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In this paper we present initial and modest progress on the Hypothesis Boosting Problem.

Informally, this problem asks whether an eÆcient learning algorithm (in the distribution-free model

of [V84]) that outputs an hypothesis whose performance is only slightly better than random guessing

implies the existence of an eÆcient algorithm that outputs an hypothesis of arbitrary accuracy. The

resolution of this question is of theoretical interest and possibly of practical importance. From the

theoretical standpoint, we are interested more generally in the question of whether there is a discrete

hierarchy of achievable accuracy in the model of [V84]; from a practical standpoint, the collapse of

such a proposed hierarchy may yield an eÆcient algorithm for converting relatively poor hypotheses

into very good hypotheses.

Our goals are to o�er some simple observations and results that seem related to the above

questions, with the eventual goal of resolving the Hypothesis Boosting Problem. We begin with

the de�nitions of strong and weak learnability.

Let C and H be parameterized classes of representations of Boolean functions; that is, C =

[k�1Ck and H = [k�1Hk where Ck and Hk are representations of Boolean functions on f0; 1gk .

We assume that C and H are polynomially evaluable: there is a polynomial-time algorithm that on

input a representation c and a vector x computes the value of c(x). We refer to C and H as the

target class and the hypothesis class respectively. We assume that the representations in C and H

are written under some standard encoding, and will denote the length in bits of a representation c

by jcj.

For a given target representation c 2 C we assume there are �xed but arbitrary target distribu-

tions D+ and D� over the positive and negative examples of c respectively. Learning algorithms

have access to oracles POS and NEG that sample these distributions in unit time.

We say that C is strongly learnable by H if there is an algorithm A with access to POS and

NEG, taking inputs 0 < �; Æ < 1, with the property that for any target representation c 2 Ck, for

any target distributions D+ and D�, and for any � and Æ, algorithm A runs in time polynomial
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in 1
�
; 1
Æ
; jcj and k and outputs a representation h 2 H that with probability at least 1 � Æ satis�es

D+(c � h) � � and D�(h) � �. Here we have identi�ed c and h with the set of points on which

they evaluate to 1.

We say that C is weakly learnable by H if there is a polynomial p and an algorithm A with access

to POS and NEG, taking input 0 < Æ < 1, with the property that for any target representation

c 2 Ck, for any target distributionsD
+ and D�, and for any Æ, algorithm A runs in time polynomial

in 1
Æ
; jcj and k and outputs a representation h 2 H that with probability at least 1 � Æ satis�es

D+(c� h) � 1
2 �

1
p(jcj;k) and D�(h) � 1

2 �
1

p(jcj;k) .

We will call A a (strong, weak) learning algorithm for C. Further, we say that C is (strongly,

weakly) learnable if it is learnable by H for some polynomially evaluable H.

We can now formulate the Hypothesis Boosting Problem more formally as follows: is it the case

that any C that is weakly learnable is in fact strongly learnable? Note that we pose the question

in a representation-independent setting in that the hypothesis class used by the strong learning

algorithm need not be the same as that used by the weak learning algorithm. We will also be

interested in the question of whether the weak learnability of C by H always implies the strong

learnability of C by H.

Our �rst observation stems from the di�ering motivations for the strong and weak learning

models. The motivation for the strong learning model seems clear: the desire for the eÆcient in-

duction of highly accurate hypotheses from examples. Given that these examples are stochastically

generated, perfect accuracy is not possible, so strong learning is the most we can ask of an algo-

rithm. What is the motivation for the weak learning model? Here we are asking for an hypothesis

whose accuracy is slightly better than random guessing | in particular, we are comparing the

hypothesis of the algorithm to the hypothesis that ips a fair coin to decide its answer to each

unseen example. This comparison is natural only if H can incorporate the power of a fair coin.

As a speci�c example of a case where this comparison may be unfair, note that if C is the class of

two-term DNF formulae and H the class of monomials, it is not clear that there is an algorithm

for C using H that even approaches the performance of random guessing, much less weak learning.

However, for the purposes of proving theorems and analyzing the behavior of algorithms, allow-

ing H to always include arbitrary probabilistic polynomial time algorithms is somewhat unwieldy.
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In particular, H no longer de�nes a class of concepts, so the notion of the Vapnik-Chervonenkis

dimension is no longer de�ned, and Occam's Razor-like arguments no longer apply since we are

unable to bound the size of hypotheses. We are thus led to ask the following question: is there a

deterministic class H such that for any polynomially evaluable C, there is an eÆcient algorithm

for C using H that matches the performance of random guessing? Our �rst theorem says that if H

is the class of poly-random functions in the sense of [GGM86] (restricted to the �rst output bit so

as to obtain a well-de�ned concept class), then the following algorithm RANDOM works for any

C: for target concept c 2 Ck, choose h 2 Hk uniformly and at random, and output h.

Theorem 1. If there exists a one-way function, then for any polynomially evaluable C, algorithm

RANDOM matches the performance of random guessing within an additive factor that vanishes

faster than any inverse polynomial.

Proof Idea: We �rst prove a lemma stating that if representations in Hk are at most polynomially

larger than representations in Ck, then any level of accuracy that can be achieved by a polynomial

time algorithm for C usingH under the guarantee that the distributions are generated in polynomial

time can in fact be achieved in polynomial time regardless of the distribution. This implies that

any distribution that is \hard" for learning C by H can be assumed to be generated in polynomial

time without loss of generality. Now let H be the class of poly-random functions de�ned above. If

RANDOM fails to match the performance of random guessing, we obtain a contradiction as follows:

since RANDOM fails, there is some concept with distributions that are generated in polynomial

time on which RANDOM fails to match random guessing with some non-negligible probability.

These distributions can be used as a polynomial-time statistical test for functions as follows: query

the unknown function on points drawn from the hard distributions and test the accuracy of the

unknown function. If it is noticeably di�erent from that of random guessing, vote \poly-random";

otherwise, vote \truly random". �

Thus, we have a class of small deterministic circuits parameterized by seeds of length k that can

always be used to eÆciently �nd an hypothesis as good as guessing. An interesting open question

is to �nd simpler classes with the same property, or to prove that certain classes do not have this

property. For example, for which classes C can we always eÆciently �nd a 5-term DNF that is

as good as guessing? Note that such questions may have both computational and information-
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theoretic aspects: for some H, hypotheses as good as guessing may simply not exist for some C;

in other cases, they may exist but be intractable to �nd. Lest this seem to be somewhat far a�eld

of the Hypothesis Boosting Problem, note that the weak learning model essentially asks for small

correlations in the underlying distributions; from this viewpoint, the issue of how succinctly this

correlation can be expressed is likely to be a central one.

We next note that the question of the equivalence of weak and strong learning is inherently a

computational one, in the sense that the number of examples required to achieve weak learning

regardless of computation time is essentially the same as the number of examples required for strong

learning. This follows from the results in [EHKV87], where is is shown that the number of examples

needed for strong learning is 
(1
�
ln1

Æ
+ d

�
), where d is the Vapnik-Chervonenkis of the target class

C. This result in shown in [EHKV87] even for �xed �; thus, setting � = 1
2 veri�es the above claim.

Using arguments similar to those in [HKLW88] we can equate weak learning with the problem of

�nding an hypothesis consistent with slightly more than half of an input sample, and thus state a

slightly stronger result:

Theorem 2. Any class C that is weakly learnable from a polynomial number of examples and

exponential time is strongly learnable from a polynomial number of examples and exponential time.

Let R denote a restriction on the target distributions; for example, R might be the restriction

that the distributions can be generated in polynomial time, or that no point in the domain has

zero probability. Then learning under restriction R is de�ned in the obvious way.

Theorem 3. There exist classes C and restrictions R such that C is weakly learnable under R,

but C is not strongly learnable under R (under assorted cryptographic assumptions).

Proof Idea: Consider the quadratic residue concept class (each concept is de�ned by n, the

product of two primes; the positive examples are the quadratic residues, the negative examples

are the quadratic non-residues), augmented with a special point z1 that is a positive example of

all concepts, and a special point z2 that is a negative example of all concepts. The restricted

distribution class always gives z1 one percent of D+ and z2 one percent of D�; the rest of the

distributions are uniform over the residues and non-residues. Then C is clearly weakly learnable

under R by simply answering in the obvious way on z1 and z2 and ipping a fair coin to answer

on other points. However, to achieve accuracy even 51 percent under restriction R implies that
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the algorithm has a 1 percent probability of answering correctly on a randomly chosen residue or

non-residue, and this contradicts the Quadratic Residue Assumption. �

Theorem 3 brings us to a vague but interesting issue: it says that any proposed proof that weak

learning implies strong learning must make use of the fact that C is weakly learnable under every

distribution, not just the target distribution. Unfortunately, we cannot say more about how this

fact may be used in the proof | in particular, it places no obvious restrictions on the behavior of

the learning algorithm. For instance, suppose we intend to prove that weak learning implies strong

learning by direct simulation: using the weak learning algorithm as an oracle, we give an eÆcient

algorithm for strong learning. As pointed out by [K88], Theorem 3 does not directly imply that such

a simulationmust alter the underlying distribution when calling the weak learning oracle | perhaps,

for example, the guarantee that C is weakly learnable is strong enough to always imply the existence

of an eÆcient algorithm for �nding a (completely) consistent hypothesis, and no calls to the oracle

are even necessary! This observation becomes more intriguing when it is applied to particular

proposed simulations, such as the followingMAJORITY algorithm: run the weak learning algorithm

\enough" times, each time on the same underlying target distributions. When classifying an unseen

example, classify it according to a majority vote of the weak learning hypotheses. The fact that

this algorithm must fail to boost the hypotheses obtained under restriction R of Theorem 3 in no

way precludes the possibility that such a simulation always works in the case that C is weakly

learnable, since the C of Theorem 3 is not weakly learnable under arbitrary distributions. The

MAJORITY algorithm, however, is simple and plausible enough that it warrants being discredited

by other means.

Consider the following algorithm A for weakly learning monotone monomials: Over k variables,

the initial hypothesis of A is x1 � � � xk. A is then the same as Valiant's algorithm, except that after

each time a variable is crossed out of the current hypothesis h (due to its negation appearing in a

positive example), the hypothesis is tested against random examples to see if it meets the conditions

of weak learnability. Note that we know the hypothesis never makes a mistake on negative examples,

so we test only against positive examples; if h classi�es noticeably more than half of these correctly,

halt and output h. We now show that when A is the weak learning algorithm used as the oracle in

the MAJORITY algorithm above, MAJORITY fails to strongly learn.

5



Let the number of variables be k = 5 and let the target monomial be c = x1. We de�ne the

following distribution D+:

D+(10111) = :51

D+(11011) = :24

D+(11101) = :24

D+(11110) = :01

The exact values given above are not as important as the following observation: on a \typical"

run of A, the vector 10111 is received as the �rst positive example, and the resulting hypothesis is

h = x1x3x4x5. In subsequent testing, it is then determined that h has accuracy :51 on D+, thus

meeting the requirements of weak learning. Note that such a typical run occurs with probability

:51; thus, most runs have failed to cross out the other irrelevant variables. In particular, at least

99 percent of the runs fail to cross out x5. Thus a majority vote of the hypotheses from many runs

classi�es 11110 as negative with high probability, so the error of the hypothesis of the MAJORITY

algorithm on the above distribution with the given A is at least :01. Arbitrary accuracy is not

achieved.

We now introduce yet a third notion of learnability called skewed learning that we feel is relevant

to the Hypothesis Boosting Problem. Informally, we will say that C is skew learnable by H if the

hypothesis output has zero error on the distribution D+ (D�) and error at most 1� 1
p(jcj;k) on the

distribution D� (D+), for some polynomial p. Several relaxations of this de�nition are possible

without a�ecting what is said below; for example, we can ask for accuracy only 1 � � on the

distribution for which high accuracy is achieved, rather than accuracy 1. However, we will keep

this basic de�nition for simplicity.

Intuitively, skew learning asks that the hypothesis explain all of the positive examples and some

nonnegligible fraction of the negative examples. That this implies not only weak learnability but

strong learnability is the content of the next theorem.

Theorem 4. If C is skew learnable, then C is strongly learnable.

Proof Idea: We sketch the proof for the case where the error on D+ is zero; there is a dual proof

for the case where the error on D� is zero. The basic idea is that of \�ltering": run the skew

learning algorithm A many times, each time training A on the failures of the previous hypotheses.
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More formally, run A once to obtain skew hypothesis h1. Then run A again, but when a negative

example is requested, only give those negative examples that are classi�ed as positive by h1 (i.e.,

h1 acts as a �lter for the second run of A). The positive examples are always passed through

to the current run un�ltered. In general, on the kth run of A, the negative examples that are

�ltered through are those that are classi�ed as positive by all of h1; : : : ; hk�1. Thus each run of A

covers a \piece" of D� of size 1
p(jcj;k) that was previously uncovered. If we run A approximately

l � p(jcj; k) times, the hypothesis h1 ^ : : : ^ hl should have high accuracy on D�. Note that there

is no degradation of performance on D+ since all of the hi have zero error on D+. �

Note that in the relaxed de�nition of skew learning in which the accuracy on D+ is 1�� instead

of 1, the proof of Theorem 4 still goes through, except that each iteration of algorithm A may

introduce as much as � error on D+. Thus Theorem 4 may be regarded as providing a method of

trading accuracy on D+ for accuracy on D�; we can also prove simple but useful generalizations

of this technique.

As a brief aside, we point out that Theorem 4 can be applied to obtain an alternative algorithm

for learning k-term DNF by kCNF. We sketch the idea for 2-term DNF. Suppose that the target

concept is T1 + T2. Then the following is a skew learning algorithm : take a large sample of

both positive and negative examples and output the disjunction l1 + l2 that is satis�ed by all of

the positive examples and the fewest of the negatives. It is not hard to show that this is a skew

learning algorithm where the error on D� is at most 1� 1
n2
, where here n is the number of variables.

Applying Theorem 4 to this skew learning algorithm gives an algorithm outputting a kCNF. The

resulting algorithm is less eÆcient than Valiant's algorithm both in terms of sample complexity

and computational complexity. However, if we are interested in less than arbitrarily small error,

we can stop the simulation in the proof of Theorem 4 after as many iterations as are necessary to

reach the desired accuracy. In this case the hypothesis obtained may be shorter and more quickly

evaluated than that given by Valiant's algorithm. It would be interesting to �nd other applications

of Theorem 4.

Note that one intuitive way of achieving weak learning is the following: �nd some small but

nonnegligible (with respect to the target distributions) region S which the right classi�cation is

known with certainty or very high accuracy. If we are lucky and a new point falls in S, we
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answer correctly; if we are unlucky we ip a fair coin to decide the classi�cation. The accuracy

of this method is approximately 1
2 + p, where p denotes the probability of S. In the case that a

weak learning algorithm works by this method, we can use Theorem 4 to obtain a strong learning

algorithm by simply always answering positive whenever the new point falls outside of S, rather

than ipping a coin to decide. It is for this reason that the equivalence of strong and weak learning

does not seem implausible: intuitively, if a weak learning algorithm does not work by the above

region-�nding method, it has instead found a small (slightly larger than 1
2) over a large area of

the distribution. However, as noted earlier in this paper, such a correlation may be quite diÆcult

to express deterministically, especially with a restricted hypothesis space. For this reason we

conjecture that at the least it is possible to prove results of the form \If C is weakly learnable by

H, then C is strongly learnable" for arbitrary C but particular H.

We conclude by proposing three algorithms for converting weak learning algorithms into strong

learning algorithms, both based on the idea of �ltering. One of our next research projects will be

to try to discredit these algorithms or (hopefully) prove one of them correct.

Algorithm A1 runs the weak learning algorithm many times, each time training the algorithm

on the failures of previous hypotheses; that is, an example is �ltered through only if all previous

hypotheses answered incorrectly on the example. After doing this enough times, the hypothesis of

A1 is a majority vote.

Algorithm A2 is the same as A1 except an example is �ltered through if a majority of the

previous hypotheses failed on it. The hypothesis of A2 is again a majority vote.

Algorithm A3 is the same as A1 except that a single previous hypothesis is chosen randomly

as the �lter | that is, a previous hi is chosen at random, and the current run is trained on the

failures of hi only. The hypothesis of A3 is a majority vote.

Note that even the question of whether hypotheses of accuracy 1
2 + �1 can be boosted to hy-

potheses of accuracy 1
2 + �2 for any interesting �2 > �1 remains open.
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