A Network Formation Game for Bipartite Exchange Economies

Eyal Even-Dar, Michael Kearns, Siddharth Suri Computer and Information Science University of Pennsylvania

Abstract

We introduce a natural new network formation game in which buyers and sellers may purchase edges representing trading opportunities between themselves, and then accrue wealth in the resulting exchange economy. Our main result is an exact characterization of the set of bipartite graphs G that are Nash equilibria for this game. This characterization provides sharp limits on the amount and structure of wealth variation that can occur, as well as on the allowable equilibrium exchange rates.

1 Introduction

Recently there has been interest in both the computer science and economics communities in network formation games. Broadly speaking, in these multiplayer games, individuals may choose to share the cost of building a network by purchasing edges incident on themselves. Each player's overall utility consists of two, usually competing, components — on the one hand, the edge costs incurred by the player, and on the other, some measure of "benefit" accrued to the player by their participation or position in the network.

For instance, in one well-studied model [11, 1], individuals wish to minimize their edge purchases plus the sum of their (shortest-path) distances to all other players. Clearly there is a trade-off between these two components. Within such models there have been studies of the structural properties of those networks that are (pure strategy) Nash equilibria of the game, Price of Anarchy bounds, and other analyses. (See Related Work.)

As in the example above, in much of the prior research the benefit to a player for participating in the network measures some notion of their centrality or connectivity — shortest-path distances to other players, number of other players in the same component, and so on. In this paper we introduce and analyze a natural alternative — namely, we view the network formed by the players as defining trading opportunities, and

measure the network benefit to a player by the wealth they accrue from those trading opportunities.

Our point of departure is a recently introduced networked version of classical exchange economies [17], and more specifically its specialization to bipartite buyer-seller networks [16]. In the latter, there is an exogenously specified bipartite network between nbuyers (who each have an endowment of 1 divisible unit of an abstract commodity called cash) and nsellers (who each have an endowment of 1 divisible unit of an abstract commodity called wheat). Buyers have utility only for wheat and sellers only for cash, thus ensuring mutual interest in trade. The bipartite network is viewed as specifying all and only those pairs of buyers and sellers who may trade. Earlier work [17] established the existence of (market-clearing) equilibria in which prices and wealths may vary across the network due to topological asymmetries, paving the way for the later study [16] in which the network is generated according to standard stochastic (nonstrategic) network generation models. There it was established (for example) that Erdos-Renyi networks exhibit essentially no price or wealth variation, while those generated according to preferential attachment have unbounded wealth variation (growing as a root of the population size).

In this paper we start with the same bipartite buyer-seller model, but now endogenize the creation of the network to arrive at a natural network formation game. More precisely, we assume that any buyer (respectively, seller) is free to purchase an edge to any seller (respectively, buyer) at a cost of α . The selection of which edges to purchase by all parties specifies an undirected bipartite network G, and in this network each party i achieves some exchange equilibrium wealth $\omega(G,i)$. Our network formation game is then defined by specifying the overall utility to i as

$$u_i = -\alpha \times e(G, i) + \omega(G, i)$$

where e(G, i) is the number of edges in G purchased by

i. We view the u_i as defining a one-shot, simultaneous move game over the 2n players, in which each player's action is a selection of which edges to purchase; see Section 2 for a formal definition and discussion of the game.

The network formation game given by the u_i is similar in broad spirit to previous network formation games, but quite different in its details. As with previous models, each player is balancing an outlay of wealth for edge creation (trading opportunities) against some resulting participatory benefit in G; but now the participatory benefit is measured in terms of wealth gained from trade rather than connectivity or shortest paths.

Our main results provide a precise structural characterization of all the networks G that are Nash equilibria of the game defined by the payoffs u_i above. More precisely, we establish exact conditions on the amount of exchange equilibrium wealth variation that can occur for any given values of α and n, and show that this in turn sharply limits the connectivity structure of any Nash equilibrium network G. We then show that these limits are tight by demonstrating specific Nash equilibrium networks G that saturate them, thus yielding a comprehensive catalog of all Nash equilibria. The resulting characterization also places sharp limits on the possible exchange rates or prices that are possible. For example, while any rational price can exist at exchange equilibrium with an exogenously specified graph, only very specific prices can exist in a graph that is a Nash equilibrium of the formation game — an exchange rate of 2/5, for instance, is impossible.

To our knowledge this is the first network formation game of comparable complexity for which such a complete understanding of its Nash equilibria has been given; for prior models only broad structural restrictions have been established.

Related Work. Networks play a major role in the economics literature. The structure and characteristics of such networks were first theoretically researched by Aumann and Myerson [4], but were empirically studied long before. For example, Granovetter [13] found that most residents of Massachusetts found their jobs through social contacts. For a recent and detailed review of social science and economics models see Jackson [14].

Remaining in the economics literature, but more directly related to our work, Corominas-Bosch [7] recently considered bipartite exchange economies, but focused on an iterated bargaining pricing mechanism (the Rubinstein mechanism), and analyzed the sub-game perfect equilibria of the game; network formation issues were not addressed. In other recent work, Kranton

and Minehart [19] also considered bipartite exchange economies and network formation. In their models, buyer valuations are drawn from a known distribution, and the pricing mechanism used is that of a generalized English (ascending-bid) auction. Their main interests were the study of the efficiency of the formed networks and in showing that Nash equilibria networks are efficient; they also characterize Nash equilibrium structure for certain values of the edge cost. In contrast to these works, here we examine exchange equilibrium and provide a complete characterization of all Nash equilibrium networks.

Within computer science, most works have concentrated on network formation routing games, and the main interest has been the quality of the resulting equilibrium, as measured by the price of anarchy and the price of stability. We now survey most of these results.

Anshelevich et al. [3, 2] considered a network formation game in which each player or node is given a set of nodes to which she wishes to connect. Players are allowed to share the cost of an edge and thus may pay for remote edges. In the first work [3], any cost-sharing mechanism was considered and it was proven that there is a pure approximate 3-Nash equilibrium whose cost is that of the social optimum. An efficient algorithm to calculate an efficient 4.65-Nash was also provided. In the second paper [2] only a fair sharing mechanism that uses the Shapely value was considered. The price of anarchy in this setting is trivially O(n), but they discovered that the price of stability was $O(\log n)$, and a matching lower bound was provided.

Fabrikant et al. [11], followed by Albers et al. [1], studied a game in which the goal of each player or node is to minimize the sum of distances to the other nodes and his edge costs, where the cost of each edge is α . The main results of these papers prove constant price of anarchy for almost every edge price α . A different variant of this model was studied by Corbo and Parkes [5] where the cost of an edge was shared equally by its endpoints; once again the main interest was in the price of anarchy, not in network structure.

Recently, Moscibroda et al. [20] studied a similar model with applications to peer-to-peer topologies. The goal of each player is to minimize the sum of stretches to other nodes and the edge costs. (The stretch is defined as the distance in the formed graph divided by an initial distance, which is decided according to the input metric). They also study the price of anarchy and the existence of pure Nash equilibrium.

Johari et al. [15] also considered a routing-based formation game. They considered a directed network, where each node wishes to send a given amount of traffic to other nodes. The cost function for a node/player v

is composed of three components: the first is negative and is due to the edges purchased by v; the second is positive and is due to the nodes reachable from v; and the third is negative and is due to the amount of traffic that goes through v. The edges are bought by bilateral negotiation between the endpoints. The main results of [15] provide an equilibrium existence proof and a study of the equilibrium structure conditioned on the payoff function.

Finally, recently Even-Dar and Kearns [10], following earlier work by Kleinberg [18], examined a network formation routing game in which more distant edges are more expensive; they show a sharp threshold result for constant diameter at Nash equilibrium.

2 The Network Formation Game

We begin by reviewing the bipartite exchange economy model studied in [17, 16], and then extend this model to our network formation game.

2.1 Bipartite Exchange Economies. A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes on one side of the bipartition represent buyers (B), and nodes on the other side of the bipartition represent sellers (S), and all edges in E are between E and E. There are two abstract commodities that, without loss of generality, we shall call E and E and E and E an infinitely divisible endowment of 1 unit of cash to trade for wheat; seller E has an infinitely divisible endowment of 1 unit of wheat to trade for cash. Buyers have utility E for E units of wheat and 0 utility for cash; similarly, sellers have utility E for E units of the graph are as follows: buyer E can trade with seller E if and only if there is an edge between E and E.

Before describing the standard notion of equilibrium for this model, we note that it is a significant and deliberate specialization of the model first considered in [17], which among other features permitted varying initial endowments and utility functions, as well as an arbitrary number of commodities. As in [16], where the same specialization was adopted, our interests here are in the structures that arise purely from "network effects", as opposed to those arising from imbalances in supply and demand, variations in consumer utilities, and so on. We view the model adopted here — in which there is complete (initial) symmetry across all players — as the simplest model ensuring that any resulting network structure arises purely from the strategic aspects

of the formation game, and we leave elaborations for future work.

We now describe our notion of exchange equilibrium for a bipartite exchange economy. Let ω_j^s denote the exchange rate (or price), in terms of cash per unit wheat, that seller j is offering. Similarly, let ω_i^b denote the exchange rate, in terms of wheat per unit cash, that buyer i is offering. Let x_{ij} denote the amount of seller j's wheat that buyer i consumes. A set of exchange rates, $\{\omega_i^b\}$ and $\{\omega_j^s\}$, and consumption plans, $\{x_{ij}\}$, constitutes an exchange equilibrium for G if the following two conditions hold [16]:

- 1. The market clears, i.e. supply equals demand. More formally, for each seller j, $\sum_{i \in N(s_j)} x_{ij} = 1$ where $N(i) = \{j | (i, j) \in E\}$. The value of 1 on the right hand side represents j's endowment.
- 2. For each buyer i, their consumption plan $\{x_{ij}\}_j$ is optimal. By this we mean that according to the consumption plan, buyers only buy from the sellers in their neighborhood offering the best exchange rate. That is, $x_{ij} > 0$ if and only if $w_j^s = \min_{s_k \in N(b_i)} w_k^s$.

We note that the role of buyers and sellers in a bipartite exchange economy is completely symmetric. Given buyer i's exchange rate, w_i^b , one can determine how much of buyer i's cash seller j consumes. Thus, one could equivalently define Item 1 above from the point of view of the buyers and Item 2 above from the point of view of the sellers. In this model, it turns out that an exchange equilibrium for G always exists if each seller has at least one neighboring buyer (see [12, 17]). Furthermore, the equilibrium exchange rates are unique, and at equilibrium, if $x_{ij} > 0$ then $\omega_i^s = 1/\omega_i^b$.

Since each seller starts off with 1 unit of wheat and his exchange rate is in terms of cash per unit wheat, at exchange equilibrium each seller will earn exactly his exchange rate in dollars. Thus we will also call each sellers exchange rate w_i^s her wealth. Similarly, at exchange equilibrium each buyer will earn exactly his exchange rate in wheat, so we call the buyers exchange rate w_i^b her wealth as well. We say there is no wealth variation at exchange equilibrium of a bipartite exchange economy when the wealth of all of the sellers are equal and the wealth of all of the buyers are equal. We say there is wealth variation at exchange equilibrium if some buyers earn a different amount of wealth than other buyers and/or some sellers earn a different amount of wealth than other sellers. In a bipartite exchange economy where the number of buyers and sellers are equal, at exchange equilibrium the average wealth will be 1, so some player has wealth less than 1 if and only if some other player has wealth greater than 1.

The exact form of these functions is irrelevant as long as each party has non-zero and increasing utility only for the "other" good.

Next we consider the graphical aspects of exchange equilibria. First, observe that in a bipartite exchange economy an exchange equilibrium not only determines the wealth of each player, but the consumption plan also determines on which edges trading takes place. We call the subgraph that consists of edges where trading occurred an *exchange subgraph*.

DEFINITION 2.1. Let G = (B, S, E) be a bipartite exchange economy. Let $\{\omega_i^b\}$, $\{\omega_j^s\}$, and $\{x_{ij}\}$ be an exchange equilibrium. Then the exchange subgraph of G is G' = (B, S, E'), where $E' = \{(i, j) | x_{ij} > 0\}$.

In contrast to the exchange equilibrium wealth, the exchange subgraph need not be unique. We say that exchange subgraph G' is minimal if the removal of any edge from G' changes the exchange equilibrium wealths. Note that even when G is connected its exchange subgraph may be disconnected. We thus call the connected components of the exchange subgraph trading components. We say that a trading component is (m,k) if there are m buyers and k sellers, which will result in the wealth of each buyer in such component being k/m, and the wealth of each seller being m/k. Thus, wherever there is a wealth variation in G there are at least two trading components that have a different ratio between buyers and sellers in them.

In the bipartite exchange economy model described so far, the graph over which the buyers and sellers trade is exogenously defined. That is, the graph is fixed a priori, and then the players trade according to it. The main contribution of the work of [16] is to describe how the topology of the graph affects variation in price of the goods. The main contribution of this work is to make the formation of the graph endogenous to the game. That is, players are allowed to buy edges to other players, as opposed to having a topology imposed on them. We now give the formal definition of this new model.

2.2 The Network Formation Game. In this section we give a formal definition of the network formation game. This game consists of two sets of players, B and S, where |B| = |S| = n. The set B is defined as the buyer set, and the set S is defined as the seller set. As in the bipartite exchange economy we assume that each buyer starts off with an infinitely divisible endowment of 1 unit of an abstract good, which we call cash. Each seller starts off with an infinitely divisible endowment of 1 unit of another abstract good, which we call wheat.

The action of a buyer b_i is denoted $a_i^b \in \{0,1\}^n$ and the action of seller j is denoted $a_j^s \in \{0,1\}^n$. These actions encode which edges, if any, a player buys. An edge (b_i, s_j) is bought by player b_i only if

 $a_i^b(j)=1$ and it is bought by s_j only if $a_j^s(i)=1$. (At equilibrium, an edge (b_i,s_j) will be bought by b_i or s_j or neither, but not both.) A strategy is said to be pure if no player is randomizing over her actions; in this paper we study only pure strategies. Next, let $a=a_1^b\times\cdots\times a_n^b\times a_1^s\times\cdots\times a_n^s$ be the joint action of all the players. Let the set of edges that b_i buys be denoted $E_i^b(a)=\{(b_i,s_j)|a_i^b(j)=1\}$, and let the set of edges that s_j buys be $E_j^s(a)=\{(b_i,s_j)|a_j^s(i)=1\}$. The joint action of all the players defines a bipartite graph, G(a)=(B,S,E) as follows. The nodes on one side of the graph represent the buyers and on the other side represent the sellers. The set of edges E are the edges that the players bought, or more formally: $E=\bigcup_{i\in[n],t\in\{b,s\}}E_i^t(a)$.

Observe that every graph G defines a bipartite exchange economy. We call the price vector and consumption plan that form an equilibrium of the bipartite exchange economy an exchange equilibrium. This equilibrium will determine the wealth each player earns; the wealth that buyer b_i earns is denoted $\omega_i^b = \omega_i^b(G)$, and the wealth that seller s_j earns is denoted $\omega_j^s = \omega_i^s(G)$. The wealth each player earns will form the positive component of that player's utility function. The negative component will be determined by how many edges each player buys. More formally, we define the utility functions of the players of type $t \in \{b, s\}$ in the network formation game as follows:

$$u_i^t(a) = u_i^t(a_i^t, a_{-i}^t) = \omega_i^t - \alpha |E_i^t|.$$

A joint action $a=a_1^b\times\cdots\times a_n^b\times a_1^s\times\cdots\times a_n^s$ is said to be a Nash equilibrium if for every player i we have $u_i^t(a_i^t,a_{-i}^t)\geq u_i^t(\hat{a}_i^t,a_{-i}^t)$ for every action \hat{a}_i^t . Since we only consider pure strategies for the players actions, we also only consider pure Nash equilibrium. Thus, each Nash equilibrium strategy a induces a graph, G, which we call an equilibrium graph.

Some important comments on this model are in order here. First, the utility functions u_i^t above specify the utilities or payoffs to the players of a standard oneshot, simultaneous move game: all players simultaneously choose the set of edges they wish to purchase, which in turn determines G and therefore the utility components ω_i^t . Second, it is important to note that there are two distinct equilibrium concepts we shall need to reason about. Our primary interest is in the (pure) Nash equilibrium of the game defined by the u_i^t , which is the network formation game. However, the definition of u_i^t itself involves another equilibrium quantity — namely, the wealth ω_i^t that i receives at exchange equilibrium in the fixed network G. For clarity we shall always refer to equilibria of the formation game given by the u_i simply as Nash equilibria, and to the latter

notion as the exchange equilibria for a fixed G. Third, note that the u_i^t treat the initial purchase of edges and the exchange equilibrium wealths as taking place in the same "currency", which differs depending on the type of agent: buyers end with wealth measured in wheat, while sellers end with dollars. We can view this as modeling a central "edge banker" who is willing to extend credit in either currency to the players in order to allow the trade network to be built².

3 Summary of Main Results

In this section, we state and discuss our main results; analysis and proofs of the theorems are given in Section 4. Our first result relates the edge cost α to the minimum exchange equilibrium wealth in any Nash equilibrium graph.

THEOREM 3.1. Let G be a Nash equilibrium graph of the network formation game, and let ω_{min} be the minimum exchange equilibrium wealth in G of any player. Then $\alpha \geq 1 - \omega_{min}$, or equivalently, $\omega_{min} \geq 1 - \alpha$.

Recalling that the average exchange equilibrium wealth is always 1 (since all endowments are equal), Theorem 3.1 states a natural limit on how much exchange equilibrium wealth variation can result from the formation game — the smaller the edge costs α , the more equitable these wealths must be. Great variation in wealths can only arise in the presence of high edge costs. The intuition behind this result is that a player of sufficiently low exchange wealth should be able to find another such player to trade with, with the resulting wealth gain more than covering the edge cost. The proof behind this intuition is somewhat subtle owing to the fragility of exchange equilibria — a small change to the underlying graph may cause large and distant changes to the exchange equilibrium.

THEOREM 3.2. Let G be any bipartite graph, and let C be a trading component of G with buyer set B' and seller set S' such that |B'| = m and |S'| = k, m > k. Then there exists a node s in S' and an edge e incident on s such that the removal of e from G decreases the exchange equilibrium wealth of s by at most most 1/k. Furthermore, if G is a Nash equilibrium graph of the network formation game, then $\alpha \leq 1/k$.

The second claim in Theorem 3.2 follows from the first by virtue of the fact that at Nash equilibrium, all of the edges in the trading component C must have been

purchased by S' — since m > k, the buyers in B' are being "exploited" by the smaller number of sellers in S', and thus have better choices of edge purchases.

Now together Theorems 3.1 and 3.2 provide upper and lower bounds on the edge cost α in terms of the minimum exchange wealth and the possible trading component structure. It can be shown that together these bounds strongly constrain the possible Nash equilibrium graphs of the formation game, and that in turn the remaining possibilities can all in fact be realized, leading to a precise characterization of all Nash equilibrium graphs. Before stating our main theorem precisely, we define the following types of graphs.

- Perfect Matchings. The class of all perfect matchings between the buyers and sellers. In this class all exchange rates or wealths are equal to 1.
- Exploitation Graphs. These are graphs in which every trading component has a single party of one type (say, sellers) "exploiting" a (possibly much) larger set of parties of the other type, or vice-versa (a single buyer exploiting many sellers). The collection of such components must meet the constraint that there must be an equal number of buyers and sellers, but also a much stronger constraint on the number of possible different components that can be present simultaneously. More precisely, for any $k, \ell > 1$, let G be a graph consisting of the union of n_1 (1, k)-trading components, n_2 (1, k + 1)-trading components, n_3 (ℓ , 1)-trading components, and n_4 $(\ell+1,1)$ -trading components, where $n_1+n_2+n_3\ell+$ $n_4(\ell+1) = n_1k + n_2(k+1) + n_3 + n_4$ (equal number of buyers and sellers). Note that in any such graph there may be at most 4 different (say) seller wealth values: 1/k, 1/(k+1), ℓ and $\ell+1$. Thus for large values of k or ℓ there is great wealth variation. The class of Exploitation Graphs consists of all such graphs G. See Figure 1 for an example.
- Balanced Graphs. While still permitting some inequality, these graphs are closer to the Perfect Matchings than to the Exploitation Graphs, in that wealth variation is strongly limited. More precisely, for any k > 2, let G be a graph consisting of the union of n_1 trading components that are either (k-1,k) or (k,k+1) and n_1 trading components that are either (k,k-1) or (k+1,k), k > 2. (Note that since the number of buyers is 1 less than the number of sellers in a (k-1,k)-trading component and a (k,k+1)-trading component, any mixture of n_1 such components is balanced by any mixture of n_1 (k,k-1) and (k+1,k)-trading components.) In such a graph there are again at most 4 different

²If desired, the notion of the edge banker can be made formal and endogenous to the game as a third player type with edges as initial endowments and equal utility for dollars and wheat.

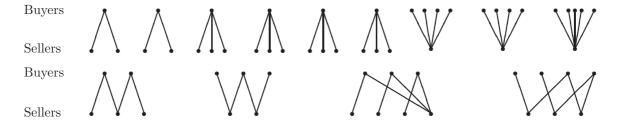


Figure 1: Top row: An example of an exploitation graph with k = 2, $\ell = 4$ and n = 17. Seller exchange equilibrium wealth values are 1/2, 1/3, 4 and 5. Bottom row: An example of a balanced graph with n = 14. Seller exchange equilibrium wealth values are 2/3, 3/2, 3/4 and 4/3.

seller wealth values: k/(k-1), (k+1)/k, (k-1)/k, and k/(k+1), but unlike in Exploitation Graphs, unbounded wealth variation is not possible, and for large k all wealths are nearly equal. See Figure 1 for an example.

Armed with these definitions, we can now state our main theorem, which provides a complete characterization of every Nash equilibrium of our network formation game.

THEOREM 3.3. Let $NE(n,\alpha)$ be the set of all Nash equilibria graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n,\alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs defined above.

As has been suggested, the proof that NE is contained in the stated union will follow from Theorems 3.1 and 3.2 above, while the proof that it contains the union will be shown by explicit constructions which we sketch in Appendix A. We emphasize that Theorem 3.3 places very strong constraints on the Nash equilibrium graphs, and accordingly, on the nature of wealth variation. For instance, the characterization rules out certain exchange rates or wealths — 2/5 is one example of an unattainable value. Wealth variation can essentially occur only in monopolistic form (the exploitation graphs).

Our results rely on one final structural characterization that is of independent interest, and concerns the "compactness" of Nash equilibrium graphs. More precisely, we show that a Nash equilibrium graph G cannot contain redundant edges — that is, the removal of any edge in G will change the exchange subgraph and the exchange rates or wealths. The intuition behind this theorem is that if redundant edges existed, the nodes that purchased them can remove them from the graph without effecting their wealth, and thus it is not a Nash equilibrium. It is interesting to note that in other formation games, such as that in [1], cycles can exist at

equilibrium, which can be seen as an analog of redundant edges in our formation game.

Theorem 3.4. Let G be a Nash equilibrium graph of the network formation game. Then G is equal to its minimal exchange subgraph.

4 The Analysis

Relating Topology to Equilibria. In [16] the authors prove a few theorems that characterize the topology of graphs that give rise to wealth variation in a bipartite exchange economy. First we will state a theorem from [16] that provides sufficient and necessary conditions to wealth variation in bipartite exchange economy, where the number of buyers equals the number of sellers. Then we will extend it to economies where the number of buyers and sellers may not be equal. This will later help us compute the wealth of the sellers in each trading component, since in a given trading component, the number of buyers need not equal the number of sellers. For a bipartite graph G = (B, S, E) if W is a set of nodes from one side of the bipartition, then N(W) denotes the set of nodes connected by an edge to some node in W.

THEOREM 4.1. A necessary and sufficient condition for a bipartite exchange economy, G = (B, S, E), to have no wealth variation among sellers is that for all subsets $S' \subseteq S$, $|N(S')| \ge |S'|$.

A symmetric argument can be made to show that there will be no wealth variation among the buyers, if for all subsets of buyers $B' \subseteq B$, $|N(B')| \ge |B'|$. By a trivial application of Hall's Theorem [6], we get the following result.

THEOREM 4.2. There is no wealth variation in a bipartite exchange economy if and only if there is a perfect matching in the underlying graph.

```
Input : G_1 = (B_1, S_1, E) a bipartite exchange economy

Output: the trading components of G_1
i = 1;

repeat

Let U_i = \operatorname{argmax}_{U \subseteq B_i} \frac{|U|}{|N(U)|};

C_i = \{U_i, N(U_i)\};

B_{i+1} = B_i \setminus U_i, S_{i+1} = S_i \setminus N(U_i);

E_{i+1} = E_i \setminus \{(u, v)|u \in U_i \text{ or } v \in N(U_i)\};

i = i + 1;

G_i = (B_i, S_i, E_i);

until B_i = \emptyset;
```

Algorithm 1: This algorithm takes as input a bipartite exchange economy, G_1 , and outputs the trading components, $C_1, ..., C_r$ of G_1 .

Structure of the Nash Equilibria. The proofs of our main results use an algorithm for determining the trading components of a bipartite exchange economy. Algorithm 1 (see the figure) works by iteratively choosing the subset of buyers, $U \subseteq B$ that maximizes |U|/|N(U)|, outputs U and N(U), removes them from the graph, and repeats. Intuitively the set of buyers, U, that maximizes this ratio will be getting fairly low wealth since there are many buyers connected to only a few sellers in N(U). Furthermore, buyers not in U that are attached to the sellers in N(U) will likely buy from other sellers since the price in N(U) will be relatively high. We note that while there are more general and more efficient algorithms [8] for the equilibrium computation performed by Algorithm 1, its simplicity and properties (as we shall demonstrate) make it ideal for our structural analysis of the formation game Nash equi-

The proof of the following theorem is omitted due to space considerations, but is sketched in Appendix B and given in detail in an extended version of this paper [9].

Theorem 4.3. If Algorithm 1 is given any bipartite exchange economy G, then it will output all of the trading components of G (which comprises the exchange subgraph of G), along with the wealth of each buyer and seller in G. Furthermore, the connected components output by the algorithm are sorted according to the buyers' wealth in non-decreasing order, i.e., $\frac{|U_i|}{|N(U_i+k)|} \ge \frac{|U_{i+k}|}{|N(U_{i+k})|}$, for k > 0.

A key implication of the above theorem is an analog for Theorem 4.1.

COROLLARY 4.1. Let $C = (\tilde{B}, \tilde{S})$. Then C is a trading

component if and only if for every subset $B' \subseteq \tilde{B}$, we have $\frac{|B'|}{|N(B')|} \le \frac{|\tilde{B}|}{|N(\tilde{B})|}$.

A symmetric claim holds for the sellers.

We now prove the main results stated in Section 3 using the properties of the algorithm. Note that although the proofs rely on Algorithm 1, the statements are independent of the algorithms used to compute the exchange equilibria. We begin with the proof that α is lower bounded by 1 minus the minimum wealth.

Proof of Theorem 3.1. Let $C_1, ..., C_r$ denote the connected components output by Algorithm 1 when its input is G (since G is an equilibrium graph of the network formation game, by Theorem 3.4 the connected components are G itself). Without loss of generality we assume that a buyer achieves the minimum wealth. Let $|U_1| = m$ and $|N(U_1)| = \ell$ and assume that $m > \ell$ so that $m = \ell + k$, k > 0, otherwise there is no wealth variation, and the bound is trivially satisfied. Also note that in C_r we have that $U_r = m'$ and $V_r = \ell'$, where $\ell' > m'$. This is because in G the number of sellers equals the number of buyers and by Theorem 4.3 the ratio in C_r is the minimum ratio.

Now assume $u \in U_1$ connects to $v \in V_r$, and call the resulting graph G'. We now consider the set $U_1^- = U_1 \setminus \{u\}$. By definition we have that $|U_1^-| = m-1$, and Theorem 4.3 implies that U_1 achieves the maximum ratio in G, so we must have that $|N(U_1^-)| = |N(U_1)|$. Thus we have $|U_1^-| = |N(U_1^-)| + k - 1$. More generally, by the maximality of U_1 in G we have that for every $W \subset U_1$, $|W| \leq |N(W)| + k - 1$.

Our next step is to run Algorithm 1 on G'. Consider the iteration in which the last part of U_1^- is removed. Let W' be the part of U_1^- removed in all of the previous iterations, by the maximality of U_1 in G we have that $|W'| \le |N(W')| + k - 1$, then $|U_1^- \setminus W'| \ge |N(U_1^- \setminus W')|$ and by Corollary 4.1 the last part of U_1^- will be removed with buyers' wealth at most 1. Thus, by Theorem 4.3, the buyers' wealth up to this point is at most 1. Buyer u could not be removed as a part of any previous set with wealth strictly smaller than 1 as u would have added one node to the set itself, and also would have added one node v to the neighbor set, and hence decrease the ratio. Therefore, we can assume that either u has not been removed up to this iteration, or it has been removed with wealth exactly 1. We next show that if it was not removed yet, it would also be removed with wealth 1.

For any set W that does not contain u and that $\{v\} \subseteq N(W)$, we have |W|/|N(W)| < 1 (otherwise v would have had a higher wealth at G). Since after the removal of U_1^- , we have $|\{u\}|/|N(\{u\})| = 1$ and this is u's only edge remaining, u and v will be removed together and the wealth of each will be 1. Therefore, the

wealth of u would increase by $1 - w_{min}$ by buying the edge, and since G is an equilibrium graph it implies that $\alpha \geq 1 - w_{min}$. This completes the proof of Theorem 3.1.

Note that although the proof is referring to an equilibrium graph, we can deduce from the proof the fact that every node with wealth less than 1 can achieve price 1 by buying an additional edge. We also note that the following proposition regarding the identities of the players buying the edges follows from the same line of argument.

Theorem 4.4. Let G be a Nash equilibrium graph of the network formation game. Then the exchange equilibrium wealth of each node which buys an edge is at least 1.

We now provide the upper bound theorem proof, which states that if an (m, k) trading component (k < m) is part of an equilibrium graph, then α is at most 1/k.

Proof of Theorem 3.2. Let $C = (\tilde{B}, \tilde{S})$ be an (m, k)-trading component. We first find the strict subset of buyers inside the component with the maximum ratio and also its corresponding set of sellers.

$$\Gamma = \underset{\Gamma: \Gamma \subset \tilde{B} \text{ and } (|\Gamma| \neq m) \text{ and } W = N(\Gamma)}{\operatorname{argmax}} \frac{|\Gamma|}{|W|}$$

Lemma 4.1. Let
$$\beta = \frac{|\Gamma|}{|W|}$$
, then $\beta \geq \frac{m-1}{k}$

Proof. Let us fix a set Γ' of size m-1 then its neighbor set is $W' = N(\Gamma')$. Observe that the cardinality of W' is k, otherwise Γ' 's ratio would be $\frac{m-1}{k-\ell} \geq \frac{m-1}{k-1} > \frac{m}{k}$, which by Corollary 4.1 contradicts the fact that (m,k) is a trading component. Applying Corollary 4.1 again implies either the component (Γ', W') has no wealth variation, or it has a subset with higher ratio (which has no wealth variation).

Returning to the proof of Theorem 3.2, we now show the existence of a node in W that can remove one of its edges and decrease its wealth by at most 1/k as desired. Let us examine the nodes of W; we know that there exists at least one node $v \in W$ such that it has a neighbor, $u \notin \Gamma$, otherwise the component (m,k) is not connected. Now we consider the value of (v,u) to v. Let G' be the graph after the removal of (v,u). Now let $M_1 = (U_1, V_1), ..., M_K = (U_k, V_k)$ be the sets removed by the algorithm before v is removed (i.e $v \in V_{k+1}$). It remains to show that after the removal of these sets v's wealth is at least β , i.e. $\frac{|U_{k+1}|}{|V_{k+1}|}$ is at least $\frac{m-1}{k}$. In the next steps we use the following notation: $W_i = W \cap V_i$, $\Gamma_i = \Gamma \cap U_i$, $\bar{W}_k = \bigcup_{i=1}^k W_i$ and $\bar{\Gamma}_k = \bigcup_{i=1}^k \Gamma_i$.

Lemma 4.2. For every
$$k>1, \ \frac{\bar{\Gamma}_k}{W_k} \leq \beta$$

Proof. For every i, for every node $x \in \Gamma_i$ we have that in G, $N(\{x\}) \subseteq W$, therefore the only difference between $N(\{x\})$ with respect to G_i and $N(\{x\})$ with respect to G_1 are the nodes in W_j , j < i (note that the edge (u, v) has no influence here). Thus, $N(\bar{\Gamma}_k) \subseteq \bar{W}_k$ in G, and by definition $(\bar{W}_k, \bar{\Gamma}_k)$ cannot attain a ratio larger than β .

We now complete the proof of Theorem 3.2. Note that $|U_i|/|V_i|$ might be larger than β . Next we observe that if we partition Γ to two sets, $\Gamma \setminus \bar{\Gamma}_k$ and $\bar{\Gamma}_k$ such that $|\Gamma|/|N(\Gamma)| \geq |\bar{\Gamma}_k|/|N(\bar{\Gamma}_k)|$, then we must have $|\Gamma \setminus \bar{\Gamma}_k|/|N(\Gamma \setminus \bar{\Gamma}_k)| \geq |\Gamma|/|N(\Gamma)| = \beta$. Therefore, when v is removed, it is part of a set with ratio at least β which implies (as Algorithm 1 chooses the set that maximizes the ratio) that the set in which it is actually removed with has a ratio at least β as well (note that it is not necessarily $S \setminus \bar{S}_k$), and thus its wealth is at least β . Now the decrease in the wealth of v is at most $m/k-\beta \leq 1/k$, which concludes the first part of theorem. Furthermore, if the trading component is part of an equilibrium graph of the network formation game, then by Theorem 4.4, v buys all of the edges incident on it and thus $\alpha \leq 1/k$. This completes the proof of Theorem 3.2.

We are finally ready to prove half of Theorem 3.3 — namely, the claim that the set of Nash equilibrium is contained in the three stated types of graphs. In Appendix A we sketch the proof that each such graph type is indeed a Nash equilibrium.

Proof of Theorem 3.3: NE contained in the three graph types. Let C be an (m,k) trading component of the graph. We next show that only a few values of (m,k) can occur. By Theorem 3.1 we have that $\alpha \geq 1 - \frac{k}{m}$. By Theorem 3.2 we have that $\alpha \leq 1/k$, combining these two inequalities we have that

$$1/k > 1 - k/m \Rightarrow m > k(m - k)$$

which holds only for k=1 and k=m-1, and for k=2 and m=4. However, the (4,2)-trading component can only occur as a disjoint union of two (2,1) trading components. Therefore, the only possible families of trading components are (1,k) and (k,k+1). First we show that (1,k) trading component cannot coexist with $(\ell,\ell+1)$ trading components (unless $k=\ell=2$). The first trading component implies that $\alpha \geq 1-1/k$, and the second implies that $\alpha \leq 1/\ell$, and both can only simultaneously hold for $\ell=k=2$ (and in such case the (1,2) trading component can be considered as either an exploitation graph or a balanced graph).

Now consider the case where (1, k) trading component exists along with $(1, k + \ell)$ for $\ell \geq 2$, and let u be the sole buyer in the (1, k) trading component. Now u can buy an edge to a node v in the $(1, k + \ell)$ component;

it is easy to see that now v will trade with u, and v will earn wealth 1/(k+1), rather than trading inside the $k+\ell$ component and earning wealth $1/(k+\ell)$. Therefore, it cannot be an equilibrium graph of the network formation game. It sill remains to show that (k,k+1) cannot coexist with $(\ell,\ell+1)$. Let us see what are the restrictions imposed by such component. By Theorem 3.2 and Theorem 3.1, we have that

$$\frac{1}{k+1} \le \alpha \le \frac{1}{k}$$

This immediately implies that only consecutive trading components, i.e, (k-1,k) and (k,k+1), can coexist. This completes the proof of the first part Theorem 3.3; see Appendix A for a sketch of the construction of the equilibrium graphs.

Acknowledgements

We give warm thanks to Robin Pemantle for early ideas and discussions on the algorithm analyzed here, and to Huanlei Ni for a number of helpful comments.

References

- S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash equilibria for a network creation game. In *Proc. of SODA*, pages 89–98, 2006.
- [2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The price of stability for network design with fair cost allocation. In Proc. 45th Annual IEEE Symp. on Foundations of Computer Science, pages 295–304, 2004.
- [3] E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler. Near-optimal network design with selfish agents. In Proc. 35th Annual ACM Symp. on Theory of Computing, pages 511–520, 2003.
- [4] R. Aumann and R. Myerson. Endogenous formation of link between players and coaliations: An application of shapley value. In A. Roth, editor, *Shapley Value*, pages 175–191.
- [5] J. Corbo and D.C. Parkes. The price of selfish behavior in bilateral network formation. In *Proc. 24th ACM Symp. on Principles of Distributed Computing*, pages 99–107, 2005.
- [6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, 1990.
- [7] M. Corominas-Bosch. Bargaining in a network of buyers and sellers. *Journal of Economic Theory*, 115:35–77, 2004.
- [8] Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani. Market equilibrium via a primal-dual-type algorithm. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.

- [9] E. Even-Dar, M. Kearns, and S. Suri. A network formation game for bipartite exchange economies. 2006. Extended version at www.cis.upenn.edu/~mkearns/papers/econform.pdf.
- [10] Eyal Even-Dar and Michael Kearns. A small world threshold for economic network formation. In *Neural Information Processing Systems* 20, 2006. To appear.
- [11] A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou, and S. Shenker. On a network creation game. In Proc. 22nd Annual Symp. on Principles of Distributed Computing, pages 347–351, 2003.
- [12] D. Gale. Theory of Linear Economic Models. McGraw Hill, N.Y., 1960.
- [13] M. Granovetter. The strength of weak ties. American Journal of Sociology, 78:1360–1380, 1973.
- [14] M. Jackson. A survey of models of network formation:stability and efficiency. In G. Demange and M. Wooders, editors, *Group Formation in Economics:* Networks. Clubs and Coalitions, 2003.
- [15] R. Johari, S. Mannor, and J.N. Tsitsiklis. A contract-based model for directed network formation. *Games and Economic Behavior*, 2006.
- 16] Sham M. Kakade, Michael Kearns, Luis E. Ortiz, Robin Pemantle, and Siddharth Suri. Economic properties of social networks. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT Press.
- [17] S.M. Kakade, M. Kearns, and L.E. Ortiz. Graphical economics. In *Proceedings of the 17th Annual Confer*ence on Learning Theory (COLT), 2004.
- [18] Jon Kleinberg. Navigation in a small world. Nature, 406:845, 2000.
- [19] R. Kranton and D. Minehart. A theory of buyer seller newtorks. American Economic Review, 91(3):485–508, 2001.
- [20] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. On the topologies formed by selfish peers. In Proc. 25th ACM Symp. on Principles of Distributed Computing, 2006.

A Construction of Equilibrium Graphs

In this section we show that there are Exploitation (k, ℓ) which are Nash equilibria of the network formation game.

We start by providing a technical lemma.

LEMMA A.1. If $\alpha > 1 - 1/\ell$ then at Nash equilibrium of the network formation game, no seller in a Exploitation (k,ℓ) graph would buy an edge to a buyer of degree ℓ or $\ell+1$.

Proof. Let s be a seller, and let b be a buyer of degree ℓ or $\ell+1$. At Nash equilibrium of the network formation game, b's wealth is at most $1/\ell$. Since the players are rational, the only way for trade to occur over a (b,s) edge is if s offered a price lower than $1/\ell$. Since

an edge to b.

Now we are ready to show that Exploitation (k, ℓ) graphs can be equilibria graphs of the network formation game.

LEMMA A.2. If $\alpha > 1 - 2/(\max(k+1, \ell+1))^2$, then any $Exploitation(k, \ell)$ graph where nodes with degree k or k+1 and ℓ or $\ell+1$ buy all the edges incident on them, is a Nash equilibrium of the network formation qame.

Proof. Let s be a seller with degree k or k+1. By Lemma A.1 we know that at Nash equilibrium of the network formation game s will not buy any edges to buyers of degree ℓ or $\ell+1$. Next, let $w_1,\ldots,w_{k'}$ be the buyers attached to s in a Exploitation (k, ℓ) graph. Now say s bought a set of edges that did not contain all of the w_i . Then, since $\alpha < 1$ and no other players are connected to the w_i , s could increase its utility by buying edges to the those unconnected w_i . Thus we can assume, at Nash equilibrium of the network formation, s buys all the edges to the w_i . Next, we show at formation equilibrium s does not buy edges to other degree 1 nodes.

By the market clearing condition, the wealth of each of the w_i is either 1/k or 1/(k+1), and s wealth is either k or k+1. If s has wealth k+1 and it buys edges to buyers that have wealth k, these buyers have no incentive to switch to s so it would not be rational for s to buy an edge to such a buyer. Next, if s wealth is k and it buys an edges to a buyer b that is also getting price k, b would not buy from s for the following reason. Assume that if (b, s) is not an edge in the graph b buys from s', but when (b, s) is an edge in the graph b buys from s. Then at market clearing s would offer price k+1and then s' would offer price k-1. Thus it would not be rational for b to switch sellers. Finally, if s wealth is k+1 and a buyer b is getting price k from s', s will not buy the edge to b. If s did, then b will split its good evenly between s and s'. Since the cost of an edge is $\alpha > 1 - 1/(\max(k+1, \ell+1))^2$, where $k, \ell > 1$ and this edge only increased the utility of s by 1/2, s would not buy this edge.

Next, let s be a seller of degree 1. Again, by Lemma A.1 we know that at equilibrium s will not buy any edges to buyers of degree ℓ or $\ell+1$. So, all we have to show is that at equilibrium s will not buy any edges to buyers of degree 1. Consider the result of sbuying a edges to a set of buyers B, where |B| = m. If $m > \lfloor (\ell+1)/2 \rfloor$, s wealth would only be $\lfloor (\ell+1)/2 \rfloor$. So $m \leq \lfloor (\ell+1)/2 \rfloor$, in which case s wealth would be m and pay $m\alpha$ for the edges to B. Observe that

 $\alpha > 1 - 1/\ell$, s would only decrease her utility by buying $m(1 - \alpha) < (\ell + 1)(1 - \alpha)/2 < 1/(k + 1)$. Thus, buying these m edges would only decrease the utility of s.

> Thus, we have shown that at Nash equilibrium of the network formation game sellers would buy only those edges designated by the Exploitation(k, l) graph. The case for buyers is entirely symmetric.

> Due to space considerations, we omit the proof that shows that for $1/(k+1) \le \alpha \le 1/(k)$, any balanced graph consisting n_1 (k, k+1) trading components and n_1 (k+1,k) trading components is an equilibrium graph of the network formation game, and that for $\alpha = 1/(k+1)$, a balanced graph consisting n_1 (k-1,k) or (k,k+1)trading components and n_1 (k, k-1) or (k+1, k)trading components is an an equilibrium graph of the network formation game. Full details can be found in an extended version of this paper [9].

Proof Sketch of Theorem 4.3

Due to space considerations we only sketch the main ideas of the proof of Theorem 4.3, which establishes the correctness of Algorithm 1. Full details can be found in an extended version of this paper [9].

The first step is to extend Theorem 4.2 (which provides a necessary and sufficient condition to have no wealth variation in a graph in which the number of buyers equals the number of sellers) to graphs where the number of buyers does not equal the number of sellers. We then provide a construction that transforms a graph with an unequal number of buyers and sellers to a graph with an equal number of buyers and sellers and show that there exists no wealth variation in the original graph if and only if its transformed graph has a perfect matching. The importance of this construction is to show that every connected component produced by the algorithm can be a trading component and does not have wealth variation in it. The last step to the proof is to show that the ratio of the size of the subsets of buyers to the size of their neighbor sets produced by the algorithm, $|U_i|/|N(U_i)|$, is non-increasing. This is essential to the proof of correctness of the algorithm, because the algorithm assumes that U_i and $N(U_i)$ will form a trading component, and this result shows that neither set will have better trading opportunities outside these sets. Combining these facts yields the algorithm correctness proof.