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Abstract: We give an analysis of the generalization error of cross validation in terms of two natural measures of
the difficulty of the problem under consideration: the approximation rate (the accuracy to which the target function
can be ideally approximated as a function of the number of hypothesis parameters), and the estimation rate (the
deviation between the training and generalization errors as a function of the number of hypothesis parameters). The
approximation rate captures the complexity of the target function with respect to the hypothesis model, and the
estimation rate captures the extent to which the hypothesis model suffers from overfitting. Using these two measures,
we give a rigorous and general bound on the error of cross validation. The bound clearly shows the tradeoffs involved
with making 
 — the fraction of data saved for testing — too large or too small. By optimizing the bound with
respect to 
, we then argue (through a combination of formal analysis, plotting, and controlled experimentation) that
the following qualitative properties of cross validation behavior should be quite robust to significant changes in the
underlying model selection problem:

� When the target function complexity is small compared to the sample size, the performance of cross validation is
relatively insensitive to the choice of 
.

� The importance of choosing 
 optimally increases, and the optimal value for 
 decreases, as the target function
becomes more complex relative to the sample size.

� There is nevertheless a single fixed value for 
 that works nearly optimally for a wide range of target function
complexity.

Category: Learning Theory.
Prefer oral presentation.

1 INTRODUCTION

In this paper we analyze the performance of cross validation in the context of model selection and complexity
regularization. We work in a setting in which we must choose the right number of parameters for a hypothesis function
in response to a finite training sample, with the goal of minimizing the resulting generalization error. There is a large
and interesting literature on cross validation methods, which often emphasizes asymptotic statistical properties, or the
exact calculation of the generalization error for simple models. (The literature is too large to survey here; foundational
papers include those of Stone [7, 8].) Our approach here is somewhat different, and is primarily inspired by two
sources: the work of Barron and Cover [2], who introduced the idea of bounding the error of a model selection method
(MDL in their case) in terms of a quantity known as the index of resolvability; and the work of Vapnik [9], who provides
extremely powerful and general tools for uniformly bounding the deviations between training and generalization errors.

We combine these methods to give a new and general analysis of cross validation performance. In the first and more
formal part of the paper, we give a rigorous bound on the error of cross validation in terms of two parameters of the
underlying model selection problem (which is defined by a target function, an input distribution, and a nested sequence
of increasingly complex classes of hypothesis functions): the approximation rate and the estimation rate, mentioned
in the abstract and defined formally shortly. Taken together, these two problem parameters determine (our analogue
of) the index of resolvability, and Vapnik’s work yields estimation rates applicable to many natural problems. In the
second part of the paper, we investigate the implications of our bound for choosing 
, the fraction of data withheld
for testing in cross validation. The most interesting aspect of this analysis is the identification of several qualitative



properties (identified in the abstract, and in greater detail in the paper) of the optimal 
 that appear to be invariant over
a wide class of model selection problems.

2 THE FORMALISM

In this paper we consider model selection as a two-part problem: choosing the appropriate number of parameters for
the hypothesis function, and tuning these parameters. The training sample is used in both steps of this process. In
many settings, the tuning of the parameters is determined by a fixed learning algorithm such as backpropagation, and
then model selection reduces to the problem of choosing the architecture (which determines the number of weights,
the connectivity pattern, and so on). For concreteness, here we adopt an idealized version of this division of labor.
We assume a nested sequence of function classes H1 � � � � � Hd � � �, called the structure [9], where Hd is a class of
boolean functions of d parameters, each function being a mapping from some input space X into f0; 1g. For simplicity,
in this paper we assume that the Vapnik-Chervonenkis (VC) dimension [10, 9] of the class Hd is O(d). To remove
this assumption, one simply replaces all occurrences of d in our bounds by the VC dimension of Hd. We assume that
we have in our possession a learning algorithm L that on input any training sample S and any value d will output a
hypothesis function hd 2 Hd that minimizes the training error over Hd — that is, �t(hd) = minh2Hd

f�t(h)g, where
�t(h) is the fraction of the examples in S on which h disagrees with the given label. In many situations, training
error minimization is known to be computationally intractable, leading researchers to investigate heuristics such as
backpropagation. The extent to which the theory presented here applies to such heuristics will depend in part on the
extent to which they approximate training error minimization for the problem under consideration; however, many of
our results have rigorous generalizations for the case in which no assumptions are made on the heuristic L (with the
quality of the bounds of course decaying with the quality of the hypotheses output by L).

Model selection is thus the problem of choosing the best value of d. More precisely, we assume an arbitrary target
function f (which may or may not reside in one of the function classes in the structure H1 � � � � � Hd � � �), and an
input distribution D; f and D together define the generalization error function �g(h) = Prx2D[h(x) 6= f(x)]. We
are given a training sample S of f , consisting of m random examples drawn according to D and labeled by f (with
the labels possibly corrupted by noise). In many model selection methods (such as Rissanen’s Minimum Description
Length Principle [5] and Vapnik’s Guaranteed Risk Minimization [9]), for each value of d = 1; 2; 3; : : :we give the
entire sample S and d to the learning algorithm L to obtain the function hd minimizing the training error inHd. Some
function of d and the training errors �t(hd) is then used to choose among the sequence h1; h2; h3; : : :. Whatever the
method, we interpret the goal to be that of minimizing the generalization error of the hypothesis selected.

In this paper, we will make the rather mild but very useful assumption that the structure has the property that for any
sample size m, there is a value dmax(m) such that �t(hdmax (m)) = 0 for any labeled sample S of m examples; we
will refer to the function dmax(m) as the fitting number of the structure 1. The fitting number formalizes the simple
notion that with enough parameters, we can always fit the training data perfectly, a property held by most sufficiently
powerful function classes (including multilayer neural networks). We typically expect the fitting number to be a linear
function of m, or at worst a polynomial in m. The significance of the fitting number for us is that no reasonable model
selection method should choose hd for d � dmax(m), since doing so simply adds complexity without reducing the
training error.

In this paper we concentrate on the simplest version of cross validation. Unlike the methods mentioned above, which
use the entire sample for training the hd, in cross validation we choose a parameter 
 2 [0; 1], which determines the
split between training and test data. Given the input sample S of m examples, let S0 be the subsample consisting of the
first (1�
)m examples in S, and S00 the subsample consisting of the last 
m examples. In cross validation, rather than
giving the entire sample S to L, we give only the smaller sample S0, resulting in the sequence h1; : : : ; hdmax ((1�
)m)

of increasingly complex hypotheses. Each hypothesis is now obtained by training on only (1� 
)m examples, which
implies that we will consider only d smaller than the corresponding fitting number dmax((1 � 
)m); let us introduce
the shorthand d
max for dmax((1 � 
)m). Cross validation chooses the hd satisfying hd = mini2f1;:::;d
maxg

f�00t (hi)g

where �00t (hi) is the error of hi on the subsample S00. Notice that we are not considering multifold cross validation, or
other variants that make more efficient use of the sample, because our analyses will require the independence of the
test set. However, we believe that many of the themes that emerge here apply to these more sophisticated variants as
well.

We use �cv (m) to denote the generalization error �g(hd) of the hypothesis hd chosen by cross validation when given
as input a sample S of m random examples of the target function; obviously, �cv (m) depends on the structure, f , D,
and the noise rate. When bounding �cv(m), we will use the expression “with high probability” to mean with probability

1Weaker definitions for dmax (m) also suffice, but this is the simplest.



1� � over the sampleS, for some small fixed constant � > 0. All of our results can also be stated with � as a parameter
at the cost of a log(1=�) factor in the bounds, or in terms of the expected value of �cv(m).

3 THE APPROXIMATION RATE

It is apparent that we should not expect to give nontrivial bounds on �cv(m) that take no account of some measure of
the complexity of the unknown target function f ; the correct measure of this complexity is less obvious. Following
the example of Barron and Cover’s analysis of MDL performance in the context of density estimation [2], we propose
the approximation rate as a natural measure of the complexity of f and D in relationship to the chosen structure
H1 � � � � � Hd � � �. Thus we define the approximation rate function �g(d) to be �g(d) = minh2Hd

f�g(h)g. The
function �g(d) tells us the best generalization error that can be achieved in the class Hd, and it is a nonincreasing
function of d. If �g(d0) = 0 for some sufficiently large d0, this means that the target function f , at least with respect
to the input distribution, is realizable in the class Hd0 , and thus d0 is a coarse measure of how complex f is. More
generally, even if �g(d) > 0 for all d, the rate of decay of �g(d) still gives a nice indication of how much representational
power we gain with respect to f and D by increasing the complexity of our models. Still missing, of course, is some
means of determining the extent to which this representational power can be realized by training on a finite sample of
a given size, but this will be added shortly. First we give examples of the approximation rate that we will examine in
some detail following the general bound on �cv (m).

The Intervals Problem. In this problem, the input space X is the real interval [0; 1], and the class Hd of the structure
consists of all boolean step functions over [0; 1] of at most d steps; thus, each function partitions the interval [0; 1]
into at most d disjoint segments (not necessarily of equal width), and assigns alternating positive and negative labels
to these segments. Thus, the input space is one-dimensional, but the structure contains arbitrarily complex functions
over [0; 1]. It is easily verified that our assumption that the VC dimension of Hd is O(d) holds here, and that the
fitting number obeys dmax(m) � m. Now suppose that the input density D is uniform, and suppose that the target
function f is the function of s alternating segments of equal width 1=s, for some s (thus, f lies in the class Hs). We
will refer to these settings as the intervals problem. Then the approximation rate �g(d) is �g(d) = (1=2)(1 � d=s) for
1 � d < s and �g(d) = 0 for d � s. Thus, as long as d < s, increasing the complexity d gives linear payoff in terms of
decreasing the optimal generalization error. For d � s, there is no payoff for increasing d, since we can already realize
the target function. The reader can easily verify that if f lies in Hs, but does not have equal width intervals, �g(d) is
still piecewise linear, but for d < s is “concave up”: the gain in approximation obtained by incrementally increasing
d diminishes as d becomes larger. Although the intervals problem is rather simple and artificial, a precise analysis of
cross validation behavior can be given for it, and we will argue that this behavior is representative of much broader
and more realistic settings.

The Perceptron Problem. In this problem, the input space X is <N for some large natural number N . The class
Hd consists of all perceptrons over the N inputs in which at most d weights are nonzero. If the input density is
spherically symmetric (for instance, the uniform density on the unit ball in <N ), and the target function is a function
in Hs with all s nonzero weights equal to 1, then it can be shown that the approximation rate function �g(d) is
�g(d) = (1=�) cos�1(

p
d=N) for d < s [6], and of course �g(d) = 0 for d � s. This problem provides a nice contrast

to the intervals problem, since here the behavior of the approximation rate for small d is concave down: as long as
d < s, an incremental increase in d yields more approximative power for large d than it does for small d (except for
very small values of d).

Power Law Decay. In addition to the specific examples just given, we would also like to study reasonably natural
parametric forms of �g(d), to determine the sensitivity of our theory to a plausible range of behaviors for the ap-
proximation rate. This is important, since in practice we do not expect to have precise knowledge of �g(d), since it
depends on the target function and input distribution. Following the work of Barron [1], who shows a c=d bound on
�g(d) for the case of neural networks with one hidden layer under a squared error generalization measure (where c is
a measure of target function complexity in terms of a Fourier transform integrability condition) 2, in the later part of
the paper we investigate �g(d) of the form (c=d)� + �min , where �min � 0 is a parameter representing the “degree
of unrealizability” of f with respect to the structure, and c; � > 0 are parameters capturing the rate of decay to �min .
Our analysis concludes that the qualitative phenomena we identify are invariant to wide ranges of choices for these
parameters.

Note that for all three cases, there is a natural measure of target function complexity captured by �g(d): in the intervals
problem it is the number of target intervals, in the perceptron problem it is the number of nonzero weights in the target,

2Since the bounds we will give have straightforward generalizations to real-valued function learning under squared error (details
in the full paper), examining behavior for �g(d) in this setting seems reasonable.



and in the more general power law case it is captured by the parameters of the power law. In the later part of the paper,
we will study cross validation performance as a function of these complexity measures, and obtain remarkably similar
predictions.

4 THE ESTIMATION RATE

For a fixed f , D and H1 � � � � � Hd � � �, we say that a function �(d;m) is an estimation rate bound if for all d and m,
with high probabilityover the sampleS we have j�t(hd)��g(hd)j � �(d;m), where as usual hd is the result of training
error minimization on S within Hd. Thus �(d;m) simply bounds the deviation between the training error and the
generalization error of hd 3. Note that the best such bound may depend in a complicated way on all of the elements of
the problem: f ,D and the structure. Indeed, much of the recent work on the statistical physics theory of learning curves
has documented the wide variety of behaviors that such deviations may assume [6, 3]. However, for many natural
problems it is both convenient and accurate to rely on a universal estimation rate bound provided by the powerful
theory of uniform convergence: Namely, for any f , D and any structure the function �(d;m) =

p
(d=m) log(m=d)

is an estimation rate bound [9] 4. Depending upon the details of the problem, it is sometimes appropriate to omit the
log(m=d) factor, and often appropriate to refine the

p
d=m behavior to a function that interpolates smoothly between

d=m behavior for small �t to
p
d=m for large �t. Although such refinements are both interesting and important, many

of the qualitative claims and predictions we will make are invariant to them as long as the deviation j�t(hd)� �g(hd)j
is well-approximated by a power law (d=m)� (� > 0); it will be more important to recognize and model the cases in
which power law behavior is grossly violated.

Note that this universal estimation rate bound holds only under the assumption that the training sample is noise-free,
but straightforward generalizations exist. For instance, if the training data is corrupted by random label noise at rate
0 � � < 1=2, then �(d;m) =

p
(d=(1� 2�)2m)log(m=d) is again a universal estimation rate bound.

After giving a general bound on �cv (m) in which the approximation and estimation rate functions are parameters, we
investigate the behavior of �cv(m) (and more specifically, of the parameter 
) for specific choices of these parameters.

5 THE BOUND

Theorem 1 Let H1 � � � � � Hd � � � be any structure, where the VC dimension of Hd is O(d). Let f and D be any
target function and input distribution, let �g(d) be the approximation rate function for the structure with respect to f
and D, and let �(d;m) be an estimation rate bound for the structure with respect to f and D. Then for any m, with
high probability

�cv(m) � min
1�d�d
max

f�g(d) + �(d; (1 � 
)m)g +O

0
@
s

log(d
max)


m

1
A (1)

where 
 is the fraction of the training sample used for testing, and d
max = dmax((1 � 
)m). Using the universal
estimation bound rate and the rather weak assumption that dmax(m) is polynomial in m, we obtain that with high
probability

�cv(m) � min
1�d�d
max

(
�g(d) +O

 s
d

(1 � 
)m
log
�m
d

�!)
+O

 s
log((1 � 
)m)


m

!
: (2)

Straightforward generalizations of these bounds for the case where the data is corrupted by random label noise can
be obtained, using the modified estimation rate bound mentioned in Section 4 (details in the full paper).

Proof Sketch: We have space only to highlight the main ideas of the proof. For each d from 1 to d
max , fix a function
fd 2 Hd satisfying �g(fd) = �g(d); thus, fd is the best possible approximation to the target f within the class Hd.
By a standard Chernoff bound argument it can be shown that with high probability we have j�t(fd) � �g(fd)j �p

log(d
max)=m for all 1 � d � d
max . This means that within each Hd, the minimum training error �t(hd) is at

3In the later and less formal part of the paper, we will often assume that specific forms of �(d;m) are not merely upper bounds
on this deviation, but accurate approximations to it.

4The results of Vapnik actually show the stronger result that j�t(h)� �g(h)j �
p
(d=m) log(m=d) for all h 2 Hd, not only

for the training error minimizer hd .



most �g(d) +
p

log(d
max)=m. Since �(d;m) is an estimation rate bound, we have that with high probability, for all
1 � d � d
max ,

�g(hd) � �t(hd) + �(d;m) (3)

� �g(d) +
q

log(d
max )=m+ �(d;m): (4)

Thus we have bounded the generalization error of the d
max hypotheses hd, only one of which will be selected. If we
knew the actual values of these generalization errors (equivalent to having an infinite test sample in cross validation),
we could bound our error by the minimum over all 1 � d � d
max of the expression (4) above. However, in cross
validation we do not know the exact values of these generalization errors but must instead use the 
m testing examples
to estimate them. Again by standard Chernoff bound arguments, this introduces an additional

p
log(d
max )=(
m)

error term, resulting in our final bound. This concludes the proof sketch.

In the bounds given by (1) and (2), the minf�g expression is analogous to Barron and Cover’s index of resolvability [2];
the final term in the bounds represents the error introduced by the testing phase of cross validation. These bounds
exhibit tradeoff behavior with respect to the parameter 
: as we let 
 approach 0, we are devoting more and more
of the sample to training the hd, and the estimation rate bound term �(d; (1 � 
)m) is decreasing. However, the test
error term O(

p
log(d
max)=(
m)) is increasing, since we have less data to accurately estimate the �g(hd). The reverse

phenomenon occurs as we let 
 approach 1.

While we believe Theorem 1 to be enlightening and potentially useful in its own right, we would now like to take
its interpretation a step further. More precisely, suppose we assume that the bound is an approximation to the actual
behavior of �cv (m). Then in principle we can optimize the bound to obtain the best value for 
. Of course, in addition
to the assumptions involved (the main one being that �(d;m) is a good approximation to the training-generalization
error deviations of the hd), this analysis can only be carried out given information that we should not expect to have
in practice (at least in exact form) — in particular, the approximation rate function �g(d), which depends on f and D.
However, we argue in the coming sections that several interesting qualitative phenomena regarding the choice of 
 are
largely invariant to a wide range of natural behaviors for �g(d).

6 A CASE STUDY: THE INTERVALS PROBLEM

We begin by performing the suggested optimization of 
 for the intervals problem. Recall that the approximation
rate here is �g(d) = (1=2)(1 � d=s) for d < s and �g(d) = 0 for d � s, where s is the complexity of the target
function. Here we analyze the behavior obtained by assuming that the estimation rate �(d;m) actually behaves as
�(d;m) =

p
d=(1 � 
)m (so we are omitting the log factor from the universal bound) 5, and to simplify the formal

analysis a bit (but without changing the qualitative behavior) we replace the term
p

log((1 � 
)m)=(
m) by the
weaker

p
log(m)=m. Thus, if we define the function

F (d;m; 
) = �g(d) +
p
d=(1� 
)m +

p
log(m)=(
m) (5)

then following (1), we are approximating �cv (m) by �cv(m) � min1�d�d
max
fF (d;m; 
)g 6 (see Figure 1 for a plot

of this approximation).

The first step of the analysis is to fix a value for 
 and differentiate F (d;m; 
) with respect to d to discover the
minimizing value of d. This differentiation must have two regimes due to the discontinuity at d = s in �g(d). It
is easily verified that the derivative is �(1=2s) + 1=(2

p
d(1 � 
)m) for d < s and 1=(2

p
d(1 � 
)m) for d � s.

It can be shown that provided that (1 � 
)m � 4s then d = s is a global minimum of of F (d;m; 
), and if
this condition is violated then the value we obtain for �cv (m) is vacuously large anyway (meaning that this fixed
choice of 
 can not end up being the optimal one, or, if m < 4s, that our analysis claims we simply do not have
enough data for nontrivial generalization, regardless of how we split it between training and testing). Plugging
in d = s yields �cv(m) � F (s;m; 
) =

p
s=(1 � 
)m +

p
log(m)=(
m) for this fixed choice of 
. Now by

differentiating F (s;m; 
) with respect to 
, it can be shown that the optimal choice of 
 under the assumptions is

opt = (log(m)=s)1=3=(1 + (log(m)=s)1=3).

5It can be argued that this power law estimation rate is actually a rather accurate approximation for the true behavior of the
training-generalization deviations of the hd for this problem.

6Although there are hidden constants in the O(�) notation of the bounds, it is the relative weights of the estimation and test error
terms that is important, and choosing both constants equal to 1 is a reasonable choice (since both terms have the same Chernoff
bound origins).



It is important to remember at this point that despite the fact that we have derived a precise expression for 
opt , due
to the assumptions and approximations we have made in the various constants, any quantitative interpretation of this
expression is meaningless. However, we can reasonably expect that this expression captures the qualitative way in
which the optimal 
 changes as the amount of data m changes in relation to the target function complexity s. On this
score the situation initially appears rather bleak, as the function (log(m)=s)1=3=(1 + (log(m)=s)1=3) is quite sensitive
to the ratio log(m)=s. For example, for m = 10000, if s = 10 we obtain 
opt = 0:524 � � �, if s = 100 we obtain

opt = 0:338 � � �, and if s = 1000 we obtain 
opt = 0:191 � � �. Thus 
opt is becoming smaller as log(m)=s becomes
small, and the analysis suggests vastly different choices for 
opt depending on the target function complexity, which
is something we do not expect to have the luxury of knowing in practice.

However, it is both fortunate and interesting that 
opt does not tell the entire story. In Figure 2, we plot the function
F (s;m; 
) 7 as a function of 
 for m = 10000 and for several different values of s (note that for consistency with
the later experimental plots, the x axis of the plot is actually the training fraction 1 � 
). Here we can observe four
important qualitative phenomena:

(A) When s is small compared to m, the predicted error is relatively insensitive to the choice of 
: as a function of 
,
F (s;m; 
) has a wide, flat bowl, indicating a wide range of 
 yielding essentially the same near-optimal error.

(B) As s becomes larger in comparison to the fixed sample size m, the relative superiority of 
opt over other values
for 
 becomes more pronounced. In particular, large values for 
 become progressively worse as s increases. For
example, the plots indicate that for s = 10 (again, m = 10000), even though 
opt = 0:524 � � � the choice 
 = 0:75
will result in error quite near that achieved using 
opt . However, for s = 500, 
 = 0:75 is predicted to yield greatly
suboptimal error.

(C) Because of the insensitivity to 
 for s small compared to m, there is a fixed value of 
 which seems to yield
reasonably good performance for a wide range of values for s; this value is essentially the value of 
opt for the case
where s is large (but nontrivial generalization is still possible), since choosing the best value for 
 is more important
there than for the small s case. Note that for very large s, the bound predicts vacuously large error for all values of 
,
so that the choice of 
 again becomes irrelevant.

(D) The value of 
opt is decreasing as s increases. This is slightly difficult to confirm from the plot, but can be seen
clearly from the precise expression for 
opt.

Despite the fact that our analysis so far has been rather specialized (addressing the behavior for a fixed structure,
target function and input distribution), it is our belief that (A), (B), (C) and (D) above are rather universal phenomena
that hold for many other model selection problems. For instance, we shall shortly demonstrate that our theory again
predicts that (A), (B), (C) and (D) hold for the perceptron problem, and for case of power law decay of �g(d) described
earlier. First we give an experimental demonstration that at least the predicted properties (A), (B) and (C) truly do hold
for the intervals problem.

In Figures 3, 4 and 5, we plot the results of experiments in which labeled random samples of size m = 5000 were
generated for a target function of s equal width intervals, for s = 10; 100 and 500. The samples were corrupted by
random label noise at rate � = 0:3. For each value of 
 and each value of d, (1 � 
)m of the sample was given to a
program implementing training error minimization for the class Hd

8; the remaining 
m examples were used to select
the best hd according to cross validation. The plots show the true generalization error of the hd selected by cross
validation as a function of 
; this generalization error can be computed exactly for this problem. Each point in the
plots represents an average over 10 trials.

While there are obvious and significant quantitative differences between these experimental plots and Figure 2, the
properties (A), (B) and (C) are rather clearly borne out by the data: (A) In Figure 3, where s is small compared to
m, there is a wide range of acceptable 
; it appears that any choice of 
 between 0:10 and 0:50 yields nearly optimal
generalization error. (B) By the time s = 100 (Figure 4), the sensitivity to 
 is considerably more pronounced. For
example, the choice 
 = 0:50 now results in clearly suboptimal performance, and it is more important to have 
 close
to 0:10. (C) Despite these complexities, there does indeed appear to be single value of 
 — approximately 0:10 —
that performs nearly optimally for the entire range of s examined.

The property (D) — namely, that the optimal 
 decreases as the target function complexity is increased relative to a
fixed m — is certainly not refuted by the experimental results, but any such effect is simply too small to be verified. It

7In the plots, we now use the more accurate test penalty term
p

log((1 � 
)m)=(
m) since we are no longer concerned with
simplifying the calculation.

8A nice feature of the intervals problem is the fact that training error minimization can be performed in almost linear time using
a dynamic programming approach [4].



would be interesting to verify this prediction experimentally, perhaps on a different problem where the predicted effect
is more pronounced.

7 POWER LAW DECAY AND THE PERCEPTRON PROBLEM

For the cases where the approximation rate �g(d) obeys either power law decay or is that derived for the perceptron
problem discussed in Section 3, the behavior of �cv (m) as a function of 
 predicted by our theory is largely the
same. For example, if �g(d) = (c=d) and we use the standard estimation rate �(d;m) =

p
d=(1� 
)m, then an

analysis similar to that performed for the intervals problem reveals that for fixed 
 the minimizing choice of d is
d = (4c2(1 � 
)m)1=3; plugging this value of d back into the bound on �cv (m) yields Figure 6, which, like Figure 2
for the intervals problem, shows the predicted behavior of �cv(m) as a function of 
 for a fixed m and several different
choices for the complexity parameter c. We again see that properties (A), (B), (C) and (D) hold strongly despite the
change in �g(d) from the intervals problem (although quantitative aspects of the prediction, which already must be
taken lightly for reasons previously stated, have obviously changed, such as the “interesting” values of the ratio of
sample size to target function complexity).

Through a combination of formal analysis and plotting, it is possible to demonstrate that the properties (A), (B), (C)
and (D) are robust to wide variations in the parameters � and �min in the parametric form �g(d) = (c=d)� + �min ,
as well as wide variations in the form of the estimation rate �(d;m). For example, if �g(d) = (c=d)2 (faster than the
approximation rate examined above) and � = d=m (faster than the estimation rated examined above), then for the
interesting ratios of m to c (that is, where the generalization error predicted is bounded away from 0 and the trivial
value of 1=2), a figure quite similar to Figure 6 is obtained. Similar predictions can be derived for the perceptron
problem using the universal estimation rate bound or any similar power law form.

In summary, our theory predicts that although significant quantitative differences in the behavior of cross validation
may arise for different model selection problems, the properties (A), (B), (C) and (D) should be present in a wide range
of problems. At the very least, the behavior of our bounds exhibits these properties for a wide range of problems. It
would be interesting to try to identify natural problems for which one or more of these properties is strongly violated;
a potential source for such problems may be those for which the underlying learning curve deviates from classical
power law behavior [6, 3].
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Figure 1: Plot of the bound/approximation �cv(m) � �g(d) +p
d=(1 � 
)m+

p
log((1 � 
)m)=(
m) as a function of the training

fraction 1 � 
 and d for m = 10000, and �g(d) for the intervals prob-
lem with a target function of complexity s = 100. Several interesting
features are evident for these values, including the predicted choice of
d = s = 100, and the curvature as a function of 
, indicating a unique
optimal choice for 
 bounded away from 0 and 1. (Note that we have
plotted the minimum of the bound and 0.5, since this generalization
error can be trivially achieved by flipping a fair coin.)
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Figure 2: Plot of the predicted generalization error of cross validation
for the intervals model selection problem, as a function of the fraction
1�
 of data used for training. (In the plot, the fraction of training data
is 0 on the left (
 = 1) and 1 on the right (
 = 0)). The fixed sample
sizem = 10; 000 was used, and the 6 plots show the error predicted by
the theory for target function complexity values s = 10 (bottom plot),
50, 100, 250, 500, and 1000 (top plot). The movement and relative
superiority of the optimal choice for 
 identified by properties (A), (B),
(C) and (D) can be seen clearly. (We have again plotted the minimum
of the the predicted error and 0.5.)
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Figure 3: Experimental plot of cross validation generalization error
as a function of training set size (1� 
)m, for s = 10 and m = 5000,
with 30% label noise added. As in Figure 2, the x axis indicates the
amount of data used for training. For this small value of the ratio of s
to m, property (A) predicted by the theory is confirmed: there is a wide
range of 
 values yielding essentially the same generalization error.
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Figure 4: Experimental plot of cross validation generalization error
as a function of training set size (1 � 
)m as in Figure 3, but now for
the target function complexity s = 100. Property (B) predicted by the
theory can be seen: compared to Figure 3, the relative superiority of
the optimal 
 over other values is increasing, and in particular larger
values of 
 (such as 0:5) are now clearly suboptimal choices.

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000

err vs cv ratio, 500 at 50/50, 30 noise, sample 5000

Figure 5: Experimental plot of cross validation generalization error as
a function of training set size (1�
)m, now for s = 500. Figures 3, 4
and 5 together confirm the predicted property (C): as in the theoretical
plot of Figure 2, despite the differing shapes of the three plots there is a
fixed value (about 
 = 0:1) yielding near-optimal performance for the
entire range of s.
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Figure 6: Plot of the predicted generalization error of cross validation
for the case �g(d) = (c=d), as a function of the fraction 1 � 
 of data
used for training. The fixed sample size m = 25;000 was used, and
the 6 plots show the error predicted by the theory for target function
complexity values c = 1 (bottom plot), 25, 50, 75, 100, and 150 (top
plot). Properties (A), (B), (C) and (D) are again evident. (We have
again plotted the minimum of the the predicted error and 0.5.)


