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Abstract population after observing their interactions during antra
ing phase of polynomial length. We assume that each agent
Inspired by longstanding lines of research in soci- i in a population of sizéV acts according to a fixed but un-
ology and related fields, and by more recent large- known strategy;; drawn from a known class. A strategy
population human subject experiments on the In- probabilistically maps the current population state tartévet
ternet and the Web, we initiate a study of the com- state or action for that agent, and each agent's strategy may
putationa| issues in |earning to model collective be different. As is common in much of the literature cited
behavior from observed data. We define formal above, there may also be a network structure governing the
models for efficient learning in such settings, and population interaction, in which case strategies may map th
provide both general theory and specific learning local neighborhood state to next actions.
algorithms for these models. Learning algorithms in our model are given training data

of the population behavior, either as repeated finite-lengt

trajectories from multiple initial states (a@pisodicmodel),
1 Introduction or in a single unbroken trajectory from a fixed start state (a

no-resetmodel). In either case, they must efficiently (poly-
Collective behavior in large populations has been a subjectnomially) learn to accurately predict or simulate (projeest
of enduring interest in sociology and economics, and a more of) the future behavior of the same population. Our frame-
recent topic in fields such as physics and computer sciencework may be viewed as a computational model for learning
There is consequently now an impressive literature on math-the dynamics of an unknown Markov process — more pre-
ematical models for collective behavior in settings as di- cisely, a dynamic Bayes net — in which our primary interest
verse as the diffusion of fads or innovation in social net- is in Markov processes inspired by simple models for social
works [10, 1, 2, 18], voting behavior [10], housing choices behavior.
and segregation [22], herding behaviors in financial mar- As a simple, concrete example of the kind of system we
kets [27, 8], Hollywood trends [25, 24], critical mass phe- have in mind, consider a population in which each agent
nomena in group activities [22], and many others. The ad- makes a series of choices from a fixed set over time (such as
vent of the Internet and the Web have greatly increased thewhat restaurant to go to, or what political party to vote for)
number of both controlled experiments [7, 17, 20, 21, 8] and Like many previously studied models, we consider agents
open-ended systems (such as Wikipedia and many other inwho have a desire to behave like the rest of the population
stances of “human peer-production”) that permit the loggin  (because they want to visit the popular restaurants, or want
and analysis of detailed collective behavioral data. Itsis n  to vote for “electable” candidates). On the other hand, each
ural to ask if there are learning methods specifically taior ~ agent may also have different and unknown intrinsic prefer-
to such models and data. ences over the choices as well (based on cuisine and decor, or

The mathematical models of the collective behavior liter- the actual policies of the candidates). We consider models i
ature differ from one another in important details, sucthast which each agent balances or integrates these two forces in
extent to which individual agents are assumed to act accord-deciding how to behave at each step [12]. Our main question
ing to traditional notions of rationality, but they gendyal is: Can alearning algorithm watching the collective bebavi
share the significant underlying assumption that each &gent of such a population for a short period produce an accurate
current behavior is entirely or largely determined by the re  model of their future choices?
cent behavior of the other agents. Thus the collective behav ~ The assumptions of our model fit nicely with the litera-
ior is asocialphenomenon, and the population evolves over ture cited in the first paragraph, much of which indeed pro-
time according to its own internal dynamics — there is no poses simple stochastic models for how individual agents re
exogenous “Nature” being reacted to, or injecting shocks to act to the current population state. We emphasize from the
the collective. outset the difference between our interests and those com-
In this paper, we introduce a computational theory of mon in multiagent systems and learning in games. In those

learning from collective behavior, in which the goal is to fields, it is often the case that the agents themselves are
accurately model and predict the future behavior of a large acting according to complex and fairly general learning al-



gorithms (such as Q-learning [26], no-regret learning [9], large) class, but is otherwise unknown. The learner’s ulti-
fictitious play [3], and so on), and the central question is mate goal is not to discover each individual agent strategy
whether and when the population converges to particular, per se, but rather to make accurate predictions otttlec-

“nice” states (such as Nash or correlated equilibria). Im-co
trast, while the agent strategies we consider are certainly

tive behavior in novel situations.

“adaptive” in a reactive sense, they are much simpler than2-1 Agent Strategies and Collective Trajectories
general-purpose learning algorithms, and we are inteteste We now describe the main components of our framework:

in learning algorithms thahodelthe full collective behavior
no matter what its properties; there is no special statusngiv
either to particular states nor to any notion of convergence
Thus our interest is not in learning by the agents themsglves
but at the higher level of an observer of the population.

Our primary contributions are:

e The introduction of a computational model for learning
from collective behavior.

e The development of some general theory for this model,
including a polynomial-time reduction of learning from
collective behavior to learning in more traditional,
single-target I.1.D. settings, and a separation between
efficient learnability in collective models in which the
learner does and does not see all intermediate popula-
tion states.

e The definition of specific classes of agent strategies,
including variants of the “crowd affinity” strategies
sketched above, and complementary “crowd aversion”
classes.

e Provably efficient algorithms for learning from collec-
tive behavior for these same classes.

The outline of the paper is as follows. In Section 2, we
introduce our main model for learning from collective be-
havior, and then discuss two natural variants. Section 3 in-
troduces and motivates a number of specific agent strategy
classes that are broadly inspired by earlier sociologicad-m
els, and provides brief simulations of the collective bebies/

e State SpaceAt each time step, each agens in some
states; chosen from a known, finite s& of size K.
We often think of K as being large, and thus want al-
gorithms whose running time scales polynomiallyidn
and other parameters. We viewas theactiontaken by
agent: in response to the recent population behavior.
The joint action vectos € SV describes the current
global state of the collective.

e Initial State Distribution. We assume that the initial
population states’® is drawn according to a fixed but
unknown distributionP overS™. During training, the
learner is able to see trajectories of the collective behav-
ior in which the initial state is drawn fror?, and as in
many standard learning models, must generalize with
respect to this same distribution. (We also consider a
no-reset variant of our model in Section 2.3.)

e Agent Strategy Class. We assume that each agent’s
strategy is drawn from a known clagsof (typically
probabilistic) mappings from the recent collective be-
havior into the agent’s next state or actiondn We
mainly consider the case in whieh € C probabilisti-
cally maps the current global stafénto agent’s next
state. However, much of the theory we develop ap-
plies equally well to more complex strategies that might
incorporate a longer history of the collective behavior
on the current trajectory, or might depend on summary
statistics of that history.

Given these components, we can now define what is meant

they can generate. Section 4 provides a general reduction oy acollective trajectory

learning from collective behavior to a generalized PAQesty

model for learning from 1.1.D. data, which is used subse- Definition 1 Letc € C™ be the vector of strategies for the
quently in Section 5, where we give provably efficient algo- N agents,” be the initial state distribution, anéi > 1 be an

rithms for learning some of the strategy classes introduted
Section 3. Brief conclusions and topics for further researc
are given in Section 6.

2 The Model

In this section we describe a learning model in which the
observed data is generated from observations of trajestori
(defined shortly) of the collective behavior df interacting

integer. AT -trajectory of ¢ with respect to P is a random
variable (39, --- ,5T) in which the initial states® ¢ SV

is drawn according taP, and for eacht € {1,---,T}, the
component! of the joint states'* is obtained by applying
the strategyc; to 5¢~1. (Again, more generally we may
also allow the strategies; to depend on the full sequence
59 ...,5"1, oron summary statistics of that history.)

Thus, a collective trajectory in our model is simply a

agents. The key feature of the model is the fact that eachMarkovian sequence of states tliattorsaccording to the

agent’s next state or action is alwajetermined by the recent
actions of the other agentperhaps combined with some in-
trinsic “preferences” or behaviors of the particular agéyst

N agent strategies — that is, a dynamic Bayes net [19]. Our
interest is in cases in which this Markov process is gendrate
by particular models of social behavior, some of which are

we shall see, we can view our model as one for learning cer-discussed in Section 3.

tain kinds of factored Markov processes that are inspired by

models common in sociology and related fields.
Each agent may follow a different and possibly proba-

2.2 The Learning Model
We now formally define the learning model we study. In

bilistic strategy. We assume that the strategy followed by our model, learning algorithms are given access to an oracle

each agent is constrained to lie in a known (and possibly Ogxp (¢, P, T) that returns a -trajectory(s°, - .-

, 87T of



¢ with respect taP. This is thus arepisodicor resetmodel, behavior if there exists an algorithmd such that for any

in which the learner has the luxury of repeatedly observing population sizeN > 1, anyé € CV, any time horizoril’,

the population behavior from random initial conditions. It any distributionP overS”, and anye > 0 andd > 0, given

is most applicable in (partially) controlled, experiméiset- accessto the oracl@gxp (¢, P, T), algorithmA runs in time

tings [7, 17, 20, 21, 8] where such “population resets” can polynomial inN, T, dim(C), 1/¢, and1/4, and outputs a

be implemented or imposed. In Section 2.3 below we de- polynomial-time modelZ such that with probability at least

fine a perhaps more broadly applicable variant of the model 1 — g, £(Qy, Qa) < e

in which resets are not available; the algorithms we provide '

can be adapted for this model as well (Section 5.3). We now discuss two reasonable variations on the model
The goal of the learner is to findgenerative modehat we have presented.

can efficiently produce trajectories from a distributiomatth

is arbitrarily close to that generated by the true popufatio 2.3 A No-Reset Variant

Thus, letM(5°,T) be a (randomized) model output by @ The model above assumes that learning algorithms are given
learning algorithm that takes as input a start stéteand access to repeated, independent trajectories via theeoracl
time horizonT’, and outputs a randoffi-trajectory, and let . . \which is analogous to thepisodicsetting of rein-

Q y; denote the distribution over trajectories generatedby  forcement learning. As in that field, we may also wish to
when the start state is distributed according*toSimilarly, consider an alternative “no-reset” model in which the learn

let Q= denote the distribution over trajectories generated by has access only tosingle unbroken trajectory of states gen-
Ogxp (¢, P,T). Then the goal of the learning algorithmis to  erated by the Markov process. To do so we must formulate
find a modell making theZ, distance:(Q ;, Q=) between an alternative notion of generalization, since on the omelha

Q y; andQz small, where the (distribution of the) initial state may quickly beconne i
relevant as the collective behavior evolves, but on therpthe
(@ Qo) = the state space is exponentially large and thus it is ustezali
Z Q4 (8-, 8T)) = Qa((5°,--- ,5T))| . to expect to model the dynamics from arbitrary state in

polynomial time.
One natural formulation allows the learner to observe any
A couple of remarks are in order here. First, note that polynomially long prefix of a trajectory of states for traigi
we have defined the output of the learning algorithm to be and then to announce its readiness for the test phagéas If
a “black box” that simply produces trajectories from iflitia  the final state of the training prefix, we can simply ask that
states. Of course, it would be natural to expect that thiskbla  the learner output a modal that generates accurafestep
box operates by having good approximations to every agenttrajectoriesorward from the current statg&. In other words,
strategy in7, and using collective simulations of these to pro-  y should generate trajectories from a distribution close to
duce trajectories, but we choose to define the outpub a  the distribution ovef-step trajectories that would be gener-
more general way since there may be other approaches. Secated if each agent continued choosing actions according to
ond, we note that our learning criteria is both strong (see hjs strategy. The length of the training prefix is allowed¢o b
below for a discussion of weaker alternatives) and useful, polynomial in7" and the other parameters.
in the sense that (), Q=) is smaller than;, then we can While aspects of the general theory described below are
sample)! to obtainO(e)-good approximations to the expec- particular to our main (episodic) model, we note here that th
tation of any (boundedynctionof trajectories. Thus, forin-  algorithms we give for specific classes can in fact be adapted
stance, we can usk to answer questions like “What is the to work in the no-reset model as well. Such extensions are
expected number of agents playing the plurality actiorrafte discussed briefly in Section 5.3.
T steps?” or “What is the probability the entire population L .
is playing the same action aftérsteps?” (In Section 2.4 be- 2-4 Weaker Criteria for Learnability
low we discuss a weaker model in which we care only about We have chosen to formulate learnability in our model us-
onefixedoutcome function.) ing a rather strong success criterion — namely, the abdity t
Our algorithmic results consider cases in which the agent (approximately) simulate the full dynamics of the unknown
strategies may themselves already be rather rich, in whichMarkov process induced by the population strat&ghn or-
case the learning algorithm should be permitted resourcesder to meet this strong criterion, we have also allowed the
commensurate with this complexity. For example, the crowd |earner access to a rather strong oracle, which returns-all
affinity models have a number of parameters that scales withtermediatestates of sampled trajectories.

(50,0, 7)

the number of action&”. More generally, we uséim(C) to There may be natural scenarios, however, in which we
denote the complexity or dimension@©fin all of ourimag- are interested only in speciffixed properties of collective
ined applicationslim(-) is either the VC dimension for de-  behavior, and thus a weaker data source may suffice. For in-
terministic classes, or one of its generalizations to pdisa stance, suppose we have a fixed, real-valmgidome func-
tic classes (such as pseudo-dimension [11], fat-shagteliin  tion F(5'7) of final states (for instance, the fraction of agents
mension [15], combinatorial dimension [11], etc.). playing the plurality action at tim&’), with our goal being

We are now ready to define our learning model. to simply learn a functio that maps initial states® and a

o . time horizon! to real values, and approximately minimizes
Definition 2 Let C be an agent strategy class over actions

S. We say tha€ is polynomially learnable from collective Ezoup [|G(5°,T) = Ez o [F(57)]]]



wheres T is a random variable that is the final state of a gate ofh at timeT = D, pairs of the form(s'°, F(5 7))

T-trajectory ofc from the initial states’©. Clearly in sucha  provide exactly the same data as the PAC modehfonder

model, while it certainly would suffice, there may be no need D, and thus must be equally hard.

to directly learn a full dynamical model. It may be feasible For the polynomial learnability of from collective be-

to satisfy this criterion without even observing internsdi havior, we note tha€ is clearly PAC learnable, since it is

states, but only seeing initial state and final outcome pairsjust Boolean combinations of 1 or 2 inputs. In Section 4

(89 F(5T)), closer to a traditional regression problem. we give a general reduction from collective learning of any
It is not difficult to define simple agent strategy classes agent strategy class to PAC learning the class, thus gitimg t

for which learning from only(5'°, F(5T)) pairs is provably ~ claimed result. |

intractable, yet efficient learning is possible in our model

This idea is formalized in Theorem 3 below. Here the popu-  Conversely, it is also not difficult to concoct cases in
lation forms a rather powerful computational device map- which learning the full dynamics in our sense is intractable

ping initial states to final states. In particular, it can be Put we can learn to approximate a specific outcome func-

thought of as a circuit of depth with “gates” chosen from  tion from only (5%, F('™)) pairs. Intuitively, if each agent
¢, with the only real constraint being that each layer of the Strategy is very complex but the outcome function applied to

circuit is an identical sequence df gates which are applied gnaldstates is sdufficien(tjlylsihmricle”(g.g., cqns_tant)(,j we czfmn
to the outputs of the previous layer. Intuitively, if onlytial ut do not need to model the full dynamics in order to learn

states and final outcomes are provided to the learner, learn{0 @PProximate the outcome.

ing should be as difficult as a corresponding PAC-style prob- e note that there is an analogy here to the distinc-
lem. On the other hand, by observing intermediate state vec-lion Petweerntirectandindirectapproaches to reinforcement
tors we can build arbitrarily accurate models for each agent 1€aming [16]. In the former, one learns a policy that is spe-
which in turn allows us to accurately simulate the full dy- cific to a fixed reward function without learning a model of

namical model. next-state dynamics; in the latter, at possibly greatet, cos
one learns an accurate dynamical model, which can in turn
Theorem 3 LetC be the class of 2-inputNp andoR gates, be used to compute good policies for any reward function.

and one-inpuloT gates. Ther is polynomially learnable ~ For the remainder of this paper, we focus on the model as we
from collective behavior, but there exists a binary outcome formalized it in Definition 2, and leave for future work the
function F such that learning an accurate mapping from investigation of such alternatives.

start statess’® to outcomes”(5°7) without observing inter- )

mediate state data is intractable. 3 Social Strategy Classes

Proof: (Sketch) We first sketch the hardness construction. Before providing our general theory, including the redorcti

Let M be any class of Boolean circuits (that is, with gates in 1om collective learning to I.I.D. learning, we first illuste

C) that is not polynomially learnable in the standard PAC and motivate the definitions so far with some concrete exam-

model: under standard cryptographic assumptions, such aoles_of soual_ strategy classes, some of which we analyze in

class exists. LeD be a hard distribution for PAC learning detail in Section 5.

‘H. Let h € 'H be a Boolean circuit withR inputs, S gates, TR ;

and depthD. To embed the computation lbzylrlin a collgctive 3.1 Crowd Affinity: Mixture Strategies

problem, we letN = R + S and7 = D. We introduce The first class of agent strategies we discuss are meant to

an agent for each of th& inputs toh, whose value after the ~ model settings in which each individual wishes to balance

initial state is set according to an arbitraryp, or, ornoT  their intrinsic personal preferences with a desire to thell

gate. We additionally introduce one agent for every gate the crowd.” We broadly refer to strategies of this type as

in h. If a gateg in h takes as its inputs the outputs of gates crowd affinitystrategies (in contrast to theowd aversion

¢ andg”, then at each time step the agent corresponding to Strategies discussed shortly), and examine a couple afatatu

g computes the corresponding function of the states of the variants.

agents corresponding i andg” at the previous time step. As a motivating example, imagine that there dte

Finally, by convention we always have théh agent be the ~ restaurants, and each week, every member of a population

agent corresponding to the output gatehpfand define the ~ chooses one of the restaurants in which to dine. On the one

output function ag”(5) = sy. The distributionP over ini- hand, each agent has personal preferences over the restau-

tial states of theV agents is identical t& on the R agents rants based on the cuisine, service, ambiance, and so on. On

corresponding to the inputs & and arbitrary (e.g., inde-  the other, each agent has some desire to go to the currently

pendent and uniform) on the remainificagents. “hot” restaurants — that is, where many or most other agents
Despite the fact that this construction introduces a great have been recently. To model this setting Jee the set of

deal of spurious computation (for instance, at the first time K restaurants, and suppose= SV is the population state

step, many or most gates may simply be computing BooleanVvector indicating where each agent dined last week. We can

functions of the random bits assigned to non-input ageints), Summarize the population behavior by the vector or distribu

is clear that if gatey is at depthd in A, then at timed in the tion f € [0,1]%, wheref, is the fraction of agents dining

collective simulation of the agents, the correspondingifige in restaurant in 5. Similarly, we might represent the per-

has exactly the value computed hyunder the inputs té sonal preferences of a specific agent by another distributio

(which are distributed according 10). Because the outcome @ € [0, 1]¥ in whichw, represents the probability this agent

function is the value of the agent corresponding to the dutpu would attend restaurantin the absence of any information
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Figure 1: Sample simulations of the (a) crowd affinity mixture moddd) ¢rowd affinity multiplicative model; (c) agent affinity rdel.
Horizontal axis is population state; vertical axis is siatidn time. See text for details.

about what the population is doing. One natural way for the havior. Broadly speaking, itis such properties we would lik
agent to balance their preferences with the populationbeha a learning algorithm to model and predict from sufficient ob-
ior would be to choose a restaurant according to the mixture servations.

distribution(1 — ) f + aw for some agent-dependent mix-

ture coefficienta. Such models have been studied in the 3.2 Crowd Affinity: Multiplicative Strategies

sociology literature [12] in the context of belief formatio One possible objection to the crowd affinity mixture strate-
We are interested in collective systems in which every gies described above is that each agent can be viewed as

agenti has some unknown preferencésand mixture co-  randomlychoosing whether tentirelyfollow the population
efficienta;, and in each week chooses its next restaurant  distribution (with probabilityl —«) or toentirelyfollow their

according to(1 — o) f* + «;;, which thus probabilisti-  personal preferences (with probability at each time step.
cally yields the next population distributiofi*!. How do A more realistic model might have each agent tregynbine

such systems behave? And how can we learn to model theirthe population behavior with their preferences at every.ste
macroscopic properties from only observed behavior, espe-  Consider, for instance, how an American citizen might
cially when the number of choicds is large? alter their anticipated presidential voting decision owere

in response to recent primary or polling news. If their first

An illustration of the rich collective behavior that can al- hoi f didat ind dent or Libertari
ready be generated from such simple strategies is shown jn°10!C€ Ol candidate — say, an indaependent or Libértarian

Figure 1(a). Here we show a single but typical 1000-step cand|d?te| —t_appdearstO\ﬁa]r time lgql_tbet“unelectlable“ in the
simulation of collective behavior under this model, in whic =~ J€N€ral election due to_their inabiiity to sway large num-
N = 100 and each agent's individual preference veator ~ P€rS of Democratic and Republican voters, a natural and typ-
puts all of its weight on just one of 10 possible actions (rep- ical response is for the citizen to shift their intended vtote

resented as colors); this action was selected indepeydent! vyhichever of the front-runners they most pref_er or Ieas{_dis
random for each aéent All agents haveanalue of just like. In other words, the low popularity of their first choice

0.01, and thus are selecting from the population distritouti causes that choice to be dampened or eradicated; unlike the
99% of the time. Each row shows the population state at a mixture model above, where weights always given to per-

given step, with time increasing down the horizontal axis of song!dprteferences, here there may renmainveight on this
the image. The initial state was chosen uniformly at random. canadiaate.

o : - One natural way of defining a general such class of
It is interesting to note the dramatic difference between o y g a9 %
a = 0 (in which rapid convergence to a common color strategies is as follows. As above, Iete [0,1]", where

is certain) and this small value for; despite the fact that /o IS the fraction of agents dining in restauranin the

almost all agents play the population distribution at every cAurrent states. Similar to the mixture strategies above, let

step, revolving horizontal waves of near-consensus to dif- %t ? [0, 1]* befavecl'E[orof/veigihtsrep[reﬁent(ijngfthetirr:trinsi(l:)
ferent choices are present, with no final convergence in PF€I€reNces of agentover actions. Then detine the prob-

sight. The slight “personalization” of population-only-be ~ ability that agent plays actiona to be f, - wi../Z(f, @),
havior is enough to dramatically change the collective be- where the normalizing factor i8(f, ;) = 3, cs fo - wip-



Thus, in suchmultiplicativecrowd affinity models, the prob-
ability the agent takes an action is always proportionahéo t
product of their preference for it and its current popularit
Despite their similar motivation, the mixture and mul-
tiplicative crowd affinity strategies can lead to dramdtca
different collective behavior. Perhaps the most obviots di
ference is that in the mixture case, if agéritas a strong
preference for action there isalwayssome minimum prob-
ability (o;w; ) they take this action, whereas in the mul-

tiplicative case even a strong preference can be eradicated

from expression by small or zero values for the popularity
Ja-

In Figure 1(b), we again show a single but typical 1000-
step, N 100 simulation for the multiplicative model
in which agent’s individual preference distributionsare

chosen to be random normalized vectors over 10 actions.

The dynamics are now quite different than for the additive
crowd affinity model. In particular, now there is never near-

For a fixed agent, such a strategy can be modeled by a
weight vectori € [0, 1]V, with one weight for eaclagent
in the population rather than each action. We define the prob-
ability that this agent takes actiarif the current global state
is ¥ € SN to be proportional td ;.. _, w;. In this class of
strategies, the strength of the agent’s desire to take the sa
action as agentis determined by how large the weigtt
is. The overall behavior of this agent is then probabilatic
determined by summing over all agents in the fashion above.
In Figure 1(c), we show a single but typical simulation,
again with NV = 100 but now with a much shorter time hori-
zon of 200 steps and a much larger set of 100 actions. All
agents have random distributions as their preferences over
other agents; this model is similar to traditional diffusiy-
namics in a dense, random (weighted) network, and quickly
converges to global consensus.

We leave the analysis of this strategy class to future work,
but remark that in the simple case in whigh= 2, learning

consensus but a gradual dwindling of the colors representedhis class is closely related to the problem of learning per-

in the population — from the initial full diversity down to 3
colors remaining at approximately= 100, until by ¢ = 200
there is a stand-off in the population between red and light
green. Unlike the additive models, colors die out in the popu
lation permanently. There is also clear vertical structae

ceptrons under certain noise models in which the intensity o
the noise increases with proximity to the separator [5, 4] an
seems at least as difficult.

3.5 Incorporating Network Structure

responding to strong conditional preferences of the agentsMany of the social models inspiring this work involve a net-

once the stand-off emerges.

3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd
affinity strategies interowd aversiorstrategies — that is, in
which agents wish to balance or combine their personal pref-
erences with a desire to atifferentlythan the population at
large. This can be accomplished in a variety of simple ways.
For instance, iffis the current distributions over actions in
the population, we can simply define a kind of “inverse” to
the distribution by lettingy, = (1 — f.)/(KX — 1), where
K—1=73%,.5(1— fy)is the normalizing factor, and apply-

ing the strategies above gorather thanf. Now each agent
exhibits a tendency to “avoid the crowd”, moderated as be-
fore by their own preferences.

work structure that dictates or restricts the interactibes
tween agents [18]. It is natural to ask if the strategy claisse
discussed here can be extended to the scenario in which each
agent is influenced only by his neighbors in a given network.
Indeed, it is straightforward to extend each of the strategy
classes introduced in this section to a network setting. For
example, to adapt the crowd affinity and aversion strategy
classes, it suffices to redefirfe for each agent to be the
fraction of agents in the local neighborhood of agestioos-

ing actiona. To adapt the agent affinity and aversion classes,
it is necessary only to require that = 0 for every ageny
outside the local neighborhood of agénBy making these
simple modifications, the learning algorithms discussed in
Section 5 can immediately be applied to settings in which a
network structure is given.

Of course, there is no reason to assume that the entire4 A Reduction to I.1.D. Learning

population is crowd-seeking, or crowd-avoiding; more gen-
erally we would allow there to be both types of individuals

present. Furthermore, we might entertain other transforms

of the population distribution than jugt, above. For in-
stance, we might wish to still consider crowd affinity, but to
first “sharpen” the distribution by replacing eaghwith f2

and normalizing, then applying the models discussed above

to the resulting vector. This has the effect of magnifying th
attraction to the most popular actions. In general our algo-
rithmic results are robust to a wide range of such variations
3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed

Since algorithms in our framework are attempting to learn to
model the dynamics of a factored Markov process in which
each component is known to lie in the cla&sit is natural

to investigate the relationship between learning just glsin
strategy inC and the entire Markovian dynamics. One main
concern might be effects of dynamic instability — that is,
that even small errors in models for each of tiecompo-
nents could be amplified exponentially in the overall popula
tion model.

In this section we show that this can be avoided. More
precisely, we prove that if the component errors are all kmal
compared td /(NT)?, the population model also has small
error. Thus fast rates of learning for individual compo-

above, an agent has personal preferences over actions, andents are polynomially preserved in the resulting popoihati

also reacts to the current population behavior, but onlynin a
aggregate fashion. An alternative class of strategiesnbat

call agent affinitystrategies instead allows agents to prefer to
agree (or disagree) in their choice with specific other agent

model.

To show this, we give a reduction showing that if a class
C of (possibly probabilistic) strategies is polynomiallpate-
able (in a sense that we describe shortly) from 1.1.D. data,



thenC is also polynomially learnable from collective behav-
ior. The key step in the reduction is the introduction of the
experimental distribution, defined below. Intuitivelyetbx-
perimental distribution is meant to capture the distriati
over states that are encountered in the collective settiag o
repeated trials. Polynomial I.I.D. learning on this distri
tion leads to polynomial learning from the collective.

4.1 A Reduction for Deterministic Strategies

In order to illustrate some of the key ideas we use in the
more general reduction, we begin by examining the simple
case in which the number of actiod§ = 2 and and each
strategyc € C is deterministic. We show that  is polyno-
mially learnable in the (distribution-free) PAC model, th@
is polynomially learnable from collective behavior.

In order to exploit the fact that is PAC learnable, it is

4.2 A General Reduction

Multiple analogs of the definition of learnability in the PAC
model have been proposed for distribution learning setting
The probabilistic concept model [15] presents a definition
for learning conditional distributions over binary outcesn
while later work [13] proposes a definition for learning un-
conditional distributions over larger outcome spaces. We
combine the two into a single PAC-style model for learn-
ing conditional distributions over large outcome spacesifr
I.1.D. data as follows.

Definition 5 LetC be a class of probabilistic mappings from
an input¥ € X to anoutputy € ) where) is afinite set. We
say thatC is polynomially learnable if there exists an algo-
rithm A such that for any: € C and any distributionD over
X, if Ais given access to an oracle producing paifs ¢(z))

first necessary to define a single distribution over states onwith = distributed according td), then for any, § > 0, al-

which we would like to learn.

Definition 4 For any initial state distributionP, strategy
vectorc, and sequence lengih, theexperimental distribu-

tion Dp ¢z is the distribution over state vectossobtained
by queryingOexp (¢, P, T) to obtain(s°,--- ,57), choos-
ing ¢ uniformly at random fror{0, - -- , 7 — 1}, and setting

— ¢

S§=S5".

We denote this distribution simply @whenP, ¢, andT’
are clear from context. Given access to the oréglep, we
can sample pair§s, ¢;(3)) wheres'is distributed according
to D using the following procedure:

Ty,

1. QueryOrxp (¢, P,T)to obtain(s°, .-
2. Choose € {0,--- ,T — 1} uniformly at random.
3. Return(s'%, s;'1).

If C is polynomially learnable in the PAC model, then by
definition, with access to the orad®:xp, for anyd, e > 0,
it is possible to learn a modé} such that with probability
1—(d/N),

€

Prspléi(5) # ei(9)] < 5z

in time polynomial inN, T, 1/¢, 1/§, and the VC dimension
of C using the sampling procedure above; the dependenc
on N andT come from the fact that we are requesting a
confidence ofl — (6/N) and an accuracy of/ (T N). We
can learn a set of such strategigesor all agentg at the cost
of an additional factor ofV.

Consider a new sequen¢g’, --- ,57) returned by the
oracleOgxp. By the union bound, with probability — §,
the probability that there exists any ageénand anyt €
{0,---,T — 1}, such that;(s'") # ¢;(5") is less thare.
If this is not the case (i.e., if;(5!) = ¢;(5*) for all i and

gorithm A runs in time polynomial i /¢, 1/6, and dim(C)
and outputs a functioa such that with probability — 4,

Beep | S IPr(e(d) = ) — Pr(e(@) = y)]| <e.
yeY

We could have chosen instead to require that the expected
KL divergence betweenaand¢ be bounded. Using Jensen’s
inequality and Lemma 12.6.1 of Cover and Thomas [6], it
is simple to show that if the expected KL divergence be-
tween two distributions is bounded lay then the expected
L, distance is bounded by 2 In(2)e. Thus any class that is
polynomially learnable under this alternate definitionlgoa
polynomially learnable under ours.

Theorem 6 For any clas<C, if C is polynomially learnable
according to Definition 5, thed is polynomially learnable
from collective behavior.

Proof: This proof is very similar in spirit to the proof of the
reduction for deterministic case. However, several trates
needed to deal with the fact that trajectories are now random
variables, even given a fixed start state. In particulas, iita
longer the case that we can argue that starting at a givein star
state and executing a set of strategies that are “close #0” th
true strategy vector usually yieltlse samédull trajectory we
would have obtained by executing the true strategies of each
agent. Instead, due to the inherent randomness in the-strate

&ies, we must argue that thiéstribution over trajectories is

similar when the estimated strategies are sufficientlyectos
the true strategies.

To make this argument, we begin by introducing the idea
of sampling from a distributio”; using a “filtered” version
of a second distributiod® as follows. First, draw an out-
comew €  according toP,. If Pj(w) < P»(w), output
w. Otherwise, outpub with probability P; (w)/P2(w), and
with probabilityl — P; (w)/P»(w), output an alternate action
drawn according to a third distributiafs, where

t) then the same sequence of states would have been reached

if we had instead started at staté and generated each ad-
ditional states'? by letting st = ¢;(5*~1). This implies that
with probability1 — 6, €(Q y;, Qz) < ¢, andC is polynomi-
ally learnable from collective behavior.

Py (w) — Py(w)
Zw’:P2(w’)<P1(w’) Py (wl) - PQ(WI)
if Pi(w)> Py(w), andPs;(w) = 0 otherwise.

Ps(w) =




It is easy to verify that the output of this filtering algo-
rithm is indeed distributed according 8. Additionally,
notice that the probability that the output is “filtered” is

P (w) (1 - 223

1
) =3l - Pl @
w:Ps(w)>P (w)

As in the deterministic case, we make use of the experi-
mental distributionD as defined in Definition 4. I is poly-
nomially learnable as in Definition 5, then with access to the
oracleOgxp, for anyd, e > 0, it is possible to learn a model
¢; such that with probability — (6/N),

S IPr(ci(s) =s) — Pr(é(5) =)

sES

Esep

|<G) @

in time polynomial inN, T', 1/¢, 1/§, anddim (C) using the
three-step sampling procedure described in the detertiginis
case; as before, the dependence\oandT’ stem from the
fact that we are requesting a confidencé ef (§/N) and an
accuracy that is polynomial in botN andT'. It is possible
learn a set of such strategiésfor all agents at the cost of
an additional factor ofV.

If Equation 2 is satisfied for agentthen for anyr > 1,
the probability of drawing a statéfrom D such that

S = e = 9 2 ()

seS

(3)

iS no more than /.

Consider a new sequen¢g’, --- ,5T) returned by the
oracleOgxp. For eachs'?, consider the actiof.Jrl chosen
by agenti. This action was chosen according to the distribu-
tion ¢;. Suppose instead we would like to choose this action

according to the distributiofy; using a filtered version af;

in which each agent has an intrinsic set of preferences over
actions, but simultaneously would prefer to choose the same
actions chosen by other agents. Similar techniques can be
applied to learn the crowd aversion strategies.

Formally, Ietf be a vector representing the distribution
over current states of the agentsyis the current state, then
for each action, f, = |{i : s; = a}|/N isthe fraction of the
population currently choosing actian (Alternately, if there
is a network structure governing interaction among agents,
fa can be defined as the fraction of nodes in an agent’s local
neighborhood choosing actian) We denote byD7 the dis-
tribution over vectorfinduced by the experimental distri-
bution D over state vector& In other words, the probability
of a vectorf underD/ is the sum over all state vectos
mapping tofof the probability ofs underD.

We focus on the problem of learning the parameters of
the strategy of a single ageinin each of the models. We as-
sume that we are presented with a set of samplesvhere

each instanc€,, € M consists of a pai(fm,am>. Here

fm is the distribution over states of the agents apdis the
next action chosen by agentWe assume that the state dis-

tributions fm of these samples are distributed according to
D'. Given access to the orad®:xp, such samples could
be collected, for example, using a three-step proceduee lik
the one in Section 4.1. We show that each class is polyno-
mially learnable with respect to the distributié® induced

by anydistribution D over states, and so by Theorem 6, also
polynomially learnable from collective behavior.

While it may seem wasteful to gather only one data in-
stance for each agentfrom eachT'-trajectory, we remark
that only small, isolated pieces of the analysis presemted i
this section rely on the assumption that the state distaobat
of the samples are distributed according?é. In practice,
the entire trajectories could be used for learning with ne im

as described above. By Equation 1, the probability that the pact on the structure of the algorithms. Additionally, vehil

action choice ot; is “filtered” (and thus not equal t@f“)
is half the £, distance between;(5*) and¢;(s"). From
Equation 3, we know that for any > 1, with probability at
leastl — 1/, this probability is less than(e/(NT))?, so
the probability of the new action being different frosﬁ+1
is less thanr(e¢/(NT))? + 1/7. This is minimized when
7 =2NT/e, giving us a bound of/(NT).

By the union bound, with probability — 4, the proba-
bility that there exists any agentnd anyt € {1,--- ,T},
such thats;'™! is not equal to the action we get by sampling
¢;(3'") using the filtered version af must then be less than
e. As in the deterministic version, if this iotthe case, then

the analysis here is geared towards learning under theiexper
mental distribution, the algorithms we present can be agdpli
without modification in the no-reset variant of the model in-
troduced in Section 2.3. We briefly discuss how to extend
the analysis to the no-reset variant in Section 5.3.

5.1 Learning Crowd Affinity Mixture Models

In Section 3.1, we introduced the class of crowd affinity mix-
ture model strategies. Such strategies are parameteyzed b
(normalized) weight vectati and parameter € [0, 1]. The
probability that agent chooses action given that the cur-

rent state distribution ifis thenaf, + (1 — a)w,. In this

the same sequence of states would have been reached if weection, we show that this class of strategies is polyndynial

had instead started at staté and generated each additional
states'? by letting st = ¢;(5'~!) filtered usinge;. This im-
plies that with probabilityl — ¢, £(Q;, Qz) < €, andC is
polynomially learnable from collective behavior. |

5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learn-
ing some of the specific social strategy classes introduced i
Section 3. We focus on the two crowd affinity model classes.

Recall that these classes are designed to model the scenario

learnable from collective behavior and sketch an algorithm
for learning estimates of the parameterand.

LetI(x) be the indicator function that is 14fis true and
0 otherwise. From the definition of the model it is easy to
see that for anyn such thatZ,,, € M, for any actioms € S,
El(an = a)] = af, + (1 — a)w,, Where the expectation is
over the randomness in the agent’s strategy. By linearity of
expectation,

Z Ian, = a)]

E[
m: Ly, €EM

—0 Y fat (1 - aJuwa M| . ()

m: Ly, €EM



Standard results from uniform convergence theory say We estimate this weight using
that we can approximate the left-hand side of this equation I o N
arbitrarily well given a sufficiently large data sét. Replac- 0. — Ymzyemlam=0a) =431, e fma N

ing the expectation with this approximation in Equation 4 “ (1—-a)M
yields a single equation with two unknown variablesand
w,. To solve for these variables, we must constrysam of
equations with two unknown variables. We do so by splitting
the data into instances whefg, , is “high” and instances Lemma 7 Leta* = argmax, g Z,, and leta be calculated

The following lemma shows that given sufficient data,
the error in these estimates is small whgn is large.

where it is “low.” as in Equation 5 withu = «*. For eacha € S, letw, be
Specifically, letM = [M]. For convenience of notation,  calculated as in Equation 7. For sufficiently largd, for

assume without loss of generality thif is even; if M is anyé$ > 0, with probabilityl — §

odd, simply discard an instance at random. Defiig’

to be the set containing th&//2 instances inM with the la = é| < (1/Za=)y/In((4 4 2K)/8)/M ,

lowest values off,, .. Similarly, defineM"#9" to be the

set containing thé//2 instances with the highest values of and for all actionsz,

fm.a- ReplacingM with Mlew and M9 respectively in lwg — Wa|
Equation 4 gives us two linear equations with two unknowns. .
As long as these two equations are linearly independent, we < (1= 8)Zs/V2 +2)y/In((4 1 2K)/9) .
can solve the system of equations éorgiving us Zo+(1—a)*vM — (1 — a)y/In((4 + 2K)/9)
‘ N - The proof of this lemma, which is in the appendix, relies
o— B [Zm:fﬁMWI(am_a) Yomz, emigwllam=a) heavily on the following technical lemma for bounding the

Yot ephion fmia = Doz, epiow fmoa error of estimated ratios, which is used frequently thraugh
me e the remainder of the paper.
We can approximate from data in the natural way, using
Lemma 8 For any positiveu, , v, v, k, and e such that

Yoz memtiollam=a)=3 0 7 e powl(am=a) ek < v, if lu—a| <eandlv — 0| < ke, then

a= . (5)
2oz emtion fma = Zm:Imer;’w fm.a u al _ e(v+4uk)
By Hoeffding’s inequality and the union bound, for any v 0| v(v—ek)
0 > 0, with probabilityl — §

R In(4/6)M Now that we have bounds on the error of the estimated
lo—af < D S 7 parameters, we can bound the expedigdlistance between
m:L,eMiioh Jma m:Lyp e Mipw Jmsa the estimated model and the real model.

= (1/Za)VIn(4/5)/M, (6) Lemma 9 For sufficiently largeM,
where . .
1 1 EfNDfZ|(O‘fa+(1_a)wa)_(afa+(1_a)wa)|
[ - acS
Ze=3rm 2. dme—gm 2 fma
L EMPIIN m:Z,, EMLow \/111((4 =+ 2K>/5)
N ZoNV M

The quantityZ, measures the difference between the a
mean value off,, , among instances with “high” values of n {
min

=

(Za /\f + 2) In((4 + 2K)/9)
fm.o @nd the mean value gffn among instances with “low” . _ \/—’
values. While this quantity is data- dependent standaid un Zar(1 = In((4 +2K)/9)
form convergence theory tells us that it is stable once thee da 2(1 — a)}
set is large. From Equation 6, we know that if there is an ac-
tion a for which this difference is sufficiently high, then it |n this proof of this lemma, which appears in the appendix,
is possible to obtain an accurate estimater@fiven enough the quantity
data. If, on the other hand, no suetexists, it follows that

there is very little variance in the population distributiover > lafa+ (1= a)wa) = (Gfa+ (1= d)iig))|

the sample. We argue below that it is not necessary to learn wes

« in order to mimic the behavior of an agenif this is the ) ) L

case. is boundeduniformlyfor all f using the error bounds. The

For now, assume tha, is sufficiently large for at least bound on the expectation follows immediately.

of « to obtain estimates of the weights for each action. From Za- i Zero or very close to zero. We present a light sketch

Equation 4, it is clear that for any, of the argument here; more details appear in the appendix.
Let n, andp, be the true median and mean of the dis-

E[X 7z emllam=0a) —aX, 7 i fma tribution from which the random variablefs, ., are drawn.
wa — m =m '

(1-a)M : Let fhis" be the mean value of the distribution ovgy, ,



conditioned onf,, . > 7n.. Let 9" pe the empirical
average off,, , conditioned onf,, , > n,. Finally, let
fhigh — (2 /M) >z, enhion fm.a b€ the empirical av-
erage off,, , conditioned onf,, , being greater than the
empiricalmedian. We can calculaigs” from data.

We can apply standard arguments from uniform conver-
gence theory to show thgf*9" is close tof*9", and in turn
that fi9" is close tof9". Similar statements can be made
for the analogous quantitigd®, fl°*, andfl°*. By noting
thatZ, = flish — flow this implies that ifZ, is small, then
the probability that a random value @f, , is far from the
meany, is small. When this is the case, it is not necessary
to estimatex directly. Instead, we seét = 0 and

1
u?a:M Z I(am =a) .
m:Ly, €M

Applying Hoeffding’s inequality again, it is easy to show
that for eachu, 1w, is very close tovu, + (1 — a)w,, and
from here it can be argued that tliie distance between the
estimated model and the real model is small.

Thus for any distributiorD over state vectors, regardless
of the corresponding value d¢f,-, it is possible to build an
accurate model for the strategy of ageint polynomial time.
By Theorem 6, this implies that the class is polynomially
learnable from collective behavior.

Theorem 10 The class of crowd affinity mixture model
strategies is polynomially learnable from collective beha
ior.

5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.2, we introduced the crowd affinity multiplica-
tive model. In this model, strategies are parameterizeg onl
by a weight vectord. The probability that agentchooses

actiona is simply fowa /> 2y c s fows.
Although the motivation for this model is similar to that

for the mixture model, the dynamics of the system are quite

different (see the simulations and discussion in Sectign 3)
and a very different algorithm is necessary to learn individ
ual strategies. In this section, we show that this classlis po
nomially learnable from collective behavior, and sketch th
corresponding learning algorithm. The algorithm we présen
is based on a simple but powerful observation. In partigular
consider the following random variable:

{(1)/ fmia

Suppose that for ath such thatZ,,, € M, itis the case that
fm.a > 0. Then by the definition of the strategy class and
linearity of expectation,

Zx?]—

mZInL GM

if fi,e > 0anda,, =a,
otherwise.

m

Xa =

fm,awa

=
m:L;eM fm,a Zses fm,sws

E

terms. The firstw,, is precisely the value we would like

to calculate. The second term is something that depends on
the set of instanced/, but does notdepend on actiom.

This leads to the key observation at the core of our algorithm
Specifically, if we have a second actibsuch thatf,, , > 0

for all m such thatZ,,, € M, then

% _ E [Zm:lme/\/( X:ln} )
E [Zm:ImEM X;)n}

Although we do not know the values of these expec-
tations, we can approximate them arbitrarily well given
enough data. Since we have assumed (so far)fthat > 0
for all m € M, and we know thaf,,, , represents a fraction
of the population, it must be the case tifat, > 1/N and
X7 € [0,N] for all m. By a standard application of Ho-
effding’s inequality and the union bound, we see that for any
0 > 0, with probability1 — ¢,

>ooxr-E|l Y] XT]

m:L,, €M m:L,, €M

Wp

N1n(2/0)

o ®

This leads to the following lemma. We note that the role of
5 in this lemma may appear somewhat mysterious. It comes
the fact that we are bounding the error of a ratio of two terms;
an application of Lemma 8 using the bound in Equation 8
gives us a factor of,,» + x». in the numerator and a factor

of xs,q in the denominator. This is problematic only when
Xa,b 1S significantly larger than, .. The full proof appears

in the appendix.

Lemma 11 Suppose thaf,, , > 0 and f,,, , > 0 for all m
such thatZ,, € M. Then for anyy > 0, with probability
1—46,foranyg > 0, if xap < BXb,e aNdxp,q > 1, then if
M| > Nln(2/6)/2, then

Zm:ImEM XZln (1 + ﬁ) Nln(2/6)
Zm:ImEM X;)n N \/2|M| - \/N 111(2/5) .

If we are fortunate enough to have a sufficient number of
data instances for whicf,, , > 0 for all « € S, then this
lemma supplies us with a way of approximating the ratios
between all pairs of weights and subsequently approximatin
the weights themselves. In general, however, this may not be
the case. Luckily, it is possible to estimate the ratio of the
weights of each pair of actionsandb that are used together
frequently by the population using only those data instance
in which at least one agentis choosing each. Formally, define

Ma,b = {Im eM: fm,a > Oafm,b > O} .

Lemma 11 tells us that i, ; is sufficiently large, and there
is at least one instang,, € M, ; for whicha,, = b, then
we can approximate the ratio betweepn andw, well.

What if one of these assumptions does not hold? If we
are not able to collect sufficiently many instances in which
fm.a > 0andf,,, > 0, then standard uniform convergence
results can be used to show that it is very unlikely that we
see a new instance for whigh > 0 and f, > 0. This idea

Wq

Wy

where the expectation is over the randomness in the agent’ss formalized in the following lemma, the proof of which is

strategy. Notice that this expression is the product of two

in the appendix.



Lemma 12 For any M < |M], for anyd € (0,1), with Theorem 13 The class of crowd affinity multiplicative
probability 1 — 4, model strategies is polynomially learnable from colleetiv

Pry 30,0 €S8 : fo>0,f,>0,[May| < M] behavior.
) 5.3 Learning Without Resets

K[ M In(K2/(26)) . . . .

< 5 M + W Although the analyses in the previous subsections are tai-
lored to learnability in the sense of Definition 2, they can

Similarly, if vo» = xp.a = 0, then a standard uniform easily be adapted to hold in the alternate setting in which

convergence argument can be used to show that it is unlikelyth® learner has access only to a single, unbroken trajectory

that agent would ever select actiom or b when f,,, » > 0 of states. In this alternate model, the learning algorithom o
andf,, , > 0. We will see that in this case, itis notimportant S€rves a polynomially long prefix of a trajectory of states fo
to learn the ratio between these two weights. training, and then must produce a generative model which

Using these observations, we can accurately model the'®Sults in a distribution over the values of the subseqiient
behavior of agent The model consists of two phases. First, States close to the true distribution.

as a preprocessing step, we calculate a quantity When learning individual crowd affinity models for each
agent in this setting, we again assume that we are presented
Xa,b = Z Xa' with a set of samples\1, where each instancg,, € M
ML €Mt consists of a paif f,,, a.,). However, instead of assuming

for each paira,b € S. Then, each time we are presented that the state distributiong,, are distributed according to

with a statef, we calculate a set of weights for all actions D7, we now assume that the state and action pairs represent

with f, > 0 on the fly. a single trajectory. As previously noted, the majority af th
For a fixedf, letS’ be the set of actions € S such that analysis for both the mixture and multiplicative varianfs o

f. > 0. By Lemma 12, if the data set is sufficiently large, the c_rowd _affinity mo_del_ do_es not depend on th_e particular

then we know that with high probability, it is the case that Way in which state distribution vectors are distributedd an

foralla,b € S', | Ma| > M for some threshold/. thus carries over to this setting as is. Here we briefly discus
Now, leta* = argmgxaes, b :b e S Xab > Xvall- the few modifications that are necessary.
Intuitively, if there is sufficient datay* should be the action The only change required in the analysis of the crowd

in &’ with the highest weight, or have a weight arbitrarily affinity mixture model relates to handling the case in which
close to the highest. Thus for anye S, Lemma 11 can  Za is small for alla. Previously we argued that when this is

be used to bound our estimatewf /w,- with a value of3 the case, the ollis'gribution must be concentrated so that for
arbitrarily close to 1. Noting that all a, f, falls within a very small range with high probability.
Thus it is not necessary to estimate the parametrectly,
Wa = Wa /Wa and we can instead learn a single probability for each action
DisestWs  Dses Ws/War that is used regardless gf A similar argument holds in
we approximate theelative weight of actiona € S’ with the no-reset variant. If it is the case that is small for all
respect to the other actionsd using a, then it must be the case that for eachthe value off,
R Xa.a*/Xa*.a has fallen into the same small range for the entire observed
Wq = 5 T trajectory. A sta_ndard uniform convergence argument says
ses’ Xs,ax/ Xa*,s that the probability thaf, suddenly changes dramatically is
and simply letio, = 0 foranya ¢ S'. ApplyingLemma8,  very small, and thus again it is sufficient to learn a single
we find that for alla € S', with high probability, probability for each action that is used regardlesg.of
Wq . To adapt the analysis of the crowd affinity multiplicative
‘m — Wa model, it is first necessary to replace Lemma 12. Recall that

the purpose of this lemma was to show that when the data
(14 B)K+/NIn(2K?/d) ) set does not contain sufficient samples in whigh> 0 and
V2M — (14 B)K+/NIn(2K2/0) ’ f» > 0 for a pair of actions andb, the chance of observing

where) is the lower bound ohM, ;| foralla,b € ', and & New state dis_tributiom_'with fa > 0andf, > 0is small.
3is close to 1. With this bound in place, it is straightforward This argument is actually much more straightforward in the

to show that we can apply Lemma 8 once more to bound the"0-Téset case. By the definition of the model, it is easy to
expected’, see that iff, > 0 for some actior at timet in a trajectory,

then it must be the case thAt > 0 at all previous points
E in the trajectory. Thus iff, > 0 on any test instance, then
f~Df Z
a€eS

wafa uA)a.fa

SeesWsfs  DsesWsfs||’ fa must have been non-negative everytraining instance,

and we do not have to worry about the case in which there is
and that the bound goes to 0 at a ratelgft /+/M) as the insufficient data to compare the weights of a particular pair
thresholdM grows. More details are given in the appendix. of actions.

Since itis possible to build an accurate model of the strat- One additional, possibly more subtle, modification is
egy of agent in polynomial time under any distributiob® necessary in the analysis of the multiplicative model to-han
over state vectors, we can again apply Theorem 6 to see thatle the case in whicly, » = xs., = 0 for all “active” pairs
this class is polynomially learnable from collective belbav of actionsa,b € &’. This can happen only if agenthas
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A Proofs from Section 5.1

A.1 Proof of Lemma 8
For the first direction,
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A.2 Proof of Lemma 7

We bound the error of these estimations in two parts. First,

since from Equation 6 we know that for afy > 0, with
probabilityl — ¢y,

Z fm,a -« Z fm,a

m:Z,, €M m: Ly, €M
1 4/51
= 7 Z fma_ \/Mln(4/§1
ar m:Ly, €M
and
1
(=@M — (1 - ) M| < 5/ T(#/5y)

we have by Lemma 8 that for sufficiently largé

dZm:ImeM fm,a . aZm:ImeM fm,a
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(1/Za)/MIn(4/61) (1 = &)M + 6,7 cpp frnna)
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Now, by Hoeffding’s inequality and the union bound, for
anyd, > 0, with probabilityl — 02, for all a,

Z I(am a)—El Z I(am
m:Ly, €M

m:Z,, EM
< VMIn(2K/8)/2 .

Settingd, = Kd,/2, we can again apply Lemma 8 and see
that for sufficiently large\/

Zm:ImGM I(am = a) E [Zm:ImGM I(a’m - 0/)}
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Settingd; = §/(1+ K/2) and applying the union bound
yields the lemma.

A.3 Proofof Lemma9
As long asM is sulfficiently large, for any fixegﬂ
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Notice that this holds uniformly for alf, so the same
bound holds when we take an expectation gfer

A.4 Handling the case whereZ, - is small

Suppose that for an action Z, < €. Letn, andu, be
the true median and mean respectively of the distribution
from which the random variable, ., are drawn. Letf 9"

be the mean value of the distribution oy , conditioned

oN fm.a > 74, and similarly letf°v be the mean value
conditioned onfy, o < 7a, SOp, = (fL0v + fhish) /2.2

Let fh9" pe the empirical average ¢f, ., conditioned on
fm.a > na, and flov be the empirical average of,, .
conditioned onf,, , < 7n,. (Note that we cannot actu-
ally compute f?9" and flev sincen, is unknown.) Fi-

tAssume for now that it is never the case thiat, = 7,. This
simplifies the explanation, although everything still ol f,, .
can ben,.



nally, let fish = (2/M) Yoz, ephioh fm,a @nd flow — Sincefh9" is an average of points which are all higher than
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this implies that ifZ, is small, then the probability that a < ) +T).

random value off,,  is far fromm, is small. This in turn

implies a smallZ, distance between our estimated model dRAeca_II that WhenZI“ 1S sinall for allq, Xve seta = 0
and the real model for each agent. andwe = 3.7, em Ham = a). Letw, = apuq + (1 -

To bound the difference betwegfi}’/" and f9" it is ajwa. Notice thatE[w.] = w.. Applying Hoeffding’s in-
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[0, 1], while 79" is an empirical average of the same points,
plus or minus up to,/In(2/85)M/2 points. In the worst B Proofs from Section 5.2

case, f19h either includes an additional/In(2/83)M /2 B1 ProofofLemma 12
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First note that we can rewrite the expression on the left-
hand side of the inequality above as

wifa  dafa
aes’ Dses Wofs  Dges Wsfs
where for alla, w), = w./(} .5 ws). We know from

Equation 9 that W|th high proba€b|llty (over the data set and
the choice off), foralla € &,
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Thus, using the fact thagtr g, w. fs > 1/N, we can apply
Lemma 8 once again to get that
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