditional” network formation models [18]. The topologies
ERp20 and ERp40 sample bipartite versions [9] of standard
Erdos-Renyi random networks with edge probabilities of p =
0.2 and p = 0.4 respectively. Both of these models were
sampled three times to obtain three different graphs.

Topologies PA1 and PA3 are both bipartite versions [9]

of the well-studied preferential attachment model, in which
new vertices are added incrementally and given links to the
existing network, drawn according to the current degree dis-
tributions. This model is known to generate heavy-tailed
(power law) degree distributions [1]. In PA1 each new vertex
is given only a single initial link, thus yielding trees, while
in PA3 each vertex is given three initial links, resulting in
much denser networks. Again, both models were sampled
three times.

Some statistics on the vertex degrees and structure of the
10 topologies are given in Figure 2, where std is standard
deviation. The topologies pairs, cycle2 and cycle4 obviously
exhibit complete symmetry across vertices, with every ver-
tex having the same degree (1, 2 and 4 respectively). The
total number of edges in these three graphs was 18, 36 and 72
respectively. For the clanp0 topology, there are 4 vertices of
degree 18, 8 of degree 8, and 24 of degree 4, giving a total of
116 edges. This was relatively high, but of course clanp5 and
clanp10 had even more edges. ERp40 had about as many
edges as clanp5, and all other topologies had markedly fewer.
Evidence of this resides in the column of average degrees.

Regarding the equilibrium properties of the 10 topolo-
gies: the pairs, cycle2, and cycle4 graphs all contain perfect
matchings in every instance and thus have no equilibrium
wealth variation in any instance or trial. (This is witnessed
in the table by a max(equil)/min(equil) equal to 1.) The
clanp0 and clanp5 topologies had no instances with perfect
matchings, but all the clanp10’s did. This is a systematic
effect of the random extra edges present. One instance of
ERp20 contains a perfect matching; the other two instances
do not. The three ERp40 instances (which are denser than
ERp20) all had perfect matchings.

Overall, of the 28 distinct experiments conducted, 17 used
graphs with perfect matchings, which implies no equilib-
rium wealth variation; the remaining 11 all had varying
amounts of equilibrium wealth inequality. The most imbal-
anced topologies were clanp0 and PA1. The table shows the
standard deviation of their wealths and their range of equi-
librium wealths to be the highest of all, and this inequality
is a signal property. These extremes are dissipated in their
denser versions.

4. SYSTEM OVERVIEW
Experiments were conducted using a distributed networked

software system we have designed and built for performing a
series of behavioral experiments on different games. A cen-
tral server coordinates the allowed communications between
players, collects data, and controls the sequencing of games.

Like most microeconomic exchange models, the model de-
scribed in Section 2 does not specify an actual temporal
mechanism by which trading occurs, but of course any be-
havioral study must choose and implement one. Before de-
scribing system and user interface details, it will be helpful
to preview the mechanism implemented at a high level.

At each moment of an experiment, each subject is able to
express a limit order that is available to all of the subject’s
neighbors; thus, like the theoretical model of Section 2, we
do not permit differential pricing among neighbors (that is,
prices must be on the vertices, not the edges). A limit order
expresses how much of their (remaining) endowment a player
is willing to trade in exchange for how much of the “other”
good. Any moment at which two neighboring limit orders
“cross” each other in terms of the exchange rates offered, a



Figure 1: Sample graphs (L to R, T to B): pairs, cycle2, cycle4, ERp20, ERp40, clanp0, clanp5, clanp10, PA1, PA3

topology
average
degree

min
degree

max
degree

std
degree

std(equil)
avg(equil)

max(equil)
min(equil)

avg(acquired)
avg(equil)

std(acquired)
avg(acquired)

L1(equil)

pairs 1 1 1 0 0 1 .99 .036 .016
cycle2 2 2 2 0 0 1 .87 .88 .88 .26 .29 .28 .19 .20 .21
cycle4 4 4 4 0 0 1 .96 .96 .92 .08 .12 .26 .06 .08 .16
clanp0 6.4 4 18 4.5 .72 4 .71 .77 .76 .60 .76 .66 .38 .43 .37
clanp5 6.7 7.0 6.7 4 4 4 18 18 18 4.4 4.3 4.5 .26 .13 .49 1.8 1.4 2.8 .82 .92 .91 .48 .32 .66 .27 .17 .35
clanp10 7.8 7.5 7.9 4 4 4 18 18 18 4.2 4.1 4.0 0 0 0 1 1 1 .94 .95 .92 .20 .17 .27 .12 .10 .17
ERp20 3 4.1 3.2 1 1 1 5 8 6 1.2 1.8 1.5 .22 0 .39 4 1 4 .85 .93 .90 .34 .24 .48 .21 .14 .23
ERp40 6.9 6.4 6.7 3 3 4 12 10 10 2.0 1.8 1.4 0 0 0 1 1 1 .96 .97 .93 .11 .11 .19 .06 .07 .12
PA1 1.9 1.9 1.9 1 1 1 8 8 14 1.9 1.6 2.5 1.3 .83 1.9 36 16 81 .67 .73 .77 .93 .68 1.8 .38 .40 .35
PA3 4.6 4.7 4.6 1 2 1 14 14 13 3.2 2.8 2.6 0 0 0 1 1 1 .91 .93 .87 .25 .24 .30 .17 .15 .23

Figure 2: Summary statistics of networks used. Triplets represent 3 samples of a given stochastic topology; equil is the

vector of equilibrium wealths determined by the graph structure via the theory discussed in Section 2 and Theorem 2.1.

The last 3 columns are behavioral results discussed in Section 6, not intrinsic properties of the networks.

(possibly partial) execution or trade takes place. Individuals
can always see the limit orders offered by their neighbors, as
well as some additional information (including the degrees of
their neighbors, and the current best offers available to their
neighbors). Thus each individual effectively trades against
the combined book of limit orders of his neighbors. We
remark that it is easy to show that the market-clearing price
equilibria defined in Section 2 are indeed also Nash equilibria
of the asynchronous-move, multi-party trading game that is
defined by our mechanism.

All communication takes place exclusively through this
trading mechanism. We now describe the user interface in
detail.

4.1 User Interface
Figure 3 shows a screen shot of the game interface used

by each subject in our experiments. The elements of it will
be described roughly from top to bottom. The game sta-

tus shows “pending”, “in progress”, or “completed”, which
helps the player stay synchronized as a series of different
games start, stop, and change. The elapsed time shows
the cumulative fraction of 2 minutes (the length of each
individual experiment) that has elapsed since active play
started. The accumulated pay shows the cash value of a
player’s winnings so far in this game.

The large section in the middle contains multiple ele-
ments. First, an offer price is shown as a horizontal red

line at a vertical position3 corresponding to the user’s cur-
rent offer price. This red line also has a number on it (in
this example .69) indicating the same information.

Second, neighbor bands show data about individual
neighboring vertices or players in the network; this example
has 3 such vertical bands, indicating the presence of 3 neigh-
boring trading partners. Each band has four sub-elements:
degree, asking price, competing price, and quantity. The
degree is a number (shown at top of these bands as “+2”,
“+0”, and “+1”) indicating the number of neighbors that
vertex has in addition to the user. For instance, the left band
indicates a neighboring vertex of degree 3, and the middle
one indicates a neighbor who has no one to trade with ex-
cept the user. The asking price appears as a horizontal
line extending only the width of the band, and plotted at a
vertical position that indicates the neighbor’s asking price,
from the perspective of this (say) Milk player as the ratio
of the amount of milk demanded per unit wheat. Thus the
offer price of this player and the asking prices of their neigh-
bors are directly comparable. The asking price line also has
a number sitting just above it indicating the same informa-

3
Vertical distance was used in a nonlinear way to represent prices. By definition,

the offer price for a (say) Milk player is the ratio of the amount of Milk they
are offering in exchange for the amount of Wheat they are demanding, and thus
lower offer prices are more aggressive. A value of 1 was plotted in the middle,
while other numbers were plotted in proportion to their arctangent. This scheme
gave high resolution to prices near 1, but kept extreme values from disappearing
off the plot. It also represented a value and its reciprocal at equal distances
above and below the middle.



Figure 3: Screenshot of player’s interface for trading.

tion. For instance, the left column has a “1.5”, which means
that player wishes to trade at a ratio of 1.5 units of the user’s
goods to 1 unit of his own. Since the user is currently of-
fering a price of .69, there is a gap between the asking and
offering prices. Visually, this is clear from the fact that the
line drawn across the band is higher than the red line drawn
across the whole panel. A competing price is shown as
a small open circle, indicating by its vertical positioning
the best offer currently available to this partner. The circle
clearly cannot be lower than the price offered by the user,
but it could be higher, indicating that one of the user’s com-
petitors is outbidding him. Also, note that the small circle
cannot be higher than the asking price, or a trade would
have taken place. Finally, the quantity is a number indi-
cating the amount of goods being offered for sale by this
partner. Thus, the full details of the standing limit order
posted by the first partner is an offer to exchange 1.0 units
of his goods for 1.5 of the user’s. Although the ratio can be
read from the price bar, the quantity cannot; the quantity
field for the neighbor completes the description. Thus, sub-
jects always know their own limit order, how it compares
with those of their neighbors, what the “best price” avail-
able to each neighbor is, and how many trading partners
each neighbor has.

In the lower section are 3 columns of numbers and an ac-
tion button. The field called endowment shows the amount
of remaining endowment this user still has left to trade away,
and acquired shows the amount of the other good obtained
through trades so far. The standing limit order appears
as a column of 3 numbers called “giving”, “getting”, and
“buyPrice”. The giving field is the amount of the user’s
goods being offered for sale, getting is the amount of goods

being requested in exchange for the quantity in the giving
field, and buyprice is the ratio giving/getting (which is
also always represented by the horizontal red line discussed
above). The new order appears as a parallel column of 3
numbers to the right of the standing order: the top one is
a field for inputting the amount of the user’s goods to be
offered for sale in the next limit order. Next is a field for
inputting the amount of goods to be requested in exchange
for the quantity in the giving field of this new limit order.
Below that is the ratio giving/getting in the new limit or-
der. Finally a submit button is used to post the numbers
in the new order column to the marketplace so as to alter
the standing order.

4.2 Game Play and Detailed Mechanism
We now provide further detail on the progression of an

experiment and the execution of trades.
All players start with 10 fully divisible units of endow-

ment, and each experiment lasted 2 minutes (120 seconds).
Games are short intense affairs with all players acting simul-
taneously. All players have their initial standing limit order
set to quantity zero. After the game starts, a player must
get the cursor into the input box for a new “giving” value,
and type a number in there, then (say by hitting tab) move
to the other box and enter a value for “getting”. By pressing
return or tab, the buyPrice field will be updated in the
new order (right hand) column. The “giving” and “getting”
fields could be edited at leisure again and when the player
decided to commit to the new order, he would press the sub-

mit button. This immediately posts a new limit order for
the player to the market server. Upon receipt at the server,
the new order replaces whatever was his standing order be-
fore that. The server would deal with each newly posted
order as it arrived; play was thus a series of asynchronous
updates to a central server, which would relay the new state
of the market to all neighboring players.

An offer to trade is transmitted to all of a vertex’s neigh-
bors simultaneously, and it is the same offer that extends
to all. Again, there is no capacity for a player to offer dif-
ferent prices or different quantities to different neighbors.
This uniformity is expressed visually by having the single
red offer price line extend across all neighbor bands.

We now describe how trades are executed when an offer
arrives at the server. Except for the constraint of trading
only between network neighbors, what follows below largely
adheres to the standard limit-order book mechanism of U.S.
equities markets, in which partial executions are possible,
and prices are determined by orders already standing when
an arriving order causes an execution.

The player who posts the offer is momentarily considered
the sole “buyer” and all his neighbors are considered “sell-
ers”. An offer arrives as a pair of numbers: giving and get-
ting. If either of these numbers is zero then no transaction
takes place. Otherwise the buyer’s buyPrice is calculated as
giving/getting. This price is compared against the partners’
sellPrice, which is the reciprocal notion, namely their get-
ting/giving ratios. If the incoming buyPrice is greater than
or equal to the lowest partner’s sellPrice then a trade takes
place immediately. Some part of the buyer’s endowment is
transferred to that seller and some part of the seller’s en-
dowment is transferred back. The ratio of these amounts is
specified by that in the seller’s standing limit order. Hence
the incoming order may trade for a better price than what



the buyer specifies; it is always the price previously posted
by the partner that prevails. The amounts transferred are
limited by the giving limits specified in the two limit orders;
neither player gives up more than his order states. One of
the two players will end up with a fully cleared order, but
in general the other one will have only partially cleared. If
it is the buyer whose order is fully cleared then nothing else
happens. If the buyer’s order is not fully cleared, then a
similar transaction occurs with the partner with the next
lowest4 sellPrice, and so on until either the buyer’s order is
exhausted or the next higher sellPrice exceeds the buyPrice.
In the latter case, the remaining portion of the order is left
on the market.

When the trades are completed, all the resulting changes
are communicated to the affected players by altering the fol-
lowing GUI fields: accumulated pay which is always pro-
portional to acquired, endowment which monotonically de-
creases, acquired which increases by how much was trans-
ferred to the player, giving which decreases by how much
was taken from the player, and getting which is maintained
equal to giving/buyPrice. Once traded, goods cannot be re-
exchanged, re-negotiated, or re-sold.

5. HUMAN SUBJECT METHODOLOGY
We now describe our methodology in the recruitment,

treatment and compensation of human subjects, which has
Institutional Review Board approval at the University of
Pennsylvania, and broadly follows established practices in
behavioral economics [2].

36 undergraduate Penn students were recruited from a re-
lated course5 designed and taught by author Kearns. Sub-
jects were familiar with simple graph concepts and their role
in various real-life situations, but had no prior knowledge of
the particular games to be played.

A single lab with enough Linux workstations for all 36
subjects was used. Each one ran a browser in a common
account that was devoid of students’ personal distractions.
The computer screens were arranged facing in opposite di-
rections along long tables, so that it was difficult or impossi-
ble to see any other screen. In addition to the authors, sev-
eral graduate student proctors were present during the ex-
periments. All players were visible to proctors at all times,
so any attempt to communicate via sight or sound would
have been detectable. No books or electronics or any other
materials were allowed anywhere but on the floor.

All players were let into the room together, and instructed
to act as though they were taking an exam. No private
conversation was allowed. We gave a presentation explaining
the game to be played. It involved a review of the GUI,
the mouse and keyboard controls, the goals of the players,
the fact that graphs were generated according to different
schemes not divulged, and the fact that players would be
assigned to vertices in those graphs in an unbiased random
fashion at the start of each experiment. We emphasized
that players had no information on the global topology of
any network used.

It was stressed that players’ physical neighbors in the
room were not necessarily neighbors in the graph, that the

4
Ties amongst sellers’ sellPrices are resolved by taking the one with the smaller

vertex index first. This results in a small bias which was noticeable to an om-
niscient observer, but was imperceptible to the players. Its effect could always
be overcome by raising one’s prices by a miniscule amount. We believe the bias
was inconsequential to our results.
5
See www.cis.upenn.edu/˜mkearns/teaching/NetworkedLife

graph neighborhood would change with every game, and
that the identities of players would not be made known dur-
ing the game or at any time afterward, including all pub-
lications. Then all players logged into their machines. We
did ask players to provide their name, but made it clear
that the sole use of that information was to compute and
distribute payments at a later date. One player’s screen was
temporarily projected on a large display at the front of the
room while examples of play dynamics were demonstrated
by asking several players to take particular limit order ac-
tions. Questions were taken and answered aloud. When
all players were satisfied that they understood the purpose,
mechanics, and semantics of the game and interface, we pro-
vided a sample game for them to play in which cash rewards
were not given but questions were solicited.

We then started the sequence of 28 paying games. Each
one was preceded by an empty screen saying “waiting for
game”, then the game GUI appeared on the players’ screens,
and we announced this aloud in the room in order to verify
that everyone’s machine was functioning properly. Players
became familiar with the local structure of their neighbor-
hoods in the upcoming game. Their interfaces were live and
would take inputs, but the server would not yet process or-
ders. After a few seconds, we announced the beginning of
the game and pressed a key on the server to enable play.
A small bell rang on each computer, followed by a silent 2
minute period, whose progress was displayed on the elapsed
time display at the top of every players’ applet GUI. A small
bell rang when time was up, and we also announced the end
of play aloud. The screens remained frozen in their final
game state so that players could take note of it. After a mo-
ment, at a command from the server console, the screens re-
verted to the “waiting” display. On average, about a minute
was spent waiting for the next game to be ready.

After all the training preamble, we conducted 28 paying
games in 85 minutes. We paid a cash incentive equal to
US$2 per 10 units of the neighbors’ goods that the player
was able to trade for. Thus, for example, a player who man-
aged to trade their initial endowment for 15 units of the
other good was paid $3, and one who managed to trade for
7.5 units was paid $1.50, and so on. Since each of the 36
players started with 10 units of goods, the maximum social
welfare (total payout) was $72 during each 2 minute game.
After all 28 games were completed, we asked players to fill
out an online survey form to record observations, strategies,
complaints, and suggestions about the games, the prepara-
tion, the equipment, and the general event. On average,
players earned about $50 in 2 hours.

6. RESULTS AND FINDINGS
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Figure 4: Mean fraction of maximum wealth realized by

topology.
Collective Performance and Topology. We begin our
findings with a discussion of absolute overall performance
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Figure 5: (a) t-tests between mean wealths by topology. (b) equilibrium wealth standard deviation vs. empirical

wealth realized. (c) equilibrium wealth standard deviation vs. empirical wealth standard deviation. Note the clusters

of points at x = 0, corresponding to the networks containing perfect matchings. The data for plots (b) and (c) are in

the table of Figure 2.

and its relationship to network topology. In Figure 4 we
show a bar plot of the fraction of the maximum possible so-
cial welfare ($72) empirically earned by topology type, aver-
aged over the three trials for each topology (1 for the pairs
network). Overall performance was strong, with an average
social welfare over all 28 experiments of 0.88 of the maxi-
mum possible; the maximum for any individual experiment
was 0.99 (pairs network) and the minimum was 0.67 (for a
PA1 network)6. We thus conclude that networks of human
subjects can indeed come close to clearing the market using
only local information and incentives.

Turning to the effects of topology, Figure 4 shows large
differences in market-clearing performance between topolo-
gies, from an average of only 0.72 for the PA1 trials to the
0.99 for the pairs network. While three trials per topology is
too few to establish statistical significance, remember that
each trial itself averages the 36 individual wealths. For each
topology, we can compute the 3× 36 = 108 (36 for the pairs
topology) individual wealths realized, and compare these
sets across pairs of topologies in a t-test for different means7.
Figure 5(a) shows in black those pairs with unequal means
at statistical significance p ≤ 0.05, and in gray those pairs at
p ≤ 0.1. The overall conclusion is that many topology pairs
can be distinguished by this test, and thus topology does in-
deed influence collective performance. Looking in slightly
more detail, we see that the pairs topology is strongly distin-
guished from all others, while clanp0 is distinguished from
all but PA1; there is also a group (clanp5, clanp10, ERp20,
ERp40) none of which can be distinguished from each other.
Equilibrium Predictions, Collective Level. We know
from Section 2 that topology strongly influences theoretical
equilibrium wealth distribution. Does this influence have
systematic behavioral effects, and if so, what are they?

Figures 5(b) and 5(c) together show some of our most
striking findings. The first scatterplot represents each of the
28 experiments as an open circle. The x coordinate measures
the standard deviation of the equilibrium wealths (expressed
as multiples of the initial endowments) — an entirely theo-
retical quantity that we view as a measure of the wealth im-
balance required to clear the market at equilibrium. It varies
from 0 (for all those networks containing perfect matchings)

6
Values for all individual experiments can be found in the avg(acquired)/avg(equil)

column of Figure 2.
7
All t-tests reported are unpaired, two-tailed and unequal variance, the most

conservative possible.

to 1.89 (almost twice the endowment). The y coordinate
shows the actual empirical fraction of the maximum pos-
sible wealth realized. Figure 5(b) demonstrates that these
two quantities are highly negatively correlated — their cor-
relation coefficient is -0.8 with a p-value below 0.001. Even
after omitting the 17 networks with perfect matchings clus-
tered at x = 0, the negative correlation remains strong (-
0.64 with p ≈ 0.03). Thus, we see that collective behavioral
performance degrades as the theoretical equilibrium predicts
greater wealth disparity.

Figure 5(c) has the same x coordinate, but now the y
coordinate plots not the behavioral social welfare, but the
standard deviation of the empirical wealths (expressed as
multiples of the average wealth obtained). The diagonal
line represents identical standard deviations in the equilib-
rium and empirical wealths. Here we see a strong positive
correlation — greater equilibrium wealth imbalance does in-
deed correctly predict greater empirical wealth imbalance.
The correlation coefficient is a whopping 0.96, again with a
p-value below 0.001; it remains 0.95 with a similar p-value
even after omitting networks with a perfect matching. Thus,
despite greater equilibrium inequality causing lower realized
wealth, it does indeed seem to cause greater empirical in-
equality over whatever wealth is earned.

Of course, this strong correlation of the equilibrium and
empirical standard deviation does not yet imply that the em-
pirical wealth is imbalanced in the same way (that is, across
the same individuals) as the equilibrium. That question is
examined next.
Equilibrium Predictions, Individual Level. So far we
have seen that the equilibrium theory can predict some macro-
scopic aspects of the collective behavior; how well does it do
at individual-level modeling?

One basic approach to answering this question is to com-
pute the L1 (variation) distances between the normalized
empirical wealth distribution and the normalized equilib-
rium wealth distribution for each of the 28 experiments, and
to compare these distances with those yielded by other plau-
sible predictors of the behavioral outcomes. As a baseline,
we note that the mean L1 distance of random (normalized)
vectors to the 28 empirical wealth distributions is approxi-
mately 0.59. In contrast, the distances for the equilibrium
predictions are considerably smaller8, with a mean of just

8
Values for all individual experiments can be found in the L1(equil) column of
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Figure 6: Comparison of models of wealth distribution.
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Figure 7: L1 mean of mixture model vs. α.

Furthermore, by this measure the equilibrium predictions
outperform other plausible theories. We first compare the
L1 distances from empirical wealths to equilibrium predic-
tions against the distances to the degree distribution. The
degree distribution makes the reasonable prediction that
greater wealth will simply follow those with more trading
opportunities. In the upper-left scatterplot of Figure 6 are
28 plotted points, one for each experiment. The x value
is the L1 distance between the equilibrium distribution to
the empirical distribution for that experiment, while the y
value is the L1 distance between the degree distribution and
the empirical distribution. Points above the diagonal are a
victory for the equilibrium model, and we see that the equi-
librium L1 distances are equal to or smaller than those of
the degree distribution in all 28 experiments. The mean L1

for the degree distributions is 0.32, which is distinguished
in a t-test from that of equilibrium (0.22) at significance
p < 0.0001.

Given the suggestion of inequality aversion made by Fig-
ure 5(b) above and discussed further below, it is also reason-
able to simply predict that any wealth earned will be dis-
tributed uniformly in each experiment, which yields an av-
erage L1 of 0.28 — actually better than degree distribution
(though not statistically significant; lower-left scatterplot of
Figure 6), but again the same or worse than equilibrium pre-
dictions in all 28 cases (upper-right scatterplot of Figure 6).
The equilibrium mean L1 passes a t-test for being smaller
than that of the uniform distribution at p ≈ 0.03.

Finally, foreshadowing our finding below that one of the
main behavioral deviations from equilibrium theory is an ex-

Figure 2.

cess of 1-for-1 trading, we find that our best model to date
is one of the form (1− α)~e + α~u, where ~e is the equilibrium
wealth distribution for the network under consideration and
~u is the uniform distribution. We find that the best mean
L1 occurs for α ≈ 0.25 and yields an average L1 of 0.21 —
better than equilibrium alone, but not statistically signifi-
cant (lower-right scatterplot of Figure 6). Figure 7 shows
the performance vs. α, which exhibits a distinct minimum.
Behavioral Dynamics. Thus far we have focused on the
final outcomes or wealths of an entire experiment, at both
the collective and individual levels. But how does the action
typically unfold within a particular game? We now turn to
such questions of behavioral network dynamics.

We first examine the raw level of activity as a function
of time within an experiment. The first plot in Figure 8
shows the average, over all 28 experiments, of the number
of changes to their outstanding bids made by players in each
10-second block of an experiment. Note that such changes
may or may not result in any actual transactions taking
place. The most striking feature of this plot is the large
volume of bid adjustments being made in the first 10 sec-
onds or so — by far the largest of any period. However,
there remains a large amount of activity distributed rela-
tively evenly through the remainder of the experiment.
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Figure 8: Evolution of activity summarized for all

games. Horizontal axis is time, in seconds.

The second plot in Figure 8 shows the average number of
executed trades that took place in each 10-second interval;
there are naturally fewer than the number of bid adjust-
ments, but again there is an early rush of executed trades,
followed by reduced but still significant trading. Interest-
ingly, neither the bid adjustments nor the executed trades
plots show any evidence of a late “rush” to execute trades
as time expires.

Further insight into the initial burst of trading is gleaned
from the third and fourth plots in Figure 8, which represent
trading prices rather than just volume. The third plot rep-
resents each executed trade by a single point whose x value



is the time of execution and whose y value is the price en-
joyed by the “winner” in that trade — that is, if a units of
wheat were traded for b units of wheat, the plotted value
is max(a/b, b/a) ≥ 1. Note the log-scale y axis. The plot
aggregates all trades over all 28 experiments; the fourth plot
shows averages of these values within each 10-second inter-
val. It is clear that the early rush of trading takes place
at highly equitable exchange rates (≈ 1), while later trad-
ing tends to contain a sizable fraction of inequitable trades
(>> 1). Indeed, the average winning price in the first 30
seconds of play across all experiments was 1.05, while the
average over the final 90 seconds of play was 1.71; this differ-
ence is highly statistically significant. This property of early
trading may (partially) explain our earlier finding that the
best model for final wealths tilts the equilibrium theory to-
wards equality.

There are at least two plausible explanations for the pre-
ponderance of early, equitable trades. It might be that some
players jump at equitable trades quickly to avoid the risk of
being “locked out” and unable to trade their endowments
later. Alternatively, it may just take more time for players
to be convinced of the need to demand and pay higher prices,
since in the equilibrium theory this is distinctly a network
effect that may thus require some time to propagate.

We note in passing that there appears to be a psycholog-
ical barrier price of 10:1, which is visible in the line of 20
dots at 10 in the middle plot. Only 4 trades out of a total
of 2746 in 28 games were above that price.
Fragmentation of Liquidity. One of the most interest-
ing behavioral phenomena we observed was the isolation
or fragmentation of goods due to structural “traumas” to
the network induced by trading. To describe this we need
to introduce the notion of Conditional Equilibrium Wealth
(CEW).

The maximum social welfare achievable and the equilib-
rium prices change over time due to trading, and it is in-
structive to see an example of how this can happen. In the
case of a 3-vertex line graph with endowments of {10, 10, 10}
where the middle vertex is able to trade with both end ver-
tices, the equilibrium price is 2:1, the equilibrium wealths
are {5, 20, 5}, and the maximum social welfare is 30. If a 5-
for-5 trade takes place on the left link, the new conditional
equilibrium wealths change to {5+ 1

3
5, 20, 2

3
5}, and the max-

imum social welfare is unchanged. If a 10-for-10 trade takes
place, though, the new conditional equilibrium wealths are
{10, 10, 0}, and the maximum social welfare drops to 20 —
the 10-for-10 trade effectively isolates the right-hand vertex,
who has no trading partner remaining.

Hence, just as equilibrium calculations are pertinent a pri-
ori predictions of the final wealths of players at the begin-
ning of a game, they are also valuable for examining the
evolution of a game. More formally, we define the CEW at
time t for each player to be the sum of its acquisitions up
to time t and its new equilibrium wealth given the remain-
ing endowments of all players at time t. We show empirical
plots of these 36 time-evolving values in Figure 9 for two
of our experiments, an ERp40 trial and a clanp0 trial. The
starting value of each player’s curve is by definition their
original equilibrium wealth, the ending value is what that
player actually acquired in the experiment, and in between
their CEW can go both up and down. The uppermost curves
plot the summed CEW values over all players, which we dis-
cuss shortly.
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Figure 9: Summed CEW values (upper plots) and indi-

vidual values (lower) evolving over time, for two games.

Horizontal axes are in seconds.

It is clear from these two examples that rather different
dynamics are in force in the two experiments, especially
with regards to the volatility of the CEWs. More generally,
we find that the standard deviations of the CEW curves
on a per-player basis are strongly influenced by the topol-
ogy of the network. Given a set of standard deviations for
each player’s CEW data in each of our 10 different network
topologies, a t-test will find almost every pair of them sig-
nificantly different at the p = 0.05 level.

The sum of all players’ CEW values is the maximum social
welfare that is still possible at that point in time. As long
as the market can still clear this will remain a constant, but
whenever goods become isolated from their potential buy-
ers, it falls. Such (irreparable) fragmentation to the network
causes the sum to drop in sudden steps. Figure 10 presents
all the summed CEW traces for all experiments, grouped
by topology. Note that the different topologies produce dif-
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ferent amounts of trauma. The clan and PA graphs show
more than the others. The PA1 graphs are only 1-connected
and show damage early, whereas the clan graphs are all 4-
connected and damage does not occur until much later. In
general, adding edges to a graph delays and reduces damage.
(Edge count relations are thus: clanp0 < clanp5 < clanp10;
PA1 < PA3; ERp20 < ERp40; and cycle2 < cycle4.) Note
also that clanp0 has many more edges than cycle4, and in
spite of this it shows much more damage; structure matters.
Regret in the Final Outcomes. We conclude with one
more analysis of the final wealths of the players. All games
ended with some players having unsold endowment. We use
the term “aggressive regret” to mean the amount of endow-
ment that a player held at the end of a game (since they
were unable to trade it at the rates they were demanding),
and the term “passive regret” to mean the total amount of
endowment remaining in all of a player’s neighbors (since
this is what in principle was available to them right before
time expired). It occasionally happened that a player would
have both types of regret, which we call “chicken” regret
(since trades were possible but players chose to not engage
in them before time expired).

Figure 11 shows regret values for all 9×36 players of all 9
clan experiments. Each player is represented as a ball with
a vertical bar running from it to the zero line. Passive regret
is shown as a negative value, aggressive regret as positive.
When a player has both types of regret, they are shown
colinearly. The players have been sorted first by their start-
ing equilibrium wealth; in the case of ties, they are further
sorted by passive regret; in the case of further ties, they are
sorted by aggressive regret.

There was a marked tendency for players with a high
starting equilibrium wealth to leave neighbors with surplus
goods, and for players with a low starting equilibrium wealth
to fail to sell all their goods. An alternative phrasing is
that many disadvantaged players were unwilling to pay very
high prices, and many advantaged players were unwilling
to charge very high prices. This phenomenon was most
pronounced in the clanp0 networks, and is again broadly
consistent with the collective inequality aversion we have
discussed.
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Regret is intimately related to social welfare and struc-
tural trauma. The sum of all the aggressive regret and the
final social welfare is equal to the original maximum social

welfare (360 units). With the exception of the small amount
of chicken regret, though, all the bars in Figure 11 are the
result of structural damage to the network through trade.
These are not cases of players sitting on their hands and
waiting for lower prices; there is simply nothing they can do
near the end of the game to alleviate their excess supply or
demand.
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