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Abstract. Social and other networks have been shown empirically to
exhibit high edge clustering — that is, the density of local neighborhoods,
as measured by the clustering coefficient, is often much larger than the
overall edge density of the network. In social networks, a desire for tight-
knit circles of friendships — the colloquial “social clique” — is often
cited as the primary driver of such structure.
We introduce and analyze a new network formation game in which ratio-
nal players must balance edge purchases with a desire to maximize their
own clustering coefficient. Our results include the following:

– Construction of a number of specific families of equilibrium networks,
including ones showing that equilibria can have rather general binary
tree-like structure, including highly asymmetric binary trees. This is
in contrast to other network formation games that yield only sym-
metric equilibrium networks. Our equilibria also include ones with
large or small diameter, and ones with wide variance of degrees.

– A general characterization of (non-degenerate) equilibrium networks,
showing that such networks are always sparse and paid for by low-
degree vertices, whereas high-degree “free riders” always have low
utility.

– A proof that for edge cost α ≥ 1/2 the Price of Anarchy grows
linearly with the population size n while for edge cost α less than
1/2, the Price of Anarchy of the formation game is bounded by a
constant depending only on α, and independent of n. Moreover, an
explicit upper bound is constructed when the edge cost is a ”simple”
rational (small numerator) less than 1/2.

– A proof that for edge cost α less than 1/2 the average vertex clus-
tering coefficient grows at least as fast as a function depending only
on α, while the overall edge density goes to zero at a rate inversely
proportional to the number of vertices in the network.

– Results establishing the intractability of even weakly approximating
best response computations.

Several of our results hold even for weaker notions of equilibrium, such
as those based on link stability.
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1 Introduction

The proliferation of large-scale social and technological networks over the last
decade has given rise to an emerging science. One of the primary aims of the
empirical branch of this new science is to quantify and examine the striking ap-
parent structural commonalities that many of these large networks share, despite
their differing origins, populations, and function. For example, one empirical nar-
rative in this vein that is still unfolding is the claim that large-scale networks
from social, economic, technological and other origins often share the properties
of small diameter, heavy-tailed degree distributions, and high edge clustering.

Because of this, one of the primary goals of the theoretical branch of this new
science is the formulation of simple models of network formation that can explain
such apparent structural universalities. Interestingly, to date such efforts have
mainly fallen into two categories. In the stochastic network formation literature,
probabilistic models for network growth are proposed that exhibit one or more
of the structural universals of interest in expectation or with high probability. In
contrast, in the game-theoretic network formation links do not form randomly,
but for a “reason” (rationality), and the interest is in the structural and other
properties that can arise at population equilibrium. The game-theoretic models
to date have primarily technological, rather than sociological, motivations, such
as efficient routing concerns in communication networks (see [18, 13] for good
overviews of both approaches, as well as Related Work below).

In this paper we introduce and study a new network formation game explic-
itly motivated by an empirical phenomenon often cited in large social networks:
the tendency for friendship to be transitive, or for friends of friends to be friends
themselves [13, 8]. In sociology and other fields, this notion is quantified by the
clustering coefficient of a network, and a long series of studies has documented
the fact that social networks routinely exhibit much larger clustering coefficients
than would be expected from their overall edge density alone [19, 13]. In social
networks, homophily (the tendency for like to associate with like), the tendency
for introductions to be made through mutual acquaintances, and a human desire
for tight-knit cohorts are all cited as possible forces towards high clustering co-
efficients [12, 8]. Given the frequent observation of clustering in social networks,
and the long history of sociological and psychological theories regarding its ori-
gins in individuals, it is of interest to examine the consequences when clustering
is considered the primary source of utility in a network formation game. In the
same way that previous papers have taken abstract human or organizational
desires, such as those of being well-connected or centrally placed in a network,
and studied them as network formation games [14, 3, 11, 10], here we do so for
the notion of clustering.

We thus introduce and analyze a network formation game in which rational
players must balance edge purchases, each of fixed cost, with a desire to maximize
their own clustering coefficients. Like most of the prior work in formation games,
we consider a unilateral, rather than bilateral, edge purchase model (Twitter
rather than Facebook); such a model is appropriate for many, though obviously
not all, social networks. Our results include the following:
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– Construction of a number of specific families of equilibrium networks, in-
cluding ones showing that equilibria can have rather general binary tree-like
structure, including highly asymmetric binary trees. This is in contrast to
other network formation games that yield only symmetric equilibrium net-
works. Our equilibria also include ones with large or small diameter, and
ones with wide variance of degrees.

– A general characterization of (non-degenerate) equilibrium networks, show-
ing that such networks are always sparse and paid for by low-degree vertices,
whereas high-degree “free riders” always have low utility.

– A proof that for edge cost α ≥ 1/2 the Price of Anarchy grows linearly
with the population size n while for edge cost α less than 1/2, the Price of
Anarchy of the formation game is bounded by a constant depending only on
α, and independent of n. Moreover, an explicit upper bound is constructed
when the edge cost is a ”simple” rational (small numerator) less than 1/2.

– A proof that for edge cost α less than 1/2 the average vertex clustering
coefficient grows at least as fast as a function depending only on α, while
the overall edge density goes to zero at a rate inversely proportional to the
number of vertices in the network.

– Results establishing the intractability of even weakly approximating best
response computations.

Several of our results hold even for weaker notions of equilibrium, such as those
based on link stability.

In the extended version of the paper we also consider other variants of the
game, including a non-normalized version of clustering coefficient and bilateral
edge purchases one [7].

2 Related Work

Models of social and technological networks can be roughly divided into two
categories — stochastic generative models and game-theoretic models.

A stochastic generative model captures the dynamics of a specific stochastic
process and characterizes the networks created in the limit of that process. Per-
haps the most notable stochastic generative models are the preferential attach-
ment model [4] and the small-world model [20]. In the preferential attachment
model nodes arrive one at a time and each new node stochastically connects
to a fixed number of previous nodes, where the probability of connecting to
a specific node is proportional to that node’s current degree in the network.
Networks created by the model are known to have a limiting power-law degree
distribution [5], a prominent property of various social networks. In contrast to
the preferential attachment model, the small-world generative model assumes
that all nodes are given in advance. In that model one starts with a ring lattice
on the n nodes and rewires each edge independently with some fixed probability.
Networks created this way are known to have low diameter and a large average
clustering coefficient, for a large range of the rewiring probability [20]. While
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the preferential attachment model and the small-world model are able to only
generate networks with some properties of real social networks, a recent model
following similar lines as that of preferential attachment was shown to being able
to generate networks with several more properties of real social networks [17].

A second approach to modeling social and technological networks is based on
game theory. A node is equipped with a utility function that for each outcome
of the game quantifies how good the outcome is for that node. The utility of a
node is a function that depends on the structure of the outcome network and
the cost of the edges the node purchased. Game theoretic formation models
roughly divide into unilateral and bilateral games. In unilateral games a node
can purchase an edge to another node without asking for that node’s consent.
In a bilateral game each edge is a result of mutual consent between the edge’s
endpoints. In both variants once the edge is constructed both parties can use
it1. The seminal work of Fabrikant et al. [11] present an Internet routing latency
game where the utility of a node is the sum of its shortest path distances to all
other nodes plus the cost of the edges the node purchased. The game is perceived
as a minimum latency game where a node’s goal is to route packets quickly to
their destination. The authors showed that regular trees are Nash Equilibrium
(NE) networks of the game and raised the question whether the game has non-
tree NE. Albers et al. [1] provide the first construction of a cyclic NE for the game
using methods from finite affine spaces. Alon et al. [2] provide a combinatorial
construction of a link stable network with diameter three for the routing game.

Bala and Goyal analyzed a general formation game where the utility of a
node is a two-parameter function where the first parameter is the number of
nodes a node is connected to in the outcome graph, and the second parameter is
the number of edges the node bought [3]. Under a mild monotonicity condition
on this utility function the authors showed that the Nash Equilibrium networks
of the game are trees and the strict Nash Equilibrium networks are star-like
(plus the empty network for some edge costs).

Borgs et al. [6] have recently introduced a unilateral network formation game
motivated from affiliation networks. In their model a player can unilaterally
initiate social events with a cost proportional to the number of invitees. Any two
players that meet regularly at events will then form an (undirected) edge. The
utility of a player is its degree in the network minus the cost of events he initiated.
The authors show that the class of NE of the game contains sparse networks as
well as power-law networks and that the average clustering coefficient of each
NE network is bigger than the inverse of the average degree in that network.

Jackson and Wolinsky [14] were the first to introduce a general bilateral
game, called the “connections model”. The utility of a node in this game is a
sum of discounted shortest path distances to all other nodes plus the cost of the
edges adjacent to the node. The authors presented the notion of link-stability
where no two nodes want to purchase a missing edge between them, and no node
wants to unilaterally remove an adjacent edge. The authors presented a partial

1 A third type of formation games, where edges are purchased unilaterally and can
only be used by the purchasing party, is rarely considered in the literature.
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characterization of all link stable networks of the game. A specific version of the
game, where the edge cost is not uniform but depends on a metric on the network
nodes, was further analyzed in [15]. The authors showed that for a specifically
chosen discount factor for the utility of path lengths the link-stable networks
of the metric version include regular networks, complete networks, chain, and
star networks. However, the analysis is limited to specific values of the discount
factor and no general characterization of equilibria networks is given.

Evan-Dar et al. [9] analyze a formation game for bipartite exchange economies.
The network is bipartite containing buyers on one side and sellers on the other
and edge purchases represent trading opportunities between its endpoint parties.
The authors where able to provide a complete characterization of all NE of the
network formation game which is rather exceptional in the literature.

The Price of Anarchy measure was introduced by [16] to quantify the ineffi-
ciency of NE networks with respect to a central designed solution. It is defined
as the ratio between the best welfare (sum of node’s utilities) of a network to
the worst welfare of a NE network. The routing game presented by Fabrikant et
al. was shown to have a low Price of Anarchy [11, 1].

3 Preliminaries

The game we shall study, which we will refer to as the CC game, is a one-shot, full
information game on n players that shall form the vertices of an undirected graph
or network. The pure strategies of the game are the possible sets of undirected
edges a player may purchase to the other n− 1 players. The price of all edges is
the same and known in advance to all players. The edge price is denoted by α.

As in a number of previously studied network formation games, we consider
edge purchases to be unilateral — a player may purchase an edge to any other
party without consent from that party — but all players may potentially benefit
from the edge purchases of others. In this sense edges are undirected, but we
also need to keep track of who purchased each edge. Given the edge purchases
of all players the outcome of the game yields a directed network on n nodes,
denoted as G , where an edge from node u to node v is present if and only if u
purchased an edge to v. Throughout we shall analyze both the properties of the
directed graph G , as well as the undirected graph it induces.

We denote by Iv the set of nodes that purchased edges to v and by Ov the
set of nodes v purchased an edge to. We denote the in-degree of v in G as
in-deg(v) and its out-degree as out-deg(v). The total degree of v is defined as
deg(v) = in-deg(v) + out-deg(v).

We denote the number of triangles that v is part of in G by ∆(v). The
number of triangles containing v in which the two other nodes both belong to
Iv is denoted as ∆I(v). Similarly, the number of triangles containing v where
the two other nodes belong to Ov is denoted as ∆O(v). The number of triangles
containing v where one of the other nodes belongs to Iv and the remaining one
belongs to Ov is denoted as ∆I,O(v). These sets are all disjoint by definition and
we have ∆(v) = ∆I(v) +∆O(v) +∆I,O(v).
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The clustering coefficient of a node v in G is defined as the probability
that two randomly selected neighbors of v are directly connected to each other:

CC(v) = ∆(v)

(deg(v)
2 )

if deg(v) ≥ 2, and 0 otherwise. In the CC game, players must

balance their desire for high clustering coefficient against their edge expenditures.
The utility of v in the game is defined to be utility(v) = CC(v)− α · out-deg(v).
When the edge cost α ≥ 1 all strategies for a node v are dominated by the
strategy to purchase no edges at all, so we will assume from now on that 0 <
α < 1. Most of our results will consider the natural case in which α is a constant
not depending on the population size n — forming edges has a fixed cost —
though we will occasionally discuss cases where α diminishes with increasing n.
Some of our results will also depend on α being a rational number.

As in much of the related literature, our main interest in this paper is to study
the properties of the pure Nash equilibrium (NE) networks of the CC game. For
some of our results we shall slightly refine this notion to exclude some degenerate
cases and thus focus on the interesting ones. Note that the empty network (no
edge purchases) is a trivial NE with zero social welfare (total utility) that we
will omit from consideration. We also ask that players who purchase edges have
non-zero utility. Note that (at least) zero utility can always be obtained by
purchasing no edges. This condition demands that the action taken by only a
subset of the players (those buying edges) be better than only one of their many
alternatives (buying no edges), and even then only in the case that the latter
gives zero utility. It is thus a considerable weakening of the standard notion of
a strict Nash equilibrium. We next codify these restrictions:

Definition 1. A non-degenerate NE is a non-empty, pure Nash Equilibrium of
the CC game in which out-deg(v) ≥ 1 implies utility(v) > 0 for all players v.

The social welfare of a given network is defined as the sum of all players’
utilities. The (non-degenerate) Price of Anarchy (PoA) is defined as the ratio
of the highest social welfare of any directed network with n nodes to the worst
social welfare of any non-degenerate NE.

4 A (Partial) Catalog of CC Game Nash Equilibria

We begin by constructing a number of families of non-degenerate NE of the CC
game, focusing primarily on the network topologies that can arise at equilibrium.
Each of these families is defined for arbitrarily large population size n, and has
social welfare scaling linearly with n. We do not propose this catalog to be
exhaustive; indeed it is interesting to see the diversity of structures that can
arise at equilibrium, and we suspect there are others. Subsequent sections are
devoted to the study of general properties of non-degenerate NE.

The first three constructions below are sufficiently simple that their equilib-
rium proofs can be established by straightforward calculations that we omit. We
do provide the equilibrium proof for our last, and richest, construction.
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Fig. 1. A variety of Nash Equilibrium networks of the CC-Game: Disjoint Triangles
NE (a), Popular Victims NE (b and c), Triangular Hub and Spokes NE (d), Binary
Tree-Like NE (e).

Disjoint Triangles NE. Perhaps the simplest non-degenerate NE consists of
n/3 disjoint triangles. The nodes in each group form a triangle by purchasing
one edge each (Figure 1a). Clearly this structure is a non-degenerate NE for any
0 < α < 1; for n divisible by 3 it also maximizes the social welfare, a fact we
shall use throughout.

Popular Victims NE. This non-degenerate NE shows a case where the most
“popular” (highest degree) nodes suffer the lowest utility. Let n ≥ 4. The con-
struction is as follows: a player u connects to a player v, and each other node
connects directly to both u and v by purchasing two edges (Figure 1b). When the
edge cost is inversely proportional to n, α = 2

n−1 − ϵ, for any ϵ > 0, this network
is a non-degenerate equilibrium. To see this, notice that all players other than u
and v are playing their best responses and get a positive utility provided α < 1

2 .
Node v cannot improve its utility since all nodes are connected to it. Last, if
α < 2

n−1 , u wouldn’t want to remove the edge it purchased to v and therefore is
playing its best response. Furthermore, u is getting a positive utility.

Note that this network is “paid for” by low-degree vertices, all of whom enjoy
high utility, while the high-degree victims u and v suffer low utility. We shall
show later that in fact this is a property of all non-degenerate NE.

Triangular Hub and Spokes NE. Consider the network shown in Figure 1d;
it is easily verified that for edge cost α = 1

2 − ϵ, for any ϵ > 0 this is a non-
degenerate NE. Furthermore, this construction can be scaled up to make the
“hub” node have arbitrarily high degree at the same (constant) edge cost, and
disjoint copies of this construction of different size can be combined to form new
non-degenerate NE. In this fashion we may create non-degenerate NE whose
(total) degree distributions are effectively unconstrained.
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Binary Tree-Like NE. We next construct a large family of non-degenerate
NE obtained by the following construction. We take any rooted, directed binary
tree T (with edges always oriented towards the leaves), where the root has out-
degree of one, and replace each directed edge in T with a local gadget of the
type given in Figure 1c. As an example of the construction, consider starting
with the rooted, directed tree T on five vertices shown in Figure 1e (inset). The
resulting network G(T ) is given in Figure 1e.

It is worth emphasizing that this construction yields a rather rich family of
non-degenerate NE with a variety of asymmetries possible, which is somewhat
unusual in the network formation game literature. At one extreme it contains
connected, small diameter networks (constructed from balanced binary trees)
and on the other extreme it contains connected, large diameter networks (con-
structed from path-like graphs). Since the argument that the construction does
yield NE is considerably more involved than for our previous examples, a formal
theorem is given. The proof is omitted due to lack of space and is given in the
extended version of the paper [7].

Theorem 1. For any rooted, directed binary tree T where the root has out-degree
of one, let G(T ) be the directed network obtained by the construction described
above. Then for any edge cost that is smaller than some constant independent of
network size, G(T ) is a non-degenerate pure NE of the CC game.

5 General Properties of CC Game Nash Equilibria

Given the apparent diversity and potential asymmetry of the NE of the CC
game, what general statements might we hope to make about their topological
and utility properties? Certain very basic and crude characterizations are easily
obtained — for instance, the fact that any NE has at most n

α edges follows from
the fact that each node can purchase at most 1

α edges at equilibrium since all
utilities are non-negative. Notice that this observation does not imply a non-
trivial restriction on the total degree or utility of any individual node.

In this section, we prove a considerably stronger characterization motivated
by the commonalities in the NE described in the last section. Namely, we prove
that any (non-degenerate) NE is paid for by nodes of low total degree and
high utility, while high-degree vertices are always victims of low utility. This
characterization will then be applied in the following section to obtain non-trivial
bounds on the Price of Anarchy for the CC game.

Theorem 2. Let 0 < α < 1
2 . Then in any non-degenerate NE of the CC game:

– For any node v, if out-deg(v) ≥ 1, then deg(v) < 3
α , and utility(v) = c(α) >

0, where the strictly positive constant c(α) depends only on α, and not the

population size n. Moreover, when 1
α is integral, c(α) > α3

9 . 2 Thus, vertices
purchasing an edge have low total degree and a positive, constant utility.

2 A similar bound holds for “simple” rational α; see the proof.
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– For any node v with deg(v) ≥ 3
α , utility(v) <

3
α(deg(v)−1) . Thus, high-degree

vertices have low utility.

Proof. We start by proving the first part of the theorem. Let v be any node in
a non-degenerate NE network that purchased an edge and has an in-degree of
at least two (the claim is trivially true when in-degree of v is at most one). The
upper bound on v’s total degree is derived from the fact the v’s utility is higher
than what it could have gotten by purchasing no edges at all:

∆(v)(
deg(v)

2

) − α · out-deg(v) ≥ ∆I(v)(
in-deg(v)

2

) .
Simplifying, we get

∆I(v)

(
2

deg(v)(deg(v)− 1)
− 2

in-deg(v)(in-deg(v)− 1)

)
+

∆I,O(v) +∆O(v)
deg(v)(deg(v)−1)

2

≥ α · out-deg(v).

Since 2
deg(v)(deg(v)−1) −

2
in-deg(v)(in-deg(v)−1) < 0, we get

∆I,O(v) +∆O(v)

out-deg(v)deg(v)(deg(v)− 1)
>

α

2
.

By using ∆O(v) ≤
(
out-deg(v)

2

)
and ∆I,O(v) ≤ in-deg(v) · out-deg(v), we get

in-deg(v)out-deg(v) + out-deg(v)(out-deg(v)−1)
2

out-deg(v)deg(v)(deg(v)− 1)
>

α

2
,

so 1
deg(v) +

1
2deg(v) >

α
2 , or alternatively, deg(v) <

3
α .

Next, we prove a lower bound on v’s utility that follows from it being strictly

positive (non-degeneracy). Recall that utility(v) = ∆(v)

(deg(v)
2 )

− αout-deg(v) > 0.

Since deg(v) < 3
α , the RHS of the utility expression can only equal one out of

a finite number possible of possibilities that depend only on α and not on n. In
particular, for each α we can choose the worst possible value that still renders
utility(v) strictly positive. We denote that value by c(α).

Furthermore if 1
α is integral, by taking a common denominator the left hand-

side can be written as a strictly positive numerator divided by a denominator

of 1
1
α (

deg(v)
2 )

. Using deg(v) < 3
α , we get that v’s utility is bigger than α3

9 . (More

generally note that if α = p/q for integers p < q and thus rational, a similar

argument yields a lower bound of α3

9p on the utility, and thus “simple” α give

constructive lower bounds.)
We next prove the second part of the theorem. Consider a node v with a

total degree of at least 3
α . We saw earlier that a node that purchased edges has
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a degree of less than 3
α so v could not have purchased edges at all. Moreover, a

node u that purchased an edge to v has degree less than 3
α and so v is part of

less than 3
α joint triangles with u. Therefore the total triangle count of node v

is less than 1
2d ·

3
α . Thus, v’s utility is less than

1
2d

3
α

(d2)
= 3

α(d−1) .

6 The Price of Anarchy

As has been mentioned, a disjoint union of triangles is a maximum social welfare
NE, whereas all the specific families of NE given in Section 4 have a social welfare
growing linearly with the population size n. In this section we prove that the
non-degenerate Price of Anarchy is upper bounded by a function depending only
on α, and not on n, for all α < 1/2, and give an explicit expression for the upper
bound when α is a ”simple” rational (small numerator). This turns out to be a
fairly straightforward consequence of the characterization given in Theorem 2.
The proof can be found in the extended version of the paper [7].

Theorem 3. For edge cost α ≥ 1
2 the non-degenerate Price of Anarchy for the

CC game is lower bounded by Ω(n(1− α)), and for edge cost α < 1
2 it is upper

bounded by an expression that depends only on α. Moreover, when 1
α is integral

the Price of Anarchy is upper bounded by 36(1−α)
α4

3

While Theorem 3 upper bounds the non-degenerate Price of Anarchy inde-
pendent of the population size n for α < 1/2, it leaves open the question of
the exact dependence on α and whether it is even real or not. Indeed, all spe-
cific constructions in Section 4 have a constant Price of Anarchy independent of
α, even when α is a small numerator rational. We leave the resolution of this
dependence as an open problem.

It is natural to ask how robust the results we have described so far are with
respect to modifications of the equilibrium notion — especially in light of the
results in the following section, where we will prove that even approximate best-
response computations for the CC game are intractable. Indeed, it is for similar
reasons that in other network formation games, researchers often consider weaker
notions of equilibrium, such as link stability (which asks only that players cannot
improve their utilities by adding or dropping a single edge purchase).

Notice that an equilibrium concept resilient only to the addition or removal of
a single one edge already has a Price of Anarchy of Ω(n(1−α)) for any edge cost,
since a network with one triangle and many isolated nodes is then in equilibrium
no matter how small α is (a single edge purchase can never help). However,
define k-stability to be the equilibrium concept in which players cannot benefit
by switching from their assigned edge purchase set S to any other edge purchase
set S′ for which the symmetric set difference |S − S′| ≤ k. (Thus standard link
stability corresponds to 1-stability.) For any fixed value of k, computing best
responses under k-stability becomes a computationally tractable problem, and
for k ≥ 2, all of our results can be shown to hold under this notion as well:

3 A similar bound holds for ”simple” (small numerator) rational α.
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Theorem 4. For all k ≥ 2, Theorems 2 and 3 remain true when we replace NE
by k-stability.

The proof is omitted, but mainly involves technical modifications of the proof
of the first part of Theorem 2 to consider the utility effects of dropping only the
most beneficial edge purchases, rather than all edge purchases.

We end by noting that a low PoA implies that the average vertex clustering
coefficient is high.

Corollary 1. For edge cost α < 1
2 the average vertex clustering coefficient grows

at least as some function g(α) independent of the network size, while the net-
work’s overall edge density goes to zero at a rate smaller or equal to 2α

n−1 .

7 Intractability of Best Responses

A natural question that arises in many complex network formation games is how
difficult it can be to compute best responses, which would seem a prerequisite
to reaching NE dynamically; for instance, best-response computation was shown
to be NP-hard to compute for a routing formation game [11]. Here we show
that best responses in the CC game are intractable even to approximate, thus
motivating the weaker notion of k-stability in the last section.

Theorem 5. Given a directed graph G and a node v in G (where G represents
the edge purchases of the other nodes), the edge cost α (encoded as a rational
number), and an integer f ≥ 1, computing a strategy (set of edge purchases) for
v with CC game utility at least 1

f of the best-response utility is not polynomial
time computable, unless P = NP.

The proof is given in the extended version of the paper [7].
One way to deal with the inapproximability of best response is to focus on

computing best responses under k-stability, k ≥ 1. Although the problem of
computing best response under k stability for each node becomes tractable for
fixed values of k, the corresponding dynamics doesn’t always converge to a k-
stable network, as shown in Figure 2. Therefore there is no simple solution to
the inapproximability of best-responses.
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