
Cryptographic Limitations on Learning

Boolean Formulae and Finite Automata

Michael Kearns�

AT&T Bell Laboratories

600 Mountain Avenue, Room 2A-423

Murray Hill, New Jersey 07974

Leslie Valianty

Aiken Computation Laboratory

Harvard University

Cambridge, Massachussetts 02138

Abstract

In this paper we prove the intractability of learning several classes of Boolean functions in

the distribution-free model (also called the Probably Approximately Correct or PAC model)

of learning from examples. These results are representation independent, in that they hold

regardless of the syntactic form in which the learner chooses to represent its hypotheses.

Our methods reduce the problems of cracking a number of well-known public-key cryptosys-

tems to the learning problems. We prove that a polynomial-time learning algorithm for Boolean

formulae, deterministic �nite automata or constant-depth threshold circuits would have dramatic

consequences for cryptography and number theory: in particular, such an algorithm could be

used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to

3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is

only required to obtain a slight advantage in prediction over random guessing. The techniques

used demonstrate an interesting duality between learning and cryptography.

We also apply our results to obtain strong intractability results for approximating a gener-

alization of graph coloring.

�This research was conducted while the author was at Harvard University and supported by an A.T.& T. Bell

Laboratories scholarship.
ySupported by grants ONR-N00014-85-K-0445, NSF-DCR-8606366 and NSF-CCR-89-02500, DAAL03-86-K-0171,

DARPA AFOSR 89-0506, and by SERC.

1

1 Introduction

In this paper we prove representation-independent hardness results for the distribution-free learning

of several representation classes whose e�cient learnability has thus far been unresolved 1. Infor-

mally, a representation-independent hardness result states that learning is di�cult regardless of

the form in which a learning algorithm represents its hypothesis, provided this hypothesis meets

the quite reasonable constraint of being evaluatable in polynomial time (that is, having an equiv-

alent polynomial-size Boolean circuit). In contrast, a representation-based hardness result states

only that learning is di�cult when the hypothesis is constrained to meet some (usually strong)

structural or syntactic restrictions.

We prove representation-independent hardness results for the distribution-free learning of sev-

eral simple representation classes, including polynomial-size Boolean formulae, acyclic deterministic

�nite automata, and constant-depth threshold circuits (which may be regarded as a form of simpli-

�ed neural networks). These hardness results are based on assumptions regarding the intractability

of speci�c number-theoretic problems of interest in cryptography, namely factoring Blum integers,

inverting the RSA function, and recognizing quadratic residues. Thus, a polynomial-time learn-

ing algorithm in the distribution-free model for any of the named representation classes using any

polynomial-time evaluatable hypothesis representation would immediately yield a polynomial-time

algorithm for all of these cryptographic problems, which have de�ed e�cient solution for decades,

and are widely believed to be intractable.

For practical purposes, the e�cient learnability of a representation class must be considered

unresolved until a polynomial-time learning algorithm is discovered or until a representation-

independent hardness result is proved. This is because a representation-based result stating that

the class C is not e�ciently learnable by the class H (modulo some complexity-theoretic assump-

tion such as RP 6= NP) still leaves open the possibility that C is e�ciently learnable by a di�erent

hypothesis class H 0. Indeed, this possibility has been realized for several natural target classes:

for instance, it is known that for any �xed constant natural number k � 2, the problem of learn-

ing 2-term disjunctive normal form (DNF) formulae in the distribution-free model is NP-hard if

the learning algorithm is restricted to represent its hypothesis in 2-term DNF form, but there is

1The distribution-free model of learning that we use and will de�ne shortly is often also referred to as the probably

approximately correct or PAC model of learning.

2

a polynomial-time learning algorithm if we relax this restriction [32]. A similar result holds for

Boolean threshold functions [32].

The only previous representation-independent hardness results for distribution-free learning

follow from the elegant work of Goldreich, Goldwasser and Micali [22] on constructing random

functions. Their functions have many properties stronger than those mentioned here, but for our

purposes we may state their result formally as follows: let CKT
p(n)
n denote the class of Boolean

circuits over n inputs with at most p(n) gates, and let CKTp(n) = [n�1CKT
p(n)
n . Then it is shown

by Goldreich et al. [22] that if there exists a one-way function, then for some polynomial p(n),

CKT
p(n) is not learnable in polynomial time (by any polynomial-time evaluatable representation

class). Pitt and Warmuth [33] then used this result to construct other hard-to-learn representation

classes. For de�nitions and a discussion of one-way functions we refer the reader to Yao [41], Blum

and Micali [13], Levin [29], and Goldreich et al. [22].

Note that in any reasonable model of learning, we intuitively do not expect to �nd polynomial-

time learning algorithms for classes of representations that are not polynomial-time evaluatable,

since a learning algorithm may not even have enough time to write down a good hypothesis. More

formally, Schapire [38] has shown that any representation class that is not evaluatable in polynomial

time cannot be learned in polynomial time in the distribution-free model.

Thus, we may informally interpret the result of Goldreich, Goldwasser and Micali as stating

that not everything with a small (polynomial-size) circuit representation is e�ciently learnable

(assuming there is a one-way function). However, there is a large gap in computational power

between the class of polynomial-size circuits and the classes that have been the subject of intense

scrutiny within the computational learning theory community of late (e.g., DNF, decision trees,

Boolean formulae, classes based on �nite automata, restricted classes of circuits). In this paper

we prove hardness results similar to those of Goldreich, Goldwasser and Micali but for much less

powerful representation classes, thus clarifying the limits of e�cient learnability.

The intuition behind the approach taken to obtain these results is contained in the following

analogy. Consider a computer system with two users, Alice and Bob. Alice and Bob wish to

communicate via an insecure channel, and it is assumed that Eve the eavesdropper is listening to

this channel. We make no assumptions about Eve's behavior other than a polynomial bound on her

computing resources. In this cryptographic setting, Alice and Bob wish to communicate privately

3

in spite of Eve's nosey presence.

A classic solution to Alice and Bob's problem is the one-time pad. Here Alice and Bob would

physically meet in a secure room (away from Eve) and compile a large common table of random

bits. Then after separating, Bob, to send a bit b to Alice, chooses the next random bit c from

the common list and sends the bit b� c to Alice. It is easily veri�ed that if the bit c is uniformly

distributed then the encoded bit b� c is also uniformly distributed, regardless of the value of the

cleartext message bit b. Thus Eve, regardless of computation time, is provably unable to gain any

information about the cleartext messages from listening to the channel between Alice and Bob.

Alice, however, also knows the random bit c, and so may decode by computing (b� c)� c = b.

There are some obvious practical problems with the one-time pad. Foremost among these is

the need for Alice and Bob to meet in person and compile the table of random bits; in a network of

thousands of computers, having every pair of users meet clearly defeats the point of using computers

in the �rst place. In response to complaints such as these and also more subtle security concerns,

the �eld of public-key cryptography was created by Di�e and Hellman [18].

Public-key cryptography solves the problem of Alice and Bob via the use of trapdoor functions.

Informally, a trapdoor function is one that can be computed in polynomial time (i.e., it is easy to

compute f(x) on input x) but cannot be inverted in polynomial time (i.e., it is hard to compute x

on input f(x)) | unless one is the \creator" of the function, in which case one possesses a piece of

\trapdoor" information that makes inversion possible in polynomial time. Now rather than meeting

with Bob in person, Alice \creates" a trapdoor function f and publishes a program for computing

f (which reveals no information about f�1) in a directory that is available to everyone | Bob and

Eve included. To send the message x to Alice, Bob simply computes f(x) and sends it to Alice.

Eve, seeing only f(x) on the channel and not possessing the trapdoor, is unable to recover the

message x in polynomial time. Alice, being the creator of f and thus having the trapdoor, can

e�ciently invert Bob's ciphertext and recover x.

Our approach is based on viewing Eve as a learning algorithm. Note that since a program for

f is available to Eve, she may create as many pairs of the form (f(x); x) that she likes simply

by choosing x and then computing f(x). If we set y = f(x), we see that such pairs have the

form (y; f�1(y)), and can thus be regarded as \examples" of the inverse function f�1. Thus, from

the learning perspective, public-key cryptography assumes the existence of functions that are not

4

learnable from examples, since if Eve could learn f�1 e�ciently from examples of its input-output

behavior, she could then decode messages sent from Bob to Alice! Furthermore, note that the

inverse function f�1 is \simple" in the sense that it does have a small circuit (determined by the

trapdoor, which Alice has access to and uses for decoding); thus from an information-theoretic

standpoint the learning problem is \fair", as opposed to the one-time pad, where there is no small

circuit underlying the communication between Alice and Bob, just a large random bit table.

Thus we see that recent developments in the theory of cryptography provide us with simple

functions that are di�cult to learn. Our approach in this paper is based on re�ning the functions

provided by cryptography in an attempt to �nd the simplest functions that are di�cult to learn.

The outline of the paper is as follows: in Section 2, we provide de�nitions for the distribution-free

model of learning, adapted fromValiant [39]. Then in Section 3, we discuss previous hardness results

for learning, both of the representation-based and representation-independent type. Section 4 gives

the needed de�nitions and background from cryptography.

In Section 5 we develop simple representation classes based on cryptographic functions and

prove that learning these classes is as di�cult as breaking the associated cryptosystems; in Section 6

these results are applied to prove the di�culty of learning Boolean formulae, �nite automata, and

threshold circuits. In Section 7 we give a generalized method for proving hardness results for

learning based on any trapdoor function. Section 8 applies our learning results to give strong

hardness results for approximating the optimal solution for various combinatorial optimization

problems, including a generalization of graph coloring.

2 De�nitions for Distribution-free Learning

2.1 Representing subsets of a domain

Concept classes and their representation. Let X be a set called a domain (also sometimes

referred to as the instance space). We think of X as containing encodings of all objects of

interest to us in our learning problem. For example, each instance in X may represent a

di�erent object in a particular room, with discrete attributes representing properties such as

color, and continuous values representing properties such as height. The goal of a learning

algorithm is to infer some unknown subset of X , called a concept, chosen from a known

5

concept class.

For computational purposes we always need a way of naming or representing concepts. Thus,

we formally de�ne a representation class over X to be a pair (�; C), where C � f0; 1g� and �

is a mapping � : C ! 2X (here 2X denotes the power set of X). In the case that the domain

X has real-valued components, we sometimes assume C � (f0; 1g[R)�, where R is the set of

real numbers. For c 2 C, �(c) is called a concept over X ; the image space �(C) is the concept

class that is represented by (�; C). For c 2 C, we de�ne pos(c) = �(c) (the positive examples

of c) and neg(c) = X � �(c) (the negative examples of c). The domain X and the mapping

� will usually be clear from the context, and we will simply refer to the representation class

C. We will sometimes use the notation c(x) to denote the value of the characteristic function

of �(c) on the domain point x; thus x 2 pos(c) (x 2 neg(c), respectively) and c(x) = 1

(c(x) = 0, respectively) are used interchangeably. We assume that domain points x 2 X and

representations c 2 C are e�ciently encoded using any of the standard schemes (see Garey

and Johnson [20]), and denote by jxj and jcj the length of these encodings measured in bits

(or in the case of real-valued domains, some other reasonable measure of length that may

depend on the model of arithmetic computation used; see Aho, Hopcroft and Ullman [2]).

Parameterized representation classes. In this paper we study parameterized classes of rep-

resentations. Here we have a strati�ed domain X = [n�1Xn and representation class

C = [n�1Cn. The parameter n can be regarded as an appropriate measure of the com-

plexity of concepts in �(C) (such as the number of domain attributes), and we assume that

for a representation c 2 Cn we have pos(c) � Xn and neg(c) = Xn � pos(c). For example,

Xn may be the set f0; 1gn, and Cn the class of all Boolean formulae over n variables whose

length is at most n2. Then for c 2 Cn, �(c) would contain all satisfying assignments of the

formula c.

E�cient evaluation of representations. In general, we will be primarily concerned with

learning algorithms that are computationally e�cient. In order to prevent this demand from

being vacuous, we need to insure that the hypotheses output by a learning algorithm can be

e�ciently evaluated as well. Thus if C is a representation class over X , we say that C is

polynomially evaluatable if there is a polynomial-time evaluation algorithm A that on input a

6

representation c 2 C and a domain point x 2 X outputs c(x). Note that if a class C is polyno-

mially evaluatable, then each representation c 2 C has an equivalent polynomial-size circuit,

obtained by hard-wiring the representation input of A to be c, and converting the result-

ing polynomial-time algorithm (now accepting the single input x 2 X) to a polynomial-size

circuit using standard techniques. All representation classes considered here are polynomi-

ally evaluatable. It is worth mentioning at this point that Schapire [38] has shown that if

a representation class is not polynomially evaluatable, then it is not e�ciently learnable in

our model. Thus, perhaps not surprisingly we see that classes that are not polynomially

evaluatable are not only \unfair" as learning problems but also intractable.

Samples. A labeled example from a domain X is a pair < x; b >, where x 2 X and b 2 f0; 1g.

A labeled sample S = < x1; b1 >; : : : ; < xm; bm > from X is a �nite sequence of labeled

examples from X . If C is a representation class, a labeled example of c 2 C is a labeled

example < x; c(x) >, where x 2 X . A labeled sample of c is a labeled sample S where each

example of S is a labeled example of c. In the case where all labels bi or c(xi) are 1 (0,

respectively), we may omit the labels and simply write S as a list of points x1; : : : ; xm, and

we call the sample a positive (negative, respectively) sample.

We say that a representation h and an example < x; b > agree if h(x) = b; otherwise they

disagree. We say that a representation h and a sample S are consistent if h agrees with each

example in S; otherwise they are inconsistent.

2.2 Distribution-free learning

Distributions on examples. On any given execution, a learning algorithm for a representation

class C will be receiving examples of a single distinguished representation c 2 C. We call

this distinguished c the target representation. Examples of the target representation are

generated probabilistically as follows: let D+
c be a �xed but arbitrary probability distribution

over pos(c), and let D�
c be a �xed but arbitrary probability distribution over neg(c). We

call these distributions the target distributions. When learning c, learning algorithms will

be given access to two oracles, POS and NEG , that behave as follows: oracle POS (NEG ,

respectively) returns in unit time a positive (negative, respectively) example of the target

representation, drawn randomly according to the target distribution D+
c (D�

c , respectively).

7

The distribution-free model is sometimes de�ned in the literature with a single target dis-

tribution over the entire domain; the learning algorithm is then given labeled examples of

the target concept drawn from this distribution. We choose to explicitly separate the dis-

tributions over the positive and negative examples to facilitate the study of algorithms that

learn using only positive examples or only negative examples. These models, however, are

equivalent with respect to polynomial-time computation, in the sense that any class learnable

in polynomial time in one model is learnable in polynomial time in the other model, as shown

by Haussler et al. [24].

Given a �xed target representation c 2 C, and given �xed target distributions D+
c and D�

c ,

there is a natural measure of the error (with respect to c, D+
c and D�

c) of a representation

h from a representation class H . We de�ne e+c (h) = D+
c (neg(h)) (i.e., the weight of the set

neg(h) under the probability distributionD+
c) and e

�
c (h) = D�

c (pos(h)) (the weight of the set

pos(h) under the probability distributionD�
c). Note that e

+
c (h) (respectively, e

�
c (h)) is simply

the probability that a random positive (respectively, negative) example of c is identi�ed as

negative (respectively, positive) by h. If both e+c (h) < � and e�c (h) < �, then we say that h

is an �-good hypothesis (with respect to c, D+
c and D�

c); otherwise, h is �-bad. We de�ne the

accuracy of h to be the value min(1� e+c (h); 1� e�c (h)).

It is worth noting that our de�nitions so far assume that the hypothesis h is deterministic.

However, this need not be the case; for example, we can instead de�ne e+c (h) to be the

probability that h classi�es a random positive example of c as negative, where the probability

is now over both the random example and the coin ips of h. All of the results presented

here hold under these generalized de�nitions.

When the target representation c is clear from the context, we will drop the subscript c and

simply write D+; D�; e+ and e�.

In the de�nitions that follow, we will demand that a learning algorithm produce with high

probability an �-good hypothesis regardless of the target representation and target distribu-

tions. While at �rst this may seem like a strong criterion, note that the error of the hypothesis

output is always measured with respect to the same target distributions on which the algo-

rithm was trained. Thus, while it is true that certain examples of the target representation

8

may be extremely unlikely to be generated in the training process, these same examples in-

tuitively may be \ignored" by the hypothesis of the learning algorithm, since they contribute

a negligible amount of error.

Learnability. Let C and H be representation classes over X . Then C is learnable from examples

by H if there is a (probabilistic) algorithm A with access to POS and NEG , taking inputs

�; �, with the property that for any target representation c 2 C, for any target distributions

D+ over pos(c) and D� over neg(c), and for any inputs 0 < �; � < 1, algorithm A halts and

outputs a representation hA 2 H that with probability greater than 1�� satis�es e+(hA) < �

and e�(hA) < �.

We call C the target class and H the hypothesis class; the output hA 2 H is called the

hypothesis of A. A will be called a learning algorithm for C. If C and H are polynomially

evaluatable, and A runs in time polynomial in 1=�; 1=� and jcj then we say that C is polyno-

mially learnable from examples by H ; if C is parameterized we also allow the running time of

A to have polynomial dependence on the parameter n. We assume that A is given the values

of n and jcj as input; the latter assumption is without loss of generality [24].

We will drop the phrase \from examples" and simply say that C is learnable by H , and

C is polynomially learnable by H . We say C is polynomially learnable to mean that C is

polynomially learnable by H for some polynomially evaluatable H . We will sometimes call �

the accuracy parameter and � the con�dence parameter.

Thus, we ask that for any target representation and any target distributions, a learning

algorithm�nds an �-good hypothesis with probability at least 1��. A primary goal of research

in this model is to discover which representation classes C are polynomially learnable.

Note that in the above de�nitions, we allow the learning algorithm to output hypotheses

from some class H that is possibly di�erent from C, as opposed to the natural choice C =

H . While in general we assume that H is at least as powerful as C (that is, C � H),

we will see that in some cases for computational reasons we may not wish to restrict H

beyond it being polynomially evaluatable. If the algorithm produces an accurate and easily

evaluated hypothesis, then our learning problem is essentially solved, and the actual form of

the hypothesis is of secondary concern.

9

We refer to this model as the distribution-free model, to emphasize that we seek algorithms

that work for any target distributions. It is also known in the literature as the probably

approximately correct model. We also occasionally refer to the model as that of strong learn-

ability (to mean learnability by some polynomially evaluatable representation class H), in

contrast with the notion of weak learnability de�ned below.

Weak learnability. We will also consider a distribution-free model in which the hypothesis of

the learning algorithm is required to perform only slightly better than random guessing.

Let C and H be representation classes over X . Then C is weakly learnable from examples

by H if there is a polynomial p and a (probabilistic) algorithm A with access to POS and

NEG , taking input �, with the property that for any target representation c 2 C, for any

target distributions D+ over pos(c) and D� over neg(c), and for any input value 0 < � < 1,

algorithm A halts and outputs a representation hA 2 H that with probability greater than

1� � satis�es e+(hA) < 1=2� 1=p(jcj) and e�(hA) < 1=2� 1=p(jcj).

Thus, the accuracy of hA must be at least 1=2 + 1=p(jcj). A will be called a weak learning

algorithm for C. If C and H are polynomially evaluatable, and A runs in time polynomial in

1=� and jcj we say that C is polynomially weakly learnable by H and C is polynomially weakly

learnable if it is weakly learnable by H for some polynomially evaluatable H . In the case

that the target class C is parameterized, we allow the polynomial p and the running time to

depend on the parameter n. We will usually explicitly restrict jcj to be polynomial in n, and

thus may assume p depends on n alone.

We may intuitively think of weak learning as the ability to detect some slight bias separating

positive and negative examples, where the advantage gained over random guessing diminishes

as the complexity of the problem grows. Our main use of the weak learning model is in proving

the strongest possible hardness results.

Distribution-speci�c learnability. The models for learnability described above demand that

a learning algorithm work regardless of the distributions on the examples. We will sometimes

relax this condition, and consider these models under restricted target distributions, for in-

stance the uniform distribution. Here the de�nitions are the same as before, except that we

ask that the performance criteria for learnability be met only under these restricted target

10

distributions.

2.3 Some representation classes

We now de�ne the representation classes whose learnability we will study. In this paper the domain

Xn is always f0; 1gn and the mapping � simplymaps each circuit to its set of satisfying assignments.

The classes de�ned below are all parameterized; for each class we will de�ne the subclasses Cn, and

then C is de�ned by C = [n�1Cn.

Boolean Formulae: The representation class BFn consists of all Boolean formulae over the

Boolean variables x1; : : : ; xn.

Boolean Circuits: The representation class CKTn consists of all Boolean circuits over input

variables x1; : : : ; xn.

Threshold Circuits: A threshold gate over input variables x1; : : : ; xn is de�ned by a value

1 � t � n such that the gate outputs 1 if and only if at least t of the input bits are set to 1.

We let TCn denote the class of all circuits of threshold gates over x1; : : : ; xn. For constant d,

dTCn denotes the class of all threshold circuits in TCn with depth at most d.

Acyclic Finite Automata: The representation class ADFAn consists of all deterministic �nite

automata that accept only strings of length n, that is, all deterministic �nite automata M

such that the language L(M) accepted by M satis�es L(M) � f0; 1gn.

We will also frequently discuss computations performed by the circuit class NC1 = [n�1NC
1
n,

where NC1
n is the class of circuits consisting of and, or and not gates of fan-in two having size

polynomial in n and depth logarithmic in n.

2.4 Other de�nitions and notation

Cherno� bounds. We shall make extensive use of the following bounds on the area under the

tails of the binomial distribution. For 0 � p � 1 and m a positive integer, let LE(p;m; r)

denote the probability of at most r successes in m independent trials of a Bernoulli variable

with probability of success p, and let GE (p;m; r) denote the probability of at least r successes.

Then for 0 � � � 1,

11

Fact CB1. LE(p;m; (1� �)mp) � e��
2mp=2

and

Fact CB2. GE(p;m; (1+ �)mp) � e��
2mp=3

These bounds in the form they are stated are from the paper of Angluin and Valiant [9] and

follow from Cherno� [17]. Although we will make frequent use of Fact CB1 and Fact CB2, we

will do so in varying levels of detail, depending on the complexity of the calculation involved.

However, we are primarily interested in Cherno� bounds for the following consequence of

Fact CB1 and Fact CB2: given an event E of probability p, we can obtain an estimate p̂ of

p by drawing m points from the distribution and letting p̂ be the frequency with which E

occurs in this sample. Then for m polynomial in 1=p and 1=�, p̂ satis�es p=2 < p̂ < 2p with

probability at least 1� �. If we also allow m to depend polynomially on 1=�, we can obtain

an estimate p̂ such that p � � < p̂ < p + � with probability at least 1 � � (see for instance

the paper of Angluin and Laird [8]).

Notational conventions. Let E(x) be an event and (x) a random variable that depend on a

parameter x that takes on values in a set X . Then for X 0 � X , we denote by Prx2X 0[E(x)]

the probability that E occurs when x is drawn uniformly at random from X 0. Similarly,

Ex2X 0[(x)] is the expected value of when x is drawn uniformly at random from X 0.

We also need to work with distributions other than the uniform distribution; thus if P is

a distribution over X we use Prx2P [E(x)] and Ex2P [(x)] to denote the probability of E

and the expected value of , respectively, when x is drawn according to the distribution P .

When E or depend on several parameters that are drawn from di�erent distributions we use

multiple subscripts. For example, Prx12P1;x22P2;x32P3 [E(x1; x2; x3)] denotes the probability

of event E when x1 is drawn from distribution P1, x2 from P2, and x3 from P3 (all draws

being independent).

3 Previous Hardness Results for Learning

The initial paper de�ning the distribution-free model [39] gave the �rst polynomial-time learning

algorithms in this model. It showed that the class of monomials is polynomially learnable, as are

the classes kCNF and kDNF (with time complexity O(nk)). For each of these algorithms, the

12

hypothesis class is the same as the target class; that is, in each case C is polynomially learnable by

C.

Pitt and Valiant [32] subsequently observed that the classes k-term-DNF and k-clause-CNF,

when viewed as functions, are properly contained within the classes kCNF and kDNF, respectively.

Combined with the results above [39], this shows that for �xed k, the class k-term-DNF is poly-

nomially learnable by kCNF, and the class k-clause-CNF is polynomially learnable by kDNF.

More surprisingly, Pitt and Valiant prove that for any �xed k � 2, learning k-term-DNF by

k-term-DNF and learning k-clause-CNF by k-clause-CNF are NP-hard problems.

These results are important in that they demonstrate the tremendous computational advantage

that may be gained by a judicious change of hypothesis representation. This can be viewed as a

limited but provable con�rmation of the rule of thumb in arti�cial intelligence that representation

is important. By moving to a more powerful hypothesis class H instead of insisting on the more

\natural" choice H = C, we move from an NP -hard problem to a polynomial-time solution. This

may be explained intuitively by the observation that while the constraintH = C may be signi�cant

enough to render the learning task intractable, a richer hypothesis representation allows a greater

latitude for expressing the learned formula. Later we shall see that using a larger hypothesis

class inevitably requires a larger sample complexity; thus the designer of a learning algorithm may

sometimes be faced with a trade-o� between computation time and required sample size.

In discussing hardness results, we distinguish between two types: representation-based hardness

results and representation-independent hardness results. Briey, representation-based hardness

results state that for some �xed representation classes C and H , learning C by H is hard in some

computational sense (such as NP-hardness). Thus, the aforementioned result on the di�culty of

learning k-term-DNF by k-term-DNF is representation-based. In contrast, a representation-

independent hardness result says that for �xed C and any polynomially evaluatable H , learning C

by H is hard.

Representation-based hardness results are interesting for a number of reasons, two of which

we have already mentioned: they can be used to give formal veri�cation to the importance of

hypothesis representation, and for practical reasons it is important to study the least expressive

class H that can be used to learn C, since the choice of hypothesis representation can greatly a�ect

resource complexity (such as the number of examples required) even for those classes already known

13

to be polynomially learnable.

However, since a representation-based hardness result dismisses the polynomial learnability of

C only with respect to the �xed hypothesis classH , such results leave something to be desired in the

quest to classify learning problems as \easy" or \hard". For example, we may be perfectly willing

to settle for an e�cient algorithm learning C by H for some more expressive H if we know that

learning C by C isNP-hard. Thus for practical purposes we must regard the polynomial learnability

of C as not entirely resolved until we either �nd an e�cient learning algorithm or we prove that

learning C by H is hard for any reasonable H , that is, until we prove a representation-independent

hardness result for C.

Gold [21] gave the �rst representation-based hardness results that apply to the distribution-

free model of learning. He proves that the problem of �nding the smallest deterministic �nite

automaton consistent with a given sample is NP-complete; the results of Haussler et al. [24] can

be easily applied to Gold's result to prove that learning deterministic �nite automata of size n by

deterministic �nite automata of size n cannot be accomplished in polynomial time unless RP = NP .

There are some technical issues involved in properly de�ning the problem of learning �nite automata

in the distribution-free model; see Pitt and Warmuth [33] for details. Gold's results were improved

by Li and Vazirani [30], who show that �nding an automaton 9=8 larger than the smallest consistent

automaton is still NP -complete.

As we have already discussed, Pitt and Valiant [32] prove that for k � 2, learning k-term-DNF

by k-term-DNF is NP-hard by giving a randomized reduction from a generalization of the graph

coloring problem. Even stronger, for k � 6, they prove that even if the hypothesis DNF formulae

is allowed to have 2k� 3 terms, k-term-DNF cannot be learned in polynomial time unless RP =

NP . These results hold even when the target formulae are restricted to be monotone and the

hypothesis formulae is allowed to be nonmonotone. Dual results hold for the problem of learning

k-clause-CNF. Pitt and Valiant also prove that �-formulae (Boolean formulae in which each

variable occurs at most once, sometimes called read-once) cannot be learned by �-formulae in

polynomial time, and that Boolean threshold functions cannot be learned by Boolean threshold

functions in polynomial time, unless RP = NP .

Pitt and Warmuth [34] dramatically improved the results of Gold by proving that deterministic

�nite automata of size n cannot be learned in polynomial time by deterministic �nite automata of

14

size n� for any �xed value � � 1 unless RP = NP . Their results leave open the possibility of an

e�cient learning algorithm using deterministic �nite automata whose size depends on � and �, or

an algorithm using some entirely di�erent representation of the sets accepted by automata. This

possibility is addressed and dismissed (modulo cryptographic assumptions) by the results in of this

paper.

Hancock [23] has shown that learning decision trees of size n by decision trees of size n cannot

be done in polynomial time unless RP = NP . Representation-based hardness results for learning

various classes of neural networks can also be derived from the results of Judd [25] and Blum and

Rivest [12].

The �rst representation-independent hardness results for the distribution-free model follow from

the work of Goldreich, Goldwasser and Micali [22], whose true motivation was to �nd easy-to-

compute functions whose output on random inputs appears random to all polynomial-time algo-

rithms. A simpli�ed and weakened statement of their result is that the class of polynomial-size

Boolean circuits is not polynomially learnable by any polynomially evaluatable H , provided that

there exists a one-way function (see Yao [41]). Pitt and Warmuth [33] de�ned a general no-

tion of reducibility for learning and gave a number of other representation classes that are not

polynomially learnable under the same assumption by giving reductions from the learning prob-

lem for polynomial-size circuits. One of the main contributions of the research presented here is

representation-independent hardness results for much simpler classes than those addressed by Gol-

dreich et al. [22] or Pitt and Warmuth [33], among them the classes of Boolean formulae, acyclic

deterministic �nite automata and constant-depth threshold circuits.

4 Background and De�nitions from Cryptography

Some basic number theory. For an introduction to number theory that is relevant to cryptogra-

phy, we refer the reader to the work of Angluin [5] and Kranakis [28]. ForN a natural number,

ZN will denote the ring of integers modulo N , and Z�
N will denote the multiplicative group

moduloN . Thus ZN = fx : 0 � x � N�1g and Z�
N = fx : 1 � x � N�1 and gcd(x;N) = 1g,

where gcd(x;N) denotes the greatest common divisor of x and N . The Euler totient function

' is de�ned by '(N) = jZ�
N j. For x 2 Z�

N , we say that x is a quadratic residue mod-

ulo N if there is an a 2 Z�
N such that x = a2 mod N . We denote by QRN the set of all

15

quadratic residues in Z�
N . For a prime p and x 2 Z�

p , we de�ne the Legendre symbol of x

with respect to p by L(x; p) = 1 if x is a quadratic residue modulo p, and L(x; p) = �1

otherwise. For N = p � q, where p and q are prime, we de�ne the Jacobi symbol of x 2 Z�
N

with respect to N by J(x;N) = L(x; p) � L(x; q). Since x is a quadratic residue modulo N

if and only if it is a quadratic residue modulo p and modulo q, it follows that J(x;N) = �1

implies that x is not a quadratic residue modulo N . However, J(x;N) = 1 does not nec-

essarily imply that x is a quadratic residue mod N . For any integer N , we de�ne the set

Z�
N(+1) = fx 2 Z�

N : J(x;N) = 1g. A Blum integer is an integer of the form p � q, where p

and q are primes both congruent to 3 modulo 4.

We will make use of the following facts from number theory.

Fact NT1. On inputs x and N , gcd(x;N) can be computed in polynomial time.

Fact NT2. For p a prime and x 2 Z�
p , L(x; p) = x(p�1)=2 mod p.

Fact NT3. On inputs x and N , J(x;N) can be computed in polynomial time.

Fact NT4. ForN = p �q where p and q are prime, jZ�
N (+1)j = jZ�

N j=2 and jQRN j = jZ�
N j=4.

Fact NT5. For any x 2 Z�
N , x

'(N) = 1 mod N .

The RSA encryption function. Let p and q be primes of length l, and let N = p � q. Let

e be an encrypting exponent such that gcd(e; '(N)) = 1 and d a decrypting exponent such

that d � e = 1 mod '(N). The existence of such a d is guaranteed for all elements e for which

gcd(e; '(N)) = 1. The RSA encryption function [37] is then de�ned for all x 2 ZN by

RSA(x;N; e) = xe mod N:

Note that decryption can be accomplished by exponentiation mod N :

(xe)d = xe�d mod N = x1+i�'(N) mod N = x mod N

for some natural number i by Fact NT5 because e � d = 1 mod '(N).

Thus, following the informal intuition of Section 1, we think of Alice as generating the product

N = p�q; since she also knows p and q, she can generate both e (which she publishes along with

N , thus yielding an encryption program) and d (the \trapdoor", which she keeps private).

16

There is currently no known polynomial-time algorithm for inverting the RSA encryption

function | that is, the problem of computing x on inputs RSA(x;N; e); N and e. Further-

more, the following result from Alexi et al. [4] indicates that determining the least signi�cant

bit of x is as hard as inverting RSA (which amounts to determining all the bits of x).

Theorem 1 (Alexi et al. [4]) Let x;N and e be as above. Then with respect to probabilistic

polynomial-time reducibility, the following problems are equivalent:

(1) On input RSA(x;N; e); N and e, output x.

(2) On input RSA(x;N; e); N and e, output LSB(x) with probability exceeding 1=2+ 1=p(l),

where p is any �xed polynomial, l = logN is the length of N , and LSB(x) denotes the

least signi�cant bit of x. The probability is taken over x chosen uniformly from ZN and

any coin tosses of A.

The Rabin and modi�ed Rabin encryption functions. The Rabin encryption function [35]

is speci�ed by two primes p and q of length l. For N = p � q and x 2 Z�
N , we de�ne

R(x;N) = x2 mod N:

In this scheme the trapdoor is the factorization of N , which allows Alice to compute square

roots modulo N , and thus to decrypt. Known results regarding the security of the Rabin

function include the following:

Theorem 2 (Rabin [35]) Let x and N be as above. Then with respect to probabilistic

polynomial-time reducibility, the following problems are equivalent:

(1) On input N , output a nontrivial factor of N .

(2) On input N and R(x;N), output a y such that R(y;N) = R(x;N).

Furthermore, this reduction still holds when N is restricted to be a Blum integer in both

problems. The modi�ed Rabin encryption function [4] is speci�ed by two primes p and q of

length l, both congruent to 3 modulo 4. Let N = p � q (thus N is a Blum integer). We de�ne

a subset MN of Z�
N by

MN = fx : 0 � x �
N

2
and x 2 Z�

N (+1)g:

17

For x 2MN , the modi�ed Rabin encryption function is then

MR(x;N) = x2 mod N if x2 mod N 2MN

MR(x;N) = (N � x2) mod N otherwise:

This de�nes a 1-1 map from MN onto MN .

Theorem 3 (Alexi et al. [4]) Let x and N be as above. Then with respect to probabilistic

polynomial-time reducibility, the following problems are equivalent:

(1) On input MR(x;N) and N , output x.

(2) On input MR(x;N) and N , output LSB(x) with probability exceeding 1=2+1=p(l), where

p is any �xed polynomial and l = logN is the length of N . The probability is taken over

x chosen uniformly from MN and any coin tosses of A.

For Blum integers, R(x;N) is a 1-1 mapping of QRN . Hence ifMR(x;N) is invertible then we

can invert R(x;N) by attempting to invertMR for both the values R(x;N) and N�R(x;N),

and succeeding for just the right one of these. Hence Theorems 2 and 3 together imply

that Problem (2) in Theorem 3 is equivalent to factoring Blum integers (with respect to

probabilistic polynomial-time reducibility), a problem for which no polynomial-time algorithm

is known.

The Quadratic Residue Assumption. Let N = p �q, where p and q are primes of length l. For

each x 2 Z�
N (+1), de�ne QR(x;N) = 1 if x is a quadratic residue mod N and QR(x;N) = 0

otherwise. Then the Quadratic Residue Assumption states that if A is any probabilistic

polynomial-time algorithm that takes N and x as input, then for in�nitely many N we have

Pr[A(N; x) = QR(x;N)] <
1

2
+

1

p(l)

where p is any �xed polynomial. The probability is taken over x chosen uniformly from the

set Z�
N(+1) and any coin tosses of A. As in the Rabin scheme, knowledge of the factors of

N allows Alice to compute square roots modulo N and thus to determine if an element is a

quadratic residue.

18

5 Hard Learning Problems Based on Cryptographic Functions

In this section we construct hard learning problems based on the number-theoretic encryption

functions described above. For each such function, we �rst de�ne a representation class based on

the function. For each possible target representation in this class, we then describe the relevant

examples for this representation. These are the only examples with non-zero probability in the

hard target distributions we de�ne. We then proceed to prove the di�culty of even weakly learning

the representation class under the chosen distributions, based on some standard cryptographic

assumption on the security of the underlying encryption function. Finally, we show the ease of

evaluating the representation class: more precisely, we show that each representation in the class can

be computed by an NC1 circuit (a polynomial-size, log-depth circuit of standard fan-in 2 Boolean

gates). In Section 6 we apply these results to prove that weakly learning Boolean formulae, �nite

automata, constant-depth threshold circuits and a number of other representation classes is hard

under cryptographic assumptions.

We adopt the following notation: if a1; : : : ; am are natural numbers, then binary(a1; : : : ; am) is

the binary representation of the sequence a1; : : : ; am. The relevant examples we construct will be

of the form

< binary(a1; : : : ; am); b >

where b is a bit indicating whether the example is positive or negative. We denote by powers(z;N)

the sequence of natural numbers

z mod N; z2 mod N; z4 mod N; : : :; z2
dlogNe

mod N

which are the �rst dlogNe+ 1 successive square powers of z modulo N .

In the following subsections, we will de�ne representation classes Cn based on the number-

theoretic function families described above. Representations in Cn will be over the domain f0; 1gn;

relevant examples with length less than n will implicitly be assumed to be padded to length n.

Since only the relevant examples will have non-zero probability, we assume that all non-relevant

examples are negative examples of the target representation.

5.1 A learning problem based on RSA

The representation class Cn: Let l be the largest natural number satisfying 4l2 + 8l + 2 � n.

19

Each representation in Cn is de�ned by a triple (p; q; e) and this representation will be denoted

r(p;q;e). Here p and q are primes of exactly l bits and e 2 Z�
'(N), where N = p � q (thus,

gcd(e; '(N)) = 1).

Relevant examples for r(p;q;e) 2 Cn: A relevant example of r(p;q;e) 2 Cn is of the form

< binary(powers(RSA(x;N; e); N);N; e);LSB(x) >

where x 2 ZN . Note that since the length of N is at most 2l + 1, the length of such an

example in bits is at most (2l+1)(2l+ 1)+ (2l+ 1)+ (2l+ 1) = 4l2+ 8l+ 2 � n. The target

distribution D+ for r(p;q;e) is uniform over the relevant positive examples of r(p;q;e) (i.e., those

for which LSB(x) = 1) and the target distribution D� is uniform over the relevant negative

examples (i.e., those for which LSB(x) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose that A is a polynomial-time weak learning

algorithm for C. We now describe how we can use algorithm A to invert the RSA encryption

function. Let N be the product of two unknown l-bit primes p and q, and let e 2 Z�
'(N).

Then given only N and e, we run algorithm A. Each time A requests a positive example of

r(p;q;e), we uniformly choose an x 2 ZN such that LSB(x) = 1 and give the example

< binary(powers(RSA(x;N; e); N);N; e); 1>

to A. Note that we can generate such an example in polynomial time on input N and e.

This simulation generates the target distribution D+. Each time that A requests a negative

example of r(p;q;e), we uniformly choose an x 2 ZN such that LSB(x) = 0 and give the

example

< binary(powers(RSA(x;N; e); N);N; e); 0>

to A. Again, we can generate such an example in polynomial time, and this simulation

generates the target distribution D�. Let hA be the hypothesis output by algorithm A

following this simulation. Then given r = RSA(x;N; e) for some unknown x chosen uniformly

from ZN , hA(binary(powers(r;N); N; e)) = LSB(x) with probability at least 1=2+ 1=p(l) for

some polynomial p by the de�nition of weak learning because n and l are polynomially related.

Thus we have a polynomial advantage for inverting the least signi�cant bit of RSA. This allows

us to invert RSA by the results of Alexi et al. [4] given as Theorem 1.

20

Ease of evaluating r(p;q;e) 2 Cn: For each r(p;q;e) 2 Cn, we show that r(p;q;e) has an equivalent

NC
1 circuit. More precisely, we give a circuit that has depth O(logn) and size polynomial in

n, and outputs the value of r(p;q;e) on inputs of the form

binary(powers(r;N); N; e)

where N = p � q and r = RSA(x;N; e) for some x 2 ZN . Thus, the representation class

C = [n�1Cn is contained in (nonuniform) NC1.

Since e 2 Z�
'(N), there is a d 2 Z

�
'(N) such that e � d = 1 mod '(N) (d is just the decrypting

exponent for e). Thus, rd mod N = xe�d mod N = x mod N . Hence the circuit for r(p;q;e)

simplymultiplies together the appropriate powers of r (which are always explicitly provided in

the input) to compute rd mod N , and outputs the least signi�cant bit of the resulting product.

This is an NC1 step by the iterated product circuits of Beame, Cook and Hoover [10].

5.2 A learning problem based on quadratic residues

The representation class Cn: Let l be the largest natural number satisfying 4l2 + 6l + 2 � n.

Each representation in Cn is de�ned by a pair of l-bit primes (p; q) and this representation

will be denoted r(p;q).

Relevant examples for r(p;q) 2 Cn: For a representation r(p;q) 2 Cn, let N = p � q. We consider

only points x 2 Z�
N(+1). A relevant example of r(p;q) is then of the following form:

< binary(powers(x;N); N);QR(x;N)> :

Note that the length of such an example in bits is at most 4l2 + 6l + 2 � n. The target

distribution D+ for r(p;q) is uniform over the relevant positive examples of r(p;q) (i.e., those

for which QR(x;N) = 1) and the target distribution D� is uniform over the relevant negative

examples (i.e., those for which QR(x;N) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose that A is a polynomial-time weak learning

algorithm for C. We now describe how we can use algorithmA to recognize quadratic residues.

Let N be the product of two unknown l-bit primes p and q. Given only N as input, we run

algorithm A. Every time A requests a positive example of r(p;q), we uniformly choose y 2 Z�
N

21

and give the example

< binary(powers(y2 mod N;N); N); 1>

to A. Note that such an example can be generated in polynomial time on input N . This

simulation generates the target distribution D+.

In order to generate the negative examples for our simulation of A, we uniformly choose

u 2 Z�
N until J(u;N) = 1. By Fact NT4, this can be done with high probability in polynomial

time. The probability is 1=2 that such a u is a non-residue modulo N . Assuming we have

obtained a non-residue u, every time A requests a negative example of r(p;q), we uniformly

choose y 2 Z�
N and give to A the example

< binary(powers(uy2 mod N;N); N); 0>

which can be generated in polynomial time. Note that if u actually is a non-residue then this

simulation generates the target distribution D�, and this run of A will with high probability

produce an hypothesis hA with accuracy at least 1=2 + 1=p(l) with respect to D+ and D�,

for some polynomial p (call such a run a good run). On the other hand, if u is actually a

residue then A has been trained improperly (that is, A has been given positive examples

when it requested negative examples), and no performance guarantees can be assumed. The

probability of a good run of A is at least 1=2(1� �).

We thus simulate A as described above many times, testing each hypothesis to determine

if the run was a good run. To test if a good run has occurred, we �rst determine if hA

has accuracy at least 1=2 + 1=2p(l) with respect to D+. This can be determined with high

probability by generating D+ as above and estimating the accuracy of hA using Fact CB1 and

Fact CB2. Assuming hA passes this test, we now would like to test hA against the simulated

distribution D�; however, we do not have direct access to D� since this requires a non-

residue mod N . Thus we instead estimate the probability that hA classi�es an example as

positive when this example is drawn from the uniform distribution over all relevant examples

(both positive and negative). This can be done by simply choosing x 2 Z�
N uniformly and

computing hA(binary(powers(x;N); N)). The probability that hA classi�es such examples as

positive is near 1=2 if and only if hA has nearly equal accuracy on D+ and D�. Thus by

22

estimating the accuracy of hA on D+, we can estimate the accuracy of hA on D� as well,

without direct access to a simulation of D�.

We continue to run A and test until a good run of A is obtained with high probability. Then

given x chosen randomly from Z�
N ,

hA(binary(powers(x;N); N)) = QR(x;N)

with probability at least 1=2 + 1=p(l), contradicting the Quadratic Residue Assumption.

Ease of evaluating r(p;q) 2 Cn: For each r(p;q) 2 Cn, we give an NC
1 circuit for evaluating the

concept represented by r(p;q) on an input of the form

binary(powers(x;N); N)

where N = p � q and x 2 Z�
N . This circuit has four phases.

Phase I. Compute the powers

x mod p; x2 mod p; x4 mod p; : : : ; x2
2l

mod p

and the powers

x mod q; x2 mod q; x4 mod q; : : : ; x2
2l

mod q:

Note that the length of N is 2l. Since for any a 2 Z�
N we have that a mod p =

(a mod N) mod p, these powers can be computed from the input binary(powers(x;N); N)

by parallel mod p and mod q circuits. Each such circuit involves only a division step

followed by a multiplication and a subtraction. The results of Beame et al. [10] imply

that these steps can be carried out by an NC1 circuit.

Phase II. Compute x(p�1)=2 mod p and x(q�1)=2 mod q. These can be computed by multi-

plying the appropriate powers mod p and mod q computed in Phase I. Since the iterated

product of l numbers each of length l bits can be computed in NC1 by the results of

Beame et al. [10], this is also an NC1 step.

Phase III. Determine if x(p�1)=2 = 1 mod p or x(p�1)=2 = �1 mod p, and if x(q�1)=2 =

1 mod q or x(q�1)=2 = �1 mod q. That these are the only cases follows from Fact NT2;

furthermore, this computation determines whether x is a residue mod p and mod q.

Given the outputs of Phase II, this is clearly an NC1 step.

23

Phase IV. If the results of Phase III were x(p�1)=2 = 1 mod p and x(q�1)=2 = 1 mod q, then

output 1, otherwise output 0. This is again an NC1 step.

5.3 A learning problem based on factoring Blum integers

The representation class Cn: Let l be the largest natural number satisfying 4l2 + 6l + 2 � n.

Each representation in Cn is de�ned by a pair of l-bit primes (p; q), both congruent to 3

modulo 4, and this representation will be denoted r(p;q). Thus the product N = p � q is a

Blum integer.

Relevant examples for r(p;q) 2 Cn: We consider points x 2 MN . A relevant example of

r(p;q) 2 Cn is then of the form

< binary(powers(MR(x;N); N);N);LSB(x) > :

The length of this example in bits is at most 4l2 + 6l + 2 � n. The target distribution D+

for r(p;q) is uniform over the relevant positive examples (i.e., those for which LSB(x) = 1)

and the target distribution D� is uniform over the relevant negative examples (i.e., those for

which LSB(x) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose that A is a polynomial-time weak learning

algorithm for C. We now describe how to use A to factor Blum integers. Let N be a Blum

integer. Given only N as input, we run algorithm A. Every time A requests a positive

example, we choose x 2MN uniformly such that LSB(x) = 1, and give the example

< binary(powers(MR(x;N); N); N); 1>

to A. Such an example can be generated in polynomial time on input N . This simulation

generates the distribution D+. Every time A requests a negative example, we choose x 2Mn

uniformly such that LSB(x) = 0, and give the example

< binary(powers(MR(x;N); N); N); 0>

to A. Again, this example can be generated in polynomial time. This simulation generates

the distribution D�. When algorithm A has halted, hA(binary(powers(r;N);N)) = LSB(x)

24

with probability 1=2 + 1=p(l) for r = MR(x;N) and x chosen uniformly from MN . This

implies that we can factor Blum integers by the results of Rabin [35] and Alexi et al. [4] given

in Theorems 2 and 3.

Ease of evaluating r(p;q) 2 Cn: For each r(p;q) 2 Cn, we give an NC
1 circuit for evaluating the

concept represented by r(p;q) on an input of the form

binary(powers(r;N);N)

where N = p � q and r = MR(x;N) for some x 2MN . This is accomplished by giving an NC1

implementation of the �rst three steps of the root-�nding algorithm of Adleman, Manders

and Miller [1] as it is described by Angluin [5]. Note that if we let a = x2 mod N , then either

r = a or r = (N � a) mod N according to the de�nition of the modi�ed Rabin function. The

circuit has four phases.

Phase I. Determine if the input r is a quadratic residue mod N . This can be done using

the given powers of r and r(p;q) using the NC1 circuit described in quadratic residue-

based scheme of Section 5.2. Note that since p and q are both congruent to 3 mod 4,

(N � a) mod N is never a quadratic residue mod N (see Angluin [5]). If it is decided

that r = (N � a) mod N , generate the intermediate output a mod N . This can clearly

be done in NC1. Also, notice that for any z, z2i = (N � z)2i mod N for i � 1. Hence

these powers of r are identical in the two cases. Finally, recall that the NC1 circuit

for quadratic residues produced the powers of r mod p and the powers of r mod q as

intermediate outputs, so we may assume that the powers

a; a2 mod p; a4 mod p; : : : ; a2
2l

mod p

and

a; a2 mod q; a4 mod q; : : : ; a2
2l

mod q

are also available.

Phase II. Let lp (respectively, lq) be the largest positive integer such that 2lp j(p � 1)

(respectively, 2lq j(q � 1)). Let Qp = (p� 1)=2lp (respectively, Qq = (q � 1)=2lq). Using

the appropriate powers of x2 mod p and mod q, compute u = a(Qp+1)=2 mod p and v =

25

a(Qq+1)=2 mod q with NC1 iterated product circuits. Since p and q are both congruent

to 3 mod 4, u and p � u are square roots of a mod q, and v and q � v are square roots

of a mod q by the results of Adleman et al. [1] (see also Angluin [5]).

Phase III. Using Chinese remaindering, combine u; p� u; v and q � v to compute the four

square roots of a mod N (see e.g. Kranakis [28]). Given p and q, this requires only a

constant number of multiplication and addition steps, and so is computed in NC1.

Phase IV. Find the root from Phase III that is in MN , and output its least signi�cant bit.

6 Learning Small Boolean Formulae, Finite Automata and Thresh-

old Circuits is Hard

The results of Section 5 show that for some �xed polynomial q(n), learning NC1 circuits of size at

most q(n) is computationally as di�cult as the problems of inverting RSA, recognizing quadratic

residues, and factoring Blum integers. However, there is a polynomial p(n) such that any NC1

circuit of size at most q(n) can be represented by a Boolean formulae of size at most p(n). Thus

we have proved the following:

Theorem 4 Let BF
p(n)
n denote the class of Boolean formulae over n variables of size at most p(n),

and let BFp(n) = [n�1BF
p(n)
n . Then for some polynomial p(n), the problems of inverting the RSA

encryption function, recognizing quadratic residues and factoring Blum integers are probabilistic

polynomial-time reducible to weakly learning BFp(n).

In fact, we can apply the substitution arguments of Kearns et al. [26] to show that Theorem 4

holds even for the class of monotone Boolean formulae in which each variable appears at most once.

Pitt and Warmuth [33] show that if the class ADFA is polynomially weakly learnable, then the

class BF is polynomially weakly learnable. Combining this with Theorem 4, we have:

Theorem 5 Let ADFA
p(n)
n denote the class of deterministic �nite automata of size at most p(n)

that only accept strings of length n, and letADFAp(n) = [n�1ADFA
p(n)
n . Then for some polynomial

p(n), the problems of inverting the RSA encryption function, recognizing quadratic residues and

factoring Blum integers are probabilistic polynomial-time reducible to weakly learning ADFAp(n).

26

Using results of Chandra, Stockmeyer and Vishkin [16], Beame et al. [10] and Reif [36], it can be

shown that the representations described in Section 5 can each be computed by a polynomial-size,

constant-depth threshold circuit. Thus we have:

Theorem 6 For some �xed constant natural number d, let dTC
p(n)
n denote the class of thresh-

old circuits over n variables with depth at most d and size at most p(n), and let dTCp(n) =

[n�1dTC
p(n)
n . Then for some polynomial p(n), the problems of inverting the RSA encryption func-

tion, recognizing quadratic residues and factoring Blum integers are probabilistic polynomial-time

reducible to weakly learning dTCp(n).

It is important to reiterate that these hardness results hold regardless of the hypothesis rep-

resentation class of the learning algorithm; that is, Boolean formulae, DFA's and constant-depth

threshold circuits are not weakly learnable by any polynomially evaluatable representation class

(under standard cryptographic assumptions). We note that no NP -hardness results are known for

these classes even if we restrict the hypothesis class to be the same as the target class and insist

on strong learnability rather than weak learnability. It is also possible to give reductions showing

that many other interesting classes (e.g., CFG's and NFA's) are not weakly learnable, under the

same cryptographic assumptions. In general, any representation class whose computational power

subsumes that of NC1 is not weakly learnable; however, more subtle reductions are also possible.

In particular, our results resolve a problem posed by Pitt and Warmuth [33] by showing that under

cryptographic assumptions, the class of all languages accepted by logspace Turing machines is not

weakly learnable.

Pitt and Warmuth [33] introduce a general notion of reduction between learning problems, and a

number of learning problems are shown to have equivalent computational di�culty (with respect to

probabilistic polynomial-time reducibility); thus, if the learning problem for a representation class

C1 reduces to the learning problem for a representation class C2, then a polynomial-time learning

algorithm for C2 in the distribution-free model implies a polynomial-time learning algorithm for

C1. Learning problems are then classi�ed according to the complexity of their evaluation problem,

the problem of evaluating a representation on an input example. In Pitt and Warmuth [33] the

evaluation problem is treated as a uniform problem (i.e., one algorithm for evaluating all represen-

tations in the class); by treating the evaluation problem nonuniformly (e.g., a separate circuit for

27

each representation) we were able to show thatNC1 contains a number of presumably hard-to-learn

classes of Boolean functions. By giving reductions from NC
1 to other classes of representations,

we thus clarify the boundary of what is e�ciently learnable.

7 A Generalized Construction Based on Any Trapdoor Function

Let us now give a brief summary of the techniques that were used in Sections 5 and 6 to obtain

hardness results for learning based on cryptographic assumptions. In each construction (RSA,

quadratic residue and factoring Blum integers), we began with a candidate trapdoor function family,

informally a family of functions each of whose members f is easy to compute (that is, given x, it is

easy to compute f(x)), hard to invert (that is, given only f(x), it is di�cult to compute x), but easy

to invert given a secret \key" to the function [41] (the trapdoor). We then constructed a learning

problem in which the complexity of inverting the function given the trapdoor key corresponds to the

complexity of the representations being learned, and learning from random examples corresponds

to inverting the function without the trapdoor key. Thus, the learning algorithm is essentially

required to learn the inverse of a trapdoor function, and the small representation for this inverse is

simply the secret trapdoor information.

To prove hardness results for the simplest possible representation classes, we then eased the

computation of the inverse given the trapdoor key by providing the powers of the original input

in each example. This additional information provably does not compromise the security of the

original function. A key property of trapdoor functions exploited by our constructions is the

ability to generate random examples of the target representation without the trapdoor key; this

corresponds to the ability to generate encrypted messages given only the public key in a public-key

cryptosystem.

By assuming that speci�c functions such as RSA are trapdoor functions, we were able to �nd

modi�ed trapdoor functions whose inverse computation given the trapdoor could be performed by

very simple circuits. This allowed us to prove hardness results for speci�c representation classes that

are of interest in computational learning theory. Such speci�c intractability assumptions appear

necessary since the weaker and more general assumption that there exists a trapdoor family that

can be computed (in the forward direction) in polynomial time does not allow us to say anything

about the hard-to-learn representation class other than it having polynomial-size circuits.

28

However, the summary above suggests a general method for proving hardness results for learn-

ing: to show that a representation class C is not learnable, �nd a trapdoor function whose inverse

can be computed by C given the trapdoor key. In this section we formalize these ideas and prove

a theorem demonstrating that this is indeed a viable approach.

We use the following de�nition for a family of trapdoor functions, which can be derived from

Yao [41]: let P = fPng be a family of probability distributions, where for n � 1 the distribution

Pn is over pairs (k; k0) 2 f0; 1gn � f0; 1gn. We think of k as the n-bit public key and k0 as the

associated n-bit private key. Let Q = fQkg be a family of probability distributions parameterized

by the public key k, where if jkj = n then Qk is a distribution over f0; 1gn. We think of Q as a

distribution family over the message space. The function f : f0; 1gn � f0; 1gn ! f0; 1gn maps an

n-bit public key k and an n-bit cleartext message x to the ciphertext f(k; x). We call the triple

(P;Q; f) an �(n)-strong trapdoor scheme if it has the following properties:

(i) There is probabilistic polynomial-time algorithmG (the key generator) that on input 1n outputs

a pair (k; k0) according to the distribution Pn. Thus, pairs of public and private keys are easily

generated.

(ii) There is a probabilistic polynomial-time algorithmM (the message generator) that on input

k outputs x according to the distribution Qk. Thus, messages are easily generated given the

public key k.

(iii) There is a polynomial-time algorithm E that on input k and x outputs f(k; x). Thus,

encryption is easy.

(iv) Let A be any probabilistic polynomial-time algorithm. Perform the following experiment:

draw a pair (k; k0) according to Pn, and draw x according to Qk. Give the inputs k and

f(k; x) to A. Then the probability that A(k; f(k; x)) 6= x is at least �(n). Thus, decryption

from only the public key and the ciphertext is hard.

(v) There is a polynomial-time algorithm D that on input k; k0 and f(k; x) outputs x. Thus,

decryption given the private key (or trapdoor) is easy.

As an example, consider the RSA cryptosystem [37]. Here the distribution Pn is uniform over all

(k; k0) where k0 = (p; q) for n-bit primes p and q and k = (p � q; e) with e 2 Z�
'(p�q). The distribution

29

Qk is uniform over Zp�q, and f(k; x) = f((p � q; e); x) = xe mod p � q.

We now formalize the notion of the inverse of a trapdoor function being computed in a repre-

sentation class. Let C = [n�1Cn be a parameterized Boolean representation class. We say that

a trapdoor scheme (P;Q; f) is invertible in C given the trapdoor if for any n � 1, for any pair of

keys (k; k0) 2 f0; 1gn� f0; 1gn, and for any 1 � i � n, there is a representation ci(k;k0) 2 Cn that on

input f(k; x) (for any x 2 f0; 1gn) outputs the ith bit of x.

Theorem 7 Let p be any polynomial, and let �(n) � 1=p(n). Let (P;Q; f) be an �(n)-strong

trapdoor scheme, and let C be a parameterized Boolean representation class. Then if (P;Q; f) is

invertible in C given the trapdoor, C is not polynomially learnable.

Proof: Let A be any polynomial-time learning algorithm for C. We use algorithm A as a

subroutine in a polynomial-time algorithm A0 that with high probability outputs x on input k and

f(k; x), thus contradicting condition (iv) in the de�nition of a trapdoor scheme.

Let (k; k0) be n-bit public and private keys generated by the distribution Pn. Let x be an n-bit

message generated according to the distribution Qk . Then on input k and f(k; x), algorithm A0

behaves as follows: for 1 � i � n, algorithmA0 simulates algorithmA, choosing accuracy parameter

� = �(n)=n. For the ith run of A, each time A requests a positive example, A0 generates random

values x0 from the distribution Qk (this can be done in polynomial time by condition (ii) in the

de�nition of trapdoor scheme) and computes f(k; x0) (this can be done in polynomial time by

condition (iii) in the de�nition of trapdoor scheme). If the ith bit of f(k; x0) is 1, then A0 gives

x0 as a positive example to A; similarly, A0 generates negative examples for the ith run of A by

drawing x0 such that the ith bit of f(k; x0) is 0. If after O(1=� lnn=�) draws fromQk, A0 is unable to

obtain a positive (respectively, negative) example for A, then A0 assumes that with high probability

a random x0 results in the ith bit of f(k; x0) being 0 (respectively, 1), and terminates this run by

setting hik to the hypothesis that is always 0 (respectively, 1). The probability that A0 terminates

the run incorrectly can be shown to be smaller than �=n by application of Fact CB1 and Fact CB2.

Note that all of the examples given to the ith run of A are consistent with a representation in

Cn, since the ith bit of f(k; �) is computed by the representation ci(k;k0). Thus with high probability

A outputs an �-good hypothesis hik . To invert the original input f(k; x), A0 simply outputs the

bit sequence h1k(f(k; x)) � � �h
n
k(f(k; x)). The probability that any bit of this string di�ers from the

30

corresponding bit of x is at most n� < �(n), contradicting the assumption that (P;Q; f) is an

�(n)-strong trapdoor scheme.

8 Application: Hardness Results for Approximation Algorithms

In this section, we digress from learning briey and apply the results of Section 6 to prove that

under cryptographic assumptions, certain combinatorial optimization problems, including a natural

generalization of graph coloring, cannot be e�ciently approximated even in a very weak sense.

These results show that for these problems, it is di�cult to �nd a solution that approximates

the optimal solution even within a factor that grows rapidly with the input size. Such results are

infrequent in complexity theory, and seem di�cult to obtain for natural problems using presumably

weaker assumptions such as P 6= NP .

We begin by stating a needed theorem of Blumer et al. known as Occam's Razor [14]. Their

result essentially gives an upper bound on the sample size required for learning C by H , and shows

that the general technique of �nding an hypothesis that is both consistent with the sample drawn

and signi�cantly shorter than this sample is su�cient for distribution-free learning. Thus, if one

can e�ciently perform data compression on a random sample, then one can learn e�ciently.

Theorem 8 (Blumer et al. [14]) Let C and H be polynomially evaluatable parameterized Boolean

representation classes. Fix � � 1 and 0 � � < 1, and let A be an algorithm that on input a

labeled sample S of some c 2 Cn, consisting of m positive examples of c drawn from D+ and m

negative examples of c drawn from D�, outputs an hypothesis hA 2 Hn that is consistent with S

and satis�es jhAj � n�m�, where jhAj is the length of the representation hA in bits. Then A is a

learning algorithm for C by H; the sample size required is

m = O

1

�
log

1

�
+

�
n�

�
log

n�

�

� 1
1��

!
:

Let jSj = mn denote the number of bits in the sample S. Note that if A instead outputs hA

satisfying jhAj � n�
0
jSj� for some �xed �0 � 1 and 0 � � < 1 then jhAj � n�

0
(mn)� = n�

0+�m� ,

so A satis�es the conditon of Theorem 8 for � = �0 + �. This formulation of Occam's Razor will

be of particular use to us.

Let C and H be polynomially evaluatable parameterized Boolean representation classes, and

de�ne the Consistency Problem Con(C;H) as follows:

31

The Consistency Problem Con(C;H):

Input: A labeled sample S of some c 2 Cn.

Output: h 2 Hn such that h is consistent with S and jhj is minimized.

We use optCon(S) to denote the size of the smallest hypothesis in H that is consistent with the

sample S, and jSj to denote the number of bits in S. Using the results of Section 6 and Theorem 8,

we immediately obtain proofs of the following theorems.

Theorem 9 Let BFn denote the class of Boolean formulae over n variables, and let BF = [n�1BFn.

Let H be any polynomially evaluatable parameterized Boolean representation class. Then the prob-

lems of inverting the RSA encryption function, recognizing quadratic residues and factoring Blum

integers are probabilistic polynomial-time reducible to the problem of approximating the optimal

solution of an instance S of Con(BF; H) by an hypothesis h satisfying

jhj � (optCon(S))
�jSj�

for any � � 1 and 0 � � < 1.

Theorem 10 Let ADFAn denote the class of deterministic �nite automata accepting only strings

of length n, and let ADFA = [n�1ADFAn. Let H be any polynomially evaluatable parameterized

Boolean representation class. Then inverting the RSA encryption function, recognizing quadratic

residues and factoring Blum integers are probabilistic polynomial-time reducible to approximating

the optimal solution of an instance S of Con(ADFA; H) by an hypothesis h satisfying

jhj � (optCon(S))
�jSj�

for any � � 1 and 0 � � < 1.

Theorem 11 Let dTCn denote the class of threshold circuits over n variables with depth at most

d, and let dTC = [n�1dTCn. Let H be any polynomially evaluatable parameterized Boolean repre-

sentation class. Then for some constant d � 1, the problems of inverting the RSA encryption func-

tion, recognizing quadratic residues and factoring Blum integers are probabilistic polynomial-time

reducible to the problem of approximating the optimal solution of an instance S of Con(dTC; H)

by an hypothesis h satisfying

jhj � (optCon(S))
�jSj�

32

for any � � 1 and 0 � � < 1.

These theorems demonstrate that the results of Section 6 are in some sense not dependent

upon the particular models of learnability that we study, since we are able to restate the hardness

of learning in terms of standard combinatorial optimization problems. Using a generalization of

Theorem 8 [15], we can in fact prove Theorems 9, 10 and 11 for the Relaxed Consistency Problem,

where the hypothesis found must agree with only a fraction 1=2 + 1=p(optCon(S); n) for any �xed

polynomial p. The central idea of the proof is the same: since the results of Blumer et al. [15]

demonstrate that for su�cient sample size, solution of the relaxed consistency problem implies

weak learning, and we have shown weak learning to be as hard as the cryptographic problems for

the various representation classes, the relaxed consistency problem is as hard as the cryptographic

problems. Using the results of Goldreich et al. [22], it is also possible to show similar hardness

results for the Boolean circuit consistency problem Con(CKT;CKT) using the weaker assumption

that there exists a one-way function.

It is interesting to contrast Theorem 10 with similar results obtained by Pitt and Warmuth [34].

They also prove hardness results for the problem of �nding small deterministic �nite automata

consistent with a labeled sample, but based on the weaker assumption { 6= NP . However (using

the notation of Theorem 10), their results only hold for a more restricted range of � and �, and

require the restriction that H be the class of deterministic �nite automata. We refer the reader to

their paper for details.

Note that Theorem 11 addresses the optimization problem Con(dTC;TC) as a special case.

This problem is essentially that of �nding a set of weights in a neural network that yields the desired

input-output behavior, sometimes referred to as the loading problem. Theorem 11 states that even

if we allow a much larger net than is actually required, �nding these weights is computationally

intractable, even for only a constant number of \hidden layers". This result should be contrasted

with those of Judd [25] and Blum and Rivest [12], which rely on the weaker assumption P 6= NP

but do not prove hardness for relaxed consistency and do not allow the hypothesis network to be

substantially larger than the smallest consistent network. We also make no assumptions on the

topology of the output circuit.

Theorems 9, 10 and 11 are interesting for at least two reasons. First, they suggest that it is pos-

sible to obtain stronger hardness results for combinatorial optimization approximation algorithms

33

by using stronger complexity-theoretic assumptions. Such results seem di�cult to obtain using only

the assumption P 6= NP . Second, these results provide us with natural examples of optimization

problems for which it is hard to approximate the optimal solution even within a multiplicative fac-

tor that grows as a function of the input size. Several well-studied problems apparently have this

property, but little has been proven in this direction. Perhaps the best example is graph coloring,

where the best polynomial-time algorithms require approximately n1�1=(k�1) colors on k-colorable

n-vertex graphs (see Wigderson [40] and Blum [11]) but coloring has been proven NP-hard only for

(2��)k colors for any � > 0 (see Garey and Johnson [20]). Thus for 3-colorable graphs we only know

that 5-coloring is hard, but the best algorithm requires roughly O(n0:4) colors on n-vertex graphs!

This leads us to look for approximation-preserving reductions from our provably hard optimization

problems to other natural problems.

We now de�ne a class of optimization problems that we call formula coloring problems. Here

we have variables y1; : : : ; ym assuming natural number values, or colors. We regard an assignment

of colors to the yi (called a coloring) as a partition P of the variable set into equivalence classes;

thus two variables have the same color if and only if they are in the same equivalence class. We

consider Boolean formulae that are formed using the standard basis over atomic elements of the

form (yi = yj) and (yi 6= yj), where the predicate (yi = yj) is satis�ed if and only if yi and yj are

assigned the same color.

A model for such a formula F (y1; : : : ; ym) is a coloring of the variables y1; : : : ; ym such that F is

satis�ed. A minimum model for the F is a model using the fewest colors. For example, the formula

(y1 = y2) _ ((y1 6= y2) ^ (y3 6= y4))

has as a model the two-color partition fy1; y3g; fy2; y4g and has as a minimummodel the one-color

partition fy1; y2; y3; y4g.

We will be interested in the problem of �nding minimummodels for certain restricted classes of

formulae. For F (y1; : : : ; ym) a formula as described above, and P a model of F , we let jP j denote

the number of colors in P and optFC (F) the number of colors in a minimum model of F .

We �rst show how graph coloring can be exactly represented as a formula coloring problem.

If G is a graph, then for each edge (vi; vj) in G, we conjunct the expression (yi 6= yj) to the

formula F (G). Then optFC (F (G)) is exactly the number of colors required to color G. Similarly,

34

by conjuncting expressions of the form

((y1 6= y2) _ (y1 6= y3) _ (y2 6= y3))

we can also exactly represent the 3-hypergraph coloring problem (where each hyperedge contains 3

vertices) as a formula coloring problem.

To prove our hardness results, we consider a generalization of the graph coloring problem:

The Formula Coloring Problem FC :

Input: A formula F (y1; : : : ; ym) which is a conjunction only of expressions of the form (yi 6= yj)

(as in the graph coloring problem) or of the form ((yi 6= yj) _ (yk = yl)).

Output: A minimum model for F .

We will show that approximating an optimal solution to this problem is as hard as approximating

the consistency problem Con(DFA;DFA), where DFA is the class of deterministic �nite automata.

Note that this problem is at least as hard to approximate as Con(ADFA; H), which we have already

proven an approximation hardness result in Theorem 10.

Theorem 12 There is a polynomial-time algorithm A that on input an instance S of the problem

Con(DFA;DFA) outputs an instance F (S) of the formula coloring problem such that S has a

k-state consistent hypothesis M 2 DFA if and only if F (S) has a model of k colors.

Proof: Let S contain the labeled examples

< w1; b1 >;< w2; b2 >; : : : ; < wm; bm >

where each wi 2 f0; 1gn and bi 2 f0; 1g. Let wj
i denote the jth bit of wi. We create a variable zji

for each 1 � i � n and 0 � j � m. Let M be a smallest DFA consistent with S. Then we interpret

z
j
i as representing the state that M is in immediately after reading the bit wj

i on input wi. The

formula F (S) will be over the zji and is constructed as follows: for each i1; i2 and j1; j2 such that

0 � j1; j2 < n and wj1+1
i1

= wj2+1
i2

we conjunct the predicate

((zj1i1 = zj2i2)! (zj1+1i1
= zj2+1i2

))

to F (S). Note that this predicate is equivalent to

((zj1i1 6= zj2i2) _ (zj1+1i1
= zj2+1i2

))

35

and thus has the required form. These formulae are designed to encode the constraint that if M is

in the same state in two di�erent computations on input strings from S, and the next input symbol

is the same in both strings, then the next state in each computation must be the same.

For each i1; i2 (1 � i1; i2 � m) such that bi1 6= bi2 we conjunct the predicate (z
n
i1
6= zni2). These

predicates are designed to encode the constraint that the input strings in S that are accepted by

M must result in di�erent �nal states than those strings in S that are rejected by M .

We �rst prove that ifM has k states, then optFC (F (S)) � k. In particular, let P be the k-color

partition that assigns zj1i1 and zj2i2 the same color if and only if M is in the same state after reading

wj1
i1

on input wi1 and after reading wj2
i2

on input wi2 . We show that P is a model of F (S). A

conjunct

((zj1i1 = zj2i2)! (zj1+1i1
= zj2+1i2

))

of F (S) cannot be violated by P since this conjunct appears only if wj1+1
i1

= w
j2+1
i2

; thus if state zj1i1

is equivalent to state zj2i2 then state zj1+1i1
must be equivalent to state zj2+1i2

sinceM is deterministic.

A conjunct

(zni1 6= zni2)

of F (S) cannot be violated by P since this conjunct appears only if bi1 6= bi2, and if state zni1 is

equivalent to state zni2 then wi1 and wi2 are either both accepted or both rejected by M , which

contradicts M being consistent with S.

For the other direction, we show that if optFC (F (S)) � k then there is a k-state DFA M 0

that is consistent with S. M 0 is constructed as follows: the k states of M 0 are labeled with the k

equivalence classes (colors)X1; : : :Xk of the variables z
j
i in a minimummodel P 0 for F (S). There is

a transition from state Xp to state Xq if and only if there are i; j such that zji 2 Xp and z
j+1
i 2 Xq;

this transition is labeled with the symbol wj+1
i . We label Xp an accepting (respectively, rejecting)

state if for some variable zni 2 Xp we have bi = 1 (respectively, bi = 0).

We �rst argue that no state Xp of M 0 can be labeled both an accepting and rejecting state.

For if bi = 1 and bj = 0 then the conjunct (zni 6= znj) appears in F (S), hence z
n
i and znj must have

di�erent colors in P 0.

Next we show that M is in fact deterministic. For suppose that some state Xp has transitions

to Xq and Xr, and that both transitions are labeled with the same symbol. Then there exist i1; i2

and j1; j2 such that zj1i1 2 Xp and z
j1+1
i1

2 Xq, and z
j2
i2
2 Xp and z

j2+1
i2

2 Xr. Furthermore we must

36

have wj1+1
i1

= wj2+1
i2

since both transitions have the same label. But then the conjunct

((zj1i1 = zj2i2)! (zj1+1i1
= zj2+1i2

))

must appear in F (S), and this conjunct is violated P 0, a contradiction. Thus M 0 is deterministic.

These arguments prove that M 0 is a well-de�ned DFA. To see that M 0 is consistent with S,

consider the computation ofM 0 on any wi in S. The sequence of states visited on this computation

is just ECP 0(z1i); : : : ;ECP 0(zni), where ECP 0(zji) denotes the equivalence class of the variable z
j
i in

the coloring P 0. The �nal state ECP 0(zni) is by de�nition of M 0 either an accept state or a reject

state according to whether bi = 1 or bi = 0.

Note that if jSj is the number of bits in the sample S and jF (S)j denotes the number of

bits in the formula F (S), then in Theorem 12 we have jF (S)j = �(jSj2 log jSj) = O(jSj2+) for

any > 0 for jSj su�ciently large. This means that if an algorithm colors F (S) using at most

optFC (F (S))
�jF (S)j� for some � � 1 and � < 1

2 , then for jSj su�ciently large we can use the

reduction of Theorem 12 to �nd a DFA consistent with S that has at most k�jSj�
0
for some �0 < 1,

contradicting Theorem 10. Thus we have:

Theorem 13 The problems of inverting the RSA encryption function, recognizing quadratic residues

and factoring Blum integers are polynomial-time reducible to approximating the optimal solution to

an instance F of the formula coloring problem by a model P of F satisfying

jP j � optFC (F)
�jF j�

for any � � 1 and 0 � � < 1=2.

Figure 7.1 summarizes hardness results for coloring a formulaF using at most f(optFC (F))g(jF j)

colors for various functions f and g, where an entry \NP-hard" indicates that such an approxima-

tion is NP-hard, \Factoring" indicates that such an approximation is as hard as factoring Blum

integers (or recognizing quadratic residues or inverting the RSA function), and \P" indicates there

is a polynomial-time algorithm achieving this approximation factor. The NP-hardness results follow

from Garey and Johnson [20] and Pitt and Warmuth [34].

37

9 Open Problems

A technical open problem is to improve the constructions given here to prove representation-

independent hardness results for even simpler classes of formulae and circuits. It would also be

interesting to demonstrate a partial converse to our results: for instance, if we assume there is a

representation class that is hard to learn, can it be used to construct any interesting cryptographic

primitives?

We encourage the reader to see the paper of Angluin and Kharitonov [7], where the methods

here are extended to prove hardness results for learning with queries.

References

[1] L. Adleman, K. Manders, G. Miller.

On taking roots in �nite �elds.

Proceedings of the 18th I.E.E.E. Symposium on Foundations of Computer Science, 1977, pp.

175-178.

[2] A. Aho, J. Hopcroft, J. Ullman.

The design and analysis of computer algorithms.

Addison-Wesley, 1974.

[3] D. Aldous.

On the Markov chain simulation method for uniform combinatorial distributions and simu-

lated annealing.

University of California at Berkeley Statistics Department, technical report number 60, 1986.

[4] W. Alexi, B. Chor, O. Goldreich, C.P. Schnorr.

RSA and Rabin functions: certain parts are as hard as the whole.

S.I.A.M. Journal on Computing, 17(2), 1988, pp. 194-209.

[5] D. Angluin.

Lecture notes on the complexity of some problems in number theory.

Yale University Computer Science Department, technical report number TR-243, 1982.

38

[6] D. Angluin.

Learning regular sets from queries and counterexamples.

Information and Computation, 75, 1987, pp. 87-106.

[7] D. Angluin, M. Kharitonov.

When won't membership queries help?

Proceedings of the 23rd A.C.M. Symposium on the Theory of Computing, 1991, pp. 444-454.

[8] D. Angluin, P. Laird.

Learning from noisy examples.

Machine Learning, 2, 1988, pp. 319-342.

[9] D. Angluin, L.G. Valiant.

Fast probabilistic algorithms for Hamiltonian circuits and matchings.

Journal of Computer and Systems Sciences, 18, 1979, pp. 155-193.

[10] P.W. Beame, S.A. Cook, H.J. Hoover.

Log depth circuits for division and related problems.

S.I.A.M. Journal on Computing, 15(4), 1986, pp. 994-1003.

[11] A. Blum.

An ~O(n0:4)-approximation algorithm for 3-coloring.

Proceedings of the 21st A.C.M. Symposium on the Theory of Computing, 1989, pp. 535-542.

[12] A. Blum, R.L. Rivest.

Training a 3-node neural network is NP-complete.

Proceedings of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann

Publishers, 1988, pp. 9-18.

[13] M. Blum, S. Micali.

How to generate cryptographically strong sequences of pseudo-random bits.

S.I.A.M. Journal on Computing, 13(4), 1984, pp. 850-864.

39

[14] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth.

Occam's razor.

Information Processing Letters, 24, 1987, pp. 377-380.

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth.

Learnability and the Vapnik-Chervonenkis dimension.

Journal of the A.C.M., 36(4), 1989, pp. 929-965.

[16] A.K. Chandra, L.J. Stockmeyer, U. Vishkin.

Constant depth reducibility.

S.I.A.M. Journal on Computing, 13(2), 1984, pp. 423-432.

[17] H. Cherno�.

A measure of asymptotic e�ciency for tests of a hypothesis based on the sum of observations.

Annals of Mathematical Statistics, 23, 1952, pp. 493-509.

[18] W. Di�e, M. Hellman.

New directions in cryptography.

I.E.E.E. Transactions on Information Theory, 22, 1976, pp. 644-654.

[19] A. Ehrenfeucht, D. Haussler, M. Kearns. L.G. Valiant.

A general lower bound on the number of examples needed for learning.

Information and Computation, 82(3), 1989, pp. 247-261.

[20] M. Garey, D. Johnson.

Computers and intractability: a guide to the theory of NP-completeness.

Freeman, 1979.

[21] E.M. Gold.

Complexity of automaton identi�cation from given data.

Information and Control, 37, 1978, pp. 302-320.

[22] O. Goldreich, S. Goldwasser, S. Micali.

How to construct random functions.

Journal of the A.C.M., 33(4), 1986, pp. 792-807.

40

[23] T. Hancock.

On the di�culty of �nding small consistent decision trees.

Harvard University, unpublished manuscript, 1989.

[24] D. Haussler, M. Kearns, N. Littlestone, M. Warmuth.

Equivalence of models for polynomial learnability.

Proceedings of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann

Publishers, 1988, pp. 42-55, and University of California at Santa Cruz Information Sciences

Department, technical report number UCSC-CRL-88-06, 1988.

[25] S. Judd.

Learning in neural networks.

Proceedings of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann

Publishers, 1988, pp. 2-8.

[26] M. Kearns, M. Li, L. Pitt, L.G. Valiant.

On the learnability of Boolean formulae.

Proceedings of the 19th A.C.M. Symposium on the Theory of Computing, 1987, pp. 285-295.

[27] M. Kearns, L. Pitt.

A polynomial-time algorithm for learning k-variable pattern languages from examples.

Proceedings of the 1989 Workshop on Computational Learning Theory, Morgan Kaufmann

Publishers, 1989, pp. 57-71.

[28] E. Kranakis.

Primality and cryptography.

John Wiley and Sons, 1986.

[29] L. Levin.

One-way functions and pseudorandom generators.

Proceedings of the 17th A.C.M. Symposium on the Theory of Computing, 1985, pp. 363-365.

[30] M. Li, U. Vazirani.

On the learnability of �nite automata.

41

Proceedings of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann

Publishers, 1988, pp. 359-370.

[31] N. Linial, Y. Mansour, N. Nisan.

Constant depth circuits, Fourier transform and learnability.

Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Computer Science, 1989,

pp. 574-579.

[32] L. Pitt, L.G. Valiant.

Computational limitations on learning from examples.

Journal of the A.C.M., 35(4), 1988, pp. 965-984.

[33] L. Pitt, M.K. Warmuth.

Reductions among prediction problems: on the di�culty of predicting automata.

Proceedings of the 3rd I.E.E.E. Conference on Structure in Complexity Theory, 1988, pp.

60-69.

[34] L. Pitt, M.K. Warmuth.

The minimum consistent DFA problem cannot be approximated within any polynomial.

Proceedings of the 21st A.C.M. Symposium on the Theory of Computing, 1989, pp. 421-432.

[35] M.O. Rabin.

Digital signatures and public key functions as intractable as factoring.

M.I.T. Laboratory for Computer Science, technical report number TM-212, 1979.

[36] J. Reif.

On threshold circuits and polynomial computations.

Proceedings of the 2nd Structure in Complexity Theory Conference, 1987, pp. 118-125.

[37] R. Rivest, A. Shamir, L. Adleman.

A method for obtaining digital signatures and public key cryptosystems.

Communications of the A.C.M., 21(2), 1978, pp. 120-126.

[38] R. Schapire.

On the strength of weak learnability.

42

Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Computer Science, 1989,

pp. 28-33.

[39] L.G. Valiant.

A theory of the learnable.

Communications of the A.C.M., 27(11), 1984, pp. 1134-1142.

[40] A. Wigderson.

A new approximate graph coloring algorithm.

Proceedings of the 14th A.C.M. Symposium on the Theory of Computing, 1982, pp. 325-329.

[41] A.C. Yao.

Theory and application of trapdoor functions.

Proceedings of the 23rd I.E.E.E. Symposium on the Foundations of Computer Science, 1982,

pp. 80-91.

43

Di�culty of

coloring F using A = 1 A = jF j1=29 A = jF j0:499::: A = jF j

A �B colors

B = optFC (F) NP-hard NP -hard Factoring P

B = 1:99 : : :optFC (F) NP-hard Factoring Factoring P

B = (optFC (F))
� NP-hard Factoring Factoring P

any �xed � � 0

Figure 1: Di�culty of approximating the formula coloring problem using at most A �B colors on

input formula F . The constant 0:499 : : : is intended to indicate any value strictly smaller than 1
2 ;

the constant 1
29 is determined from the paper of Pitt and Warmuth.

44

