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Abstract: We give an analysis of the generalization error of cross validation in terms of two natural measures of
the difficulty of the problem under consideration: the approximation rate (the accuracy to which the target function
can be ideally approximated as a function of the number of hypothesis parameters), and the estimation rate (the
deviation between the training and generalization errors as a function of the number of hypothesis parameters). The
approximation rate captures the complexity of the target function with respect to the hypothesis model, and the
estimation rate captures the extent to which the hypothesismodel suffers from overfitting. Using these two measures,
we give arigorous and genera bound on the error of cross validation. The bound clearly shows the tradeoffsinvolved
with making v — the fraction of data saved for testing — too large or too small. By optimizing the bound with
respect to vy, we then argue (through a combination of forma anaysis, plotting, and controlled experimentation) that
the following qualitative properties of cross validation behavior should be quite robust to significant changes in the
underlying model selection problem:

¢ When the target function complexity is small compared to the sample size, the performance of cross vaidationis
relatively insensitiveto the choice of ~.

e The importance of choosing v optimally increases, and the optimal value for v decreases, as the target function
becomes more complex relative to the sample size.

e There is nevertheless a single fixed value for v that works nearly optimally for a wide range of target function
complexity.

Category: Learning Theory.
Prefer ord presentation.

1 INTRODUCTION

In this paper we analyze the performance of cross validation in the context of model selection and complexity
regularization. We work in a setting in which we must choose the right number of parameters for ahypothesisfunction
in response to a finite training sample, with the goal of minimizing the resulting generalization error. Thereisalarge
and interesting literature on cross validation methods, which often emphasi zes asymptotic statistical properties, or the
exact calculation of the generaization error for simple models. (Theliteratureistoo large to survey here; foundational
papers include those of Stone [7, 8].) Our approach here is somewhat different, and is primarily inspired by two
sources: thework of Barron and Cover [2], who introduced the idea of bounding the error of amodel selection method
(MDL intheir case) intermsof aquantity known astheindex of resolvability; and thework of Vapnik [9], who provides
extremely powerful and general toolsfor uniformly bounding the deviati onsbetween training and generalization errors.

We combine these methods to give a new and general analysis of cross validation performance. In the first and more
formal part of the paper, we give arigorous bound on the error of cross validation in terms of two parameters of the
underlying model selection problem (which is defined by atarget function, an input distribution, and a nested sequence
of increasingly complex classes of hypothesisfunctions): the approximation rate and the estimation rate, mentioned
in the abstract and defined formally shortly. Taken together, these two problem parameters determine (our analogue
of) the index of resolvability, and Vapnik’s work yields estimation rates applicable to many natura problems. In the
second part of the paper, we investigate the implications of our bound for choosing «, the fraction of data withheld
for testing in cross validation. The most interesting aspect of this analysis is the identification of severa qualitative



properties (identified in the abstract, and in greater detail in the paper) of the optimal ~ that appear to be invariant over
awide class of model selection problems.

2 THE FORMALISM

In this paper we consider model selection as a two-part problem: choosing the appropriate number of parameters for
the hypothesis function, and tuning these parameters. The training sample is used in both steps of this process. In
many settings, the tuning of the parameters is determined by afixed learning a gorithm such as backpropagation, and
then mode selection reduces to the problem of choosing the architecture (which determines the number of weights,
the connectivity pattern, and so on). For concreteness, here we adopt an idealized version of this division of labor.
We assume a nested sequence of function classes H; C --- C Hy- -+, caled the structure [9], where H; is aclass of
boolean functionsof d parameters, each function being a mapping from someinput space X into {0, 1}. For simplicity,
in this paper we assume that the Vapnik-Chervonenkis (VC) dimension [10, 9] of the class Hy is O(d). To remove
this assumption, one simply replaces al occurrences of d in our bounds by the VC dimension of Hz. We assume that
we have in our possession a learning algorithm L that on input any training sample S and any value d will output a
hypothesisfunction kg € Hy that minimizes thetraining error over Hg — that is, €,(hq) = Minem, {e:(h)}, where
e:(k) is the fraction of the examples in S on which h disagrees with the given label. In many situations, training
error minimization is known to be computationally intractable, leading researchers to investigate heuristics such as
backpropagation. The extent to which the theory presented here applies to such heuristics will depend in part on the
extent to which they approximeate training error minimization for the problem under consideration; however, many of
our results have rigorous generalizations for the case in which no assumptions are made on the heuristic L (with the
quality of the bounds of course decaying with the quality of the hypotheses output by L).

Model selection is thus the problem of choosing the best value of d. More precisely, we assume an arbitrary target
function f (which may or may not reside in one of the function classes in the structure Hy C --- C Hg---), and an
input distribution D; f and D together define the generalization error function eg(h) = Prgeplh(z) # f(z)]. We
are given atraining sample S of f, consisting of m random examples drawn according to D and labeled by f (with
the labels possibly corrupted by noise). In many model sel ection methods (such as Rissanen’s Minimum Description
Length Principle [5] and Vapnik's Guaranteed Risk Minimization [9]), for each valueof d = 1,2, 3, ... we give the
entire sample S and d to the learning a gorithm L to obtain the function kg minimizing thetraining error in Hy. Some
function of d and the training errors e;(kq) is then used to choose among the sequence k1, ko, kg, . . .. Whatever the
method, we interpret the goa to be that of minimizing the generalization error of the hypothesis sel ected.

In this paper, we will make the rather mild but very useful assumption that the structure has the property that for any
sample size m, there is avalue dmaz(m) such that €;(hg,, 4, (m)) = 0 for any labeled sample S of m examples, we

will refer to the function domas(m) as the fitting number of the structure . The fitting number formalizes the simple
notion that with enough parameters, we can always fit the training data perfectly, a property held by most sufficiently
powerful function classes (including multilayer neura networks). We typically expect the fitting number to be alinear
function of m, or at worst apolynomia inm. The significance of the fitting number for usisthat no reasonable model
selection method should choose kg for d > dumez(m), since doing so simply adds complexity without reducing the
training error.

In this paper we concentrate on the simplest version of cross validation. Unlike the methods mentioned above, which
use the entire sample for training the k4, in cross vaidation we choose a parameter v € [0, 1], which determines the
split between training and test data. Given theinput sample S of m examples, let S’ be the subsampl e consisting of the
first (1—~)m examplesin S, and S”’ the subsample consisting of thelast ym examples. In crossvalidation, rather than
giving the entire sample S to L, we give only the smaller sample S’, resulting in the sequence hy, . . ., Agp gz ((1-v)m)
of increasingly complex hypotheses. Each hypothesisis now obtained by training on only (1 — v)m examples, which
impliesthat we will consider only d smaller than the corresponding fitting number dpq.((1 — v)m); let usintroduce
the shorthand d7, ., for dmaz((1 — v)m). Crossvalidation choosesthe hy satisfying hg = MiNiega . ax, 1{€;'(hi)}
where €' (k;) isthe error of h; on the subsample 5. Notice that we are not considering multifold cross validation, or
other variants that make more efficient use of the sample, because our analyses will require the independence of the
test set. However, we believe that many of the themes that emerge here apply to these more sophisticated variants as
well.

We use e, (m) to denote the generalization error e4(hq) of the hypothesis hy chosen by cross validation when given
asinput asample S of m random examples of the target function; obviously, e.,(m) depends on the structure, f, D,
and thenoiserate. When bounding eq,(m), we will use the expression “ with high probability” to mean with probability

"Weaker definitionsfor dmaz(m) also suffice, but thisis the simplest.



1— 4 over thesample S, for some small fixed constantd > 0. All of our resultscan a so be stated with § as a parameter
at the cost of alog(1/4) factor in the bounds, or in terms of the expected vaue of e, (m).

3 THE APPROXIMATION RATE

It is gpparent that we should not expect to give nontrivial bounds on e.,(m) that take no account of some measure of
the complexity of the unknown target function f; the correct measure of this complexity is less obvious. Following
the example of Barron and Cover’s analysisof MDL performance in the context of density estimation [2], we propose
the approximation rate as a natura measure of the complexity of f and D in relaionship to the chosen structure
Hy C---C Hg---. Thus we define the approximation rate function e;(d) to be e;(d) = Minyecm,{eg(h)}. The
function e4(d) tells us the best generalization error that can be achieved in the class Hy, and it is a nonincressing
function of d. If e4(d") = O for some sufficiently large d’, this means that the target function f, at least with respect
to the input distribution, is realizable in the class Hyr, and thus d’ is a coarse measure of how complex f is. More
generdly, evenif e4(d) > Oforal d, therate of decay of ¢4(d) still givesaniceindicationof how much representational
power we gain with respect to f and D by increasing the complexity of our models. Still missing, of course, issome
means of determining the extent to which thisrepresentational power can be realized by training on afinite sample of
agiven size, but thiswill be added shortly. First we give examples of the approximation rate that we will examinein
some detail following the general bound on e, (m).

Thelntervals Problem. In thisproblem, theinput space X istherea interval [0, 1], and the class H, of the structure
consists of all boolean step functions over [0, 1] of a most d steps; thus, each function partitions the interva [0, 1]
into a most d digoint segments (not necessarily of equa width), and assigns alternating positive and negative labels
to these segments. Thus, the input space is one-dimensional, but the structure contains arbitrarily complex functions
over [0,1]. It iseasily verified that our assumption that the VC dimension of Hy is O(d) holds here, and that the
fitting number obeys dpq:(m) < m. Now suppose that the input density D is uniform, and suppose that the target
function f isthe function of s aternating segments of equa width 1/s, for some s (thus, f liesintheclass H,). We
will refer to these settings as the intervals problem. Then the approximation rate e, (d) iseq(d) = (1/2)(1 — d/s) for
1< d< sandey(d) = 0ford > s. Thus, aslongasd < s, increasing thecomplexity d giveslinear payoff interms of
decreasing the optimal generalization error. For d > s, thereisno payoff for increasing d, since we can already redlize
the target function. The reader can easily verify that if f liesin H,, but does not have equd width intervals, e4(d) is
still piecewise linear, but for d < s is*concave up”: the gain in approximation obtained by incrementally increasing
d diminishes as d becomes larger. Although the intervals problem is rather ssimple and artificial, a precise anaysis of
cross validation behavior can be given for it, and we will argue that this behavior is representative of much broader
and more realistic settings.

The Perceptron Problem. In this problem, the input space X is ®Y for some large natural number N. The class
Hg consists of al perceptrons over the N inputs in which at most d weights are nonzero. If the input density is
spherically symmetric (for instance, the uniform density on the unit ball in ®%), and the target function is a function
in H, with all s nonzero weights equal to 1, then it can be shown that the approximation rate function ey(d) is
€g(d) = (1/7) cos~Y(y/d/N) ford < s [6], and of course e, (d) = Ofor d > s. Thisproblem providesa nice contrast
to the intervals problem, since here the behavior of the approximation rate for small d is concave down: as long as
d < s, anincremental increase in d yields more approximative power for large d than it does for small d (except for
very small values of d).

Power Law Decay. In addition to the specific examples just given, we would also like to study reasonably natural
parametric forms of e4(d), to determine the sensitivity of our theory to a plausible range of behaviors for the ap-
proximation rate. Thisis important, since in practice we do not expect to have precise knowledge of ¢,4(d), since it
depends on the target function and input distribution. Following the work of Barron [1], who shows a ¢/d bound on
€4(d) for the case of neural networkswith one hidden layer under a squared error generalization measure (wherec is
ameasure of target function complexity in terms of a Fourier transform integrability condition) 2, in the later part of
the paper we investigate e,(d) of the form (¢/d)* + €min, Where emin > 0is aparameter representing the “degree
of unredlizability” of f with respect to the structure, and ¢, o > 0 are parameters capturing the rate of decay to €min -
Our analysis concludes that the qualitative phenomena we identify are invariant to wide ranges of choices for these
parameters.

Notethat for all three cases, thereisanatural measure of target function complexity captured by e4(d): intheintervals
problemit isthe number of target intervals, in the perceptron problemit isthe number of nonzero weightsin the target,

2Since the boundswe will give have straightforward generalizationsto real-valued function learning under squared error (details
in the full paper), examining behavior for e4(d) in this setting seems reasonable.



and in the more general power law case it is captured by the parameters of the power law. Inthelater part of the paper,
wewill study cross validation performance as a function of these complexity measures, and obtain remarkably similar
predictions.

4 THE ESTIMATION RATE

For afixed f, Dand H1 C --- C Hg- - -, wesay that afunction p(d, m) isan estimation rate bound if for al d and m,
with high probability over thesample S we have |e;(hg) —€4(ha)| < p(d, m), whereasusua kg istheresult of training
error minimization on S within Hg. Thus p(d, m) simply bounds the deviation between the training error and the
generalization error of k4 3. Note that the best such bound may depend in acomplicated way on all of the elements of
theproblem: f, D andthestructure. Indeed, much of the recent work on thestatistical physicstheory of learning curves
has documented the wide variety of behaviors that such deviations may assume [6, 3]. However, for many natura
problems it is both convenient and accurate to rely on a universal estimation rate bound provided by the powerful
theory of uniform convergence: Namely, for any f, D and any structure the function p(d, m) = /(d/m)log(m/d)
isan estimation rate bound [9] 4. Depending upon the details of the problem, it is sometimes appropriate to omit the
log(m/d) factor, and often appropriate to refine the /d/m behavior to afunction that interpolates smoothly between

d/m behavior for small ¢; to 1/d/m for large ¢;. Although such refinements are both interesting and important, many
of the qualitative claims and predictionswe will make are invariant to them as long as the deviation |e;(hg) — €4(hq)]
is well-approximated by a power law (d/m)* (a > 0); it will be more important to recognize and model the cases in
which power law behavior is grossly violated.

Note that this universal estimation rate bound holds only under the assumption that the training sample is noise-free,
but straightforward generaizations exist. For instance, if the training datais corrupted by random label noise at rate

0 < 7 < 1/2,then p(d, m) = 1/(d/(1 — 21)2m)log(m/d) isagain auniversa estimation rate bound.

After giving agenera bound on €., (m) in which the approximation and estimation rate functions are parameters, we
investigate the behavior of e.,(m) (and more specifically, of the parameter -y) for specific choices of these parameters.

5 THE BOUND

Theorem 1 Let H1 C --- C Hq- - - be any structure, where the VC dimension of Hy is O(d). Let f and D be any
target function and input distribution, et e;(d) be the approximation rate function for the structure with respect to f
and D, and let p(d, m) be an estimation rate bound for the structure with respect to f and D. Then for any m, with
high probability

T 1<d<d )y ym

ea(m) < min_ {eg(d) + p(d, (1 —y)m)} + O ( |09(d?nax)) (1)

where v is the fraction of the training sample used for testing, and d}ax = dmax((1 — v)m). Using the universal
estimation bound rate and the rather weak assumption that dmax(1) is polynomial in m, we obtain that with high

probability
eor(m) < lsg]siggm{eg(d)—l—O (\/ﬁlog(%))}+0( 'Og((%yi;”)m)) 2)

Sraightforward generalizations of these bounds for the case where the data is corrupted by random label noise can
be obtained, using the modified estimation rate bound mentioned in Section 4 (detailsin the full paper).

Proof Sketch: We have space only to highlight the main ideas of the proof. For each d from1tod}, ., fix afunction

fa € Hy satisfying e4(f2) = €4(d); thus, f4 is the best possible approximation to the target f within the class Hy.
By a standard Chernoff bound argument it can be shown that with high probability we have |e,(fi) — €4(fa)| <

log(dhaz)/m fordl 1 < d < d} This means that within each H4, the minimum training error e,(h4) is at

max”

3In the later and less formal part of the paper, we will often assumethat specific forms of p(d, m) are not merely upper bounds
on this deviation, but accurate approximationsto it.

“The results of Vapnik actually show the stronger result that |e:(k) — e4(h)| < +/(d/m)log(m/d) for all h € Ha, not only
for the training error minimizer k4.



most 4(d log(dhaz)/m. Since p(d, m) isan estimation rate bound, we have that with high probability, for all
1<d< d

mazx’

€g(ha)

IA

€t(ha) + p(d, m) 3)
< gg(d) +1/109(dmaz)/m + p(d, m). (4)

Thus we have bounded the generalization error of the d?, .. hypotheses kg4, only one of which will be selected. If we
knew the actual values of these generalization errors (equivalent to having an infinite test sample in cross validation),
we could bound our error by the minimum over al 1 < d < d7,,. of the expression (4) above. However, in cross
validation we do not know the exact val ues of these generalization errors but must instead use the ym testing examples
to estimate them. Again by standard Chernoff bound arguments, this introduces an additiona +/log(daz)/(ym
error term, resulting in our final bound. This concludes the proof sketch.

A

Inthe boundsgiven by (1) and (2), themin{-} expression isana ogousto Barron and Cover’sindex of resolvability [2];
the final term in the bounds represents the error introduced by the testing phase of cross validation. These bounds
exhibit tradeoff behavior with respect to the parameter +v: as we let v approach O, we are devoting more and more
of the sample to training the k4, and the estimation rate bound term p(d, (1 — y)m) is decreasing. However, the test
error term O(+/109(daz )/ (ym) ) isincreasing, sincewe have less datato accurately estimatethee, (hq). Thereverse
phenomenon occurs as we let -y approach 1.

While we believe Theorem 1 to be enlightening and potentially useful in its own right, we would now like to take
itsinterpretation a step further. More precisaly, suppose we assume that the bound is an approximation to the actual
behavior of €., (m). Thenin principlewe can optimizethe bound to obtain the best value for . Of course, in addition
to the assumptions involved (the main one being that p(d, m) is a good approximation to the training-generalization
error deviations of the k), thisanalysis can only be carried out given information that we should not expect to have
in practice (at least in exact form) — in particular, the approximation rate function e4(d), which depends on f and D.
However, we arguein the coming sections that several interesting qualitative phenomena regarding the choice of v are
largely invariant to a wide range of natural behaviorsfor e,(d).

6 A CASE STUDY: THE INTERVALS PROBLEM

We begin by performing the suggested optimization of ~ for the intervals problem. Recall that the approximation
rate hereis e4(d) = (1/2)(1 — d/s) for d < s and e4(d) = O for d > s, where s is the complexity of the target
function. Here we analyze the behavior obtained by assuming tha the estimation rate p(d, m) actually behaves as
p(d,m) = /d/(1— v)m (so we are omitting the log factor from the universal bound) ®, and to simplify the formal
anaysis a bit (but without changing the qualitative behavior) we replace the term 4/log((1 — v)m)/(ym) by the
weaker y/log(m)/m. Thus, if we define the function

F(d,m,7) = €g(d) +/d/(1—y)m + +/log(m)/(ym) (5)

then following (1), we are approximating €., (m) by €c.(m) ~ Minicacar,  {F(d, m,v)} 6 (see Figure 1 for aplot
of this approximation).

The first step of the analysis is to fix a value for y and differentiate F(d, m,y) with respect to d to discover the
minimizing value of d. This differentiation must have two regim& due to the discontinuity at d = s in ez(d). It
is easily verified that the derivative is —(1/2s) + 1/(2+/d(1 — vy)m) for d < s and 1/(2/d(1 — v)m) ford > s.
It can be shown that provided that (1 — y)m > 4s th en d=s |s a globa minimum of of F(d, m 5), and if
this condition is violated then the value we obtain for €cv(m) is vacuoudly large anyway (meaning that this fixed
choice of v can not end up being the optimal one, or, if m < 4s, that our analysis claims we simply do not have
enough data for nontrivial generdization, regardless of how we split it between training and testing). Plugging
ind = s yidds ecy(m) & F(s,m,y) = \/s/(1—v)m + y/log(m)/(ym) for this fixed choice of 7. Now by
differentiating F(s, m,~) with respect to v, it can be shown that the optimal choice of v under the assumptionsis
Yopt = (l0g(m)/s)"/3/(1+ (log(m)/s)"/3).

51t can be argued that this power law estimation rate is actually a rather accurate approximation for the true behavior of the
training-generalization deviations of the k4 for this problem.

SAlthough there are hidden constantsin the O(+) notation of the bounds, it isthe relative weights of the estimation and test error
terms that is important, and choosing both constants equal to 1 is a reasonable choice (since both terms have the same Chernoff
bound origins).




It is important to remember at this point that despite the fact that we have derived a precise expression for y,p¢, due
to the assumptions and approximations we have made in the various constants, any quantitativeinterpretation of this
expression is meaningless. However, we can reasonably expect that this expression captures the qualitative way in
which the optimal v changes as the amount of datam changes in relation to the target function complexity s. On this
score the situationinitially appears rather bleak, as the function (log(m)/s)*2/(1+ (log(m)/s)3) is quite sensitive
to the ratio log(m)/s. For example, for m = 10000, if s = 10 we obtain y,p¢ = 0.524-- -, if s = 100 we obtain
Yopt = 0.338- - -, and if s = 1000 we obtain v,p: = 0.191- - -. ThuS,p¢ IS becoming smaller aslog(m)/s becomes
small, and the analysis suggests vastly different choices for ,,: depending on the target function complexity, which
is something we do not expect to have the luxury of knowing in practice.

However, it is both fortunate and interesting that «y,,; does not tell the entire story. In Figure 2, we plot the function
F(s,m,v) " asafunction of v for m = 10000 and for severa different values of s (note that for consistency with
the later experimenta plots, the z axis of the plot is actualy the training fraction 1 — +). Here we can observe four
important qualitative phenomena:

(A) When s issmall compared to m, the predicted error isrelatively insensitive to the choice of v: as afunction of «,
F(s,m,v) hasawide, flat bowl, indicating a wide range of ~y yielding essentially the same near-optimal error.

(B) As s becomes larger in comparison to the fixed sample size m, the relative superiority of «,,; Over other values
for v becomes more pronounced. In particular, large values for v become progressively worse as s increases. For
example, the plotsindicate that for s = 10 (again, m = 10000), even though y,p¢ = 0.524- - - the choice y = 0.75
will result in error quite near that achieved using y,p¢. However, for s = 500, v = 0.75 is predicted to yield greatly
suboptimal error.

(C) Because of the insensitivity to v for s small compared to m, there is a fixed value of v which seems to yield
reasonably good performance for a wide range of valuesfor s; this value is essentialy the value of -y, for the case
where s islarge (but nontrivial generalization is still possible), since choosing the best value for  is more important
there than for the small s case. Notethat for very large s, the bound predicts vacuously large error for all values of -+,
so that the choice of v again becomes irrel evant.

(D) The value of v, is decreasing as s increases. Thisis dightly difficult to confirm from the plot, but can be seen
clearly from the precise expression for y,p¢.

Despite the fact that our analysis so far has been rather speciaized (addressing the behavior for a fixed structure,
target function and input distribution), it is our belief that (A), (B), (C) and (D) above are rather universal phenomena
that hold for many other model selection problems. For instance, we shall shortly demonstrate that our theory again
predictsthat (A), (B), (C) and (D) hold for the perceptron problem, and for case of power law decay of e4(d) described
earlier. First we give an experimental demonstration that at east the predicted properties (A), (B) and (C) truly do hold
for the intervals problem.

In Figures 3, 4 and 5, we plot the results of experimentsin which labeled random samples of size m = 5000 were
generated for a target function of s equal width intervals, for s = 10, 100 and 500. The samples were corrupted by
random label noise at rate = 0.3. For each value of v and each value of d, (1 — v)m of the sample was givento a
program implementing training error minimization for the class H 8; the remaining ym examples were used to select
the best k4 according to cross validation. The plots show the true generdization error of the hy selected by cross
validation as a function of «; this generalization error can be computed exactly for this problem. Each point in the
plots represents an average over 10 trials.

While there are obvious and significant quantitative differences between these experimental plots and Figure 2, the
properties (A), (B) and (C) are rather clearly borne out by the data: (A) In Figure 3, where s is small compared to
m, there isawide range of acceptable «; it appears that any choice of v between 0.10 and 0.50 yields nearly optimal
generaization error. (B) By thetime s = 100 (Figure 4), the sensitivity to v is considerably more pronounced. For
example, the choicey = 0.50 now resultsin clearly suboptimal performance, and it is more important to have v close
to 0.10. (C) Despite these complexities, there does indeed appear to be single value of v — approximately 0.10 —
that performs nearly optimally for the entire range of s examined.

The property (D) — namely, that the optimal v decreases as the target function complexity is increased relative to a
fixed m — iscertainly not refuted by the experimental results, but any such effect is simply too small to be verified. It

"In the plots, we now use the more accurate test penalty term \/ log((1 — «)m)/(ym) since we are no longer concerned with
simplifying the calculation.

8A nicefeature of the intervals problem is the fact that training error minimization can be performed in almost linear time using
adynamic programming approach [4].



would beinteresting to verify this prediction experimentaly, perhaps on a different problem where the predicted effect
is more pronounced.

7 POWER LAW DECAY AND THE PERCEPTRON PROBLEM

For the cases where the approximation rate e,4(d) obeys either power law decay or is that derived for the perceptron
problem discussed in Section 3, the behavior of e.,(m) as a function of v predicted by our theory is largely the
same. For example, if e;(d) = (¢/d) and we use the standard estimation rate p(d, m) = 1/d/(1— v)m, then an
analysis similar to that performed for the intervals problem reveals that for fixed v the minimizing choice of d is
d = (4c?(1 — v)m)Y3; plugging this value of d back into the bound on €., (m) yields Figure 6, which, like Figure 2
for theintervals problem, shows the predicted behavior of €., (m) asafunction of v for afixed m and several different
choices for the complexity parameter c. We again see that properties (A), (B), (C) and (D) hold strongly despite the
change in ¢,(d) from the intervals problem (although quantitative aspects of the prediction, which aready must be
taken lightly for reasons previoudly stated, have obvioudly changed, such as the “interesting” vaues of the ratio of
sample size to target function complexity).

Through a combination of formal analysis and plotting, it is possible to demonstrate that the properties (A), (B), (C)
and (D) are robust to wide variations in the parameters o and emin in the parametric form ez(d) = (¢/d)* + €min,
as well as wide variationsin the form of the estimation rate p(d, m). For example, if €,(d) = (c/d)? (faster than the
approximation rate examined above) and p = d/m (faster than the estimation rated examined above), then for the
interesting ratios of m to ¢ (that is, where the generalization error predicted is bounded away from O and the trivial
vaue of 1/2), afigure quite similar to Figure 6 is obtained. Similar predictions can be derived for the perceptron
problem using the universal estimation rate bound or any similar power law form.

In summary, our theory predicts that although significant quantitative differences in the behavior of cross validation
may arise for different model selection problems, the properties(A), (B), (C) and (D) should be present in awiderange
of problems. At the very least, the behavior of our bounds exhibits these properties for a wide range of problems. It
would beinteresting to try to identify natural problems for which one or more of these propertiesis strongly violated;
a potential source for such problems may be those for which the underlying learning curve deviates from classical
power law behavior [6, 3].
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cv error bound, intervals, s = 100, m = 10000

Figure 1: Plot of the bound/approximation en(m) = e€4(d) +
\/d/(1 - v)m++/log((1 — v)m)/(vym) asafunction of thetraining
fraction 1 — + and d for m = 10000, and ¢, (d) for the intervals prob-
lem with a target function of complexity s = 100. Several interesting
features are evident for these values, including the predicted choice of
d = s = 100, and the curvature as a function of «, indicating a unique
optimal choice for v bounded away from 0 and 1. (Note that we have
plotted the minimum of the bound and 0.5, since this generalization
error can be trivially achieved by flipping afair coin.)

err vs cv ratio, 10 at 50/50, 30 noise, sanple 5000
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Figure 3: Experimental plot of cross validation generalization error
asafunction of training set size (1 — v)m, for s = 10 and m = 5000,
with 30% label noise added. Asin Figure 2, the z axis indicates the
amount of data used for training. For this small value of theratio of s
to m, property (A) predicted by thetheory is confirmed: thereisawide
range of v valuesyielding essentially the same generalization error.

err vs cv ratio, 500 at 50/50, 30 noise, sanple 5000
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Figure5: Experimental plot of crossvalidation generalization error as
afunction of training set size (1 —~)m, now for s = 500. Figures3, 4
and 5 together confirm the predicted property (C): asin the theoretical
plot of Figure 2, despite the differing shapesof the three plotsthereisa
fixed value (about v = 0.1) yielding near-optimal performancefor the
entire range of s.

v error bound, intervals, d = s = 1000 slice, m=10000

Figure 2: Plot of the predicted generalization error of crossvalidation
for the intervals model selection problem, as a function of the fraction
1—~ of dataused for training. (In the plot, thefraction of training data
isOontheleft (y = 1) and 1 on theright (v = 0)). The fixed sample
sizem = 10, 000 was used, and the 6 plots show the error predicted by
the theory for target function complexity values s = 10 (bottom plot),
50, 100, 250, 500, and 1000 (top plot). The movement and relative
superiority of the optimal choicefor « identified by properties (A), (B),
(C) and (D) can be seen clearly. (We have again plotted the minimum
of the the predicted error and 0.5.)

err vs cv ratio, 100 at 50/50, 30 noise, sanple 5000
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Figure 4: Experimental plot of cross validation generalization error
asafunction of training set size (1 — v)m asin Figure 3, but now for
the target function complexity s = 100. Property (B) predicted by the
theory can be seen: compared to Figure 3, the relative superiority of
the optimal v over other values is increasing, and in particular larger
values of v (such as 0.5) are now clearly suboptimal choices.

cv bound, (c/d) for ¢ from1.0 to 150.0, nr25000

Figure 6: Plot of the predicted generalization error of crossvalidation
for the casee, (d) = (c/d), asafunction of the fraction 1 — + of data
used for training. The fixed sample size m = 25,000 was used, and
the 6 plots show the error predicted by the theory for target function
complexity valuese¢ = 1 (bottom plot), 25, 50, 75, 100, and 150 (top
plot). Properties (A), (B), (C) and (D) are again evident. (We have
again plotted the minimum of the the predicted error and 0.5.)



